| 1 | #include "duckdb/execution/operator/set/physical_recursive_cte.hpp" |
| 2 | |
| 3 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 4 | |
| 5 | #include "duckdb/common/types/chunk_collection.hpp" |
| 6 | #include "duckdb/execution/aggregate_hashtable.hpp" |
| 7 | |
| 8 | using namespace duckdb; |
| 9 | using namespace std; |
| 10 | |
| 11 | class PhysicalRecursiveCTEState : public PhysicalOperatorState { |
| 12 | public: |
| 13 | PhysicalRecursiveCTEState() : PhysicalOperatorState(nullptr), top_done(false) { |
| 14 | } |
| 15 | unique_ptr<PhysicalOperatorState> top_state; |
| 16 | unique_ptr<PhysicalOperatorState> bottom_state; |
| 17 | unique_ptr<SuperLargeHashTable> ht; |
| 18 | |
| 19 | bool top_done = false; |
| 20 | |
| 21 | bool recursing = false; |
| 22 | bool intermediate_empty = true; |
| 23 | }; |
| 24 | |
| 25 | PhysicalRecursiveCTE::PhysicalRecursiveCTE(LogicalOperator &op, bool union_all, unique_ptr<PhysicalOperator> top, |
| 26 | unique_ptr<PhysicalOperator> bottom) |
| 27 | : PhysicalOperator(PhysicalOperatorType::RECURSIVE_CTE, op.types), union_all(union_all) { |
| 28 | children.push_back(move(top)); |
| 29 | children.push_back(move(bottom)); |
| 30 | } |
| 31 | |
| 32 | // first exhaust non recursive term, then exhaust recursive term iteratively until no (new) rows are generated. |
| 33 | void PhysicalRecursiveCTE::GetChunkInternal(ClientContext &context, DataChunk &chunk, PhysicalOperatorState *state_) { |
| 34 | auto state = reinterpret_cast<PhysicalRecursiveCTEState *>(state_); |
| 35 | |
| 36 | if (!state->recursing) { |
| 37 | do { |
| 38 | children[0]->GetChunk(context, chunk, state->top_state.get()); |
| 39 | if (!union_all) { |
| 40 | idx_t match_count = ProbeHT(chunk, state); |
| 41 | if (match_count > 0) { |
| 42 | working_table->Append(chunk); |
| 43 | } |
| 44 | } else { |
| 45 | working_table->Append(chunk); |
| 46 | } |
| 47 | |
| 48 | if (chunk.size() != 0) |
| 49 | return; |
| 50 | } while (chunk.size() != 0); |
| 51 | state->recursing = true; |
| 52 | } |
| 53 | |
| 54 | while (true) { |
| 55 | children[1]->GetChunk(context, chunk, state->bottom_state.get()); |
| 56 | |
| 57 | if (chunk.size() == 0) { |
| 58 | // Done if there is nothing in the intermediate table |
| 59 | if (state->intermediate_empty) { |
| 60 | state->finished = true; |
| 61 | break; |
| 62 | } |
| 63 | |
| 64 | working_table->count = 0; |
| 65 | working_table->chunks.clear(); |
| 66 | |
| 67 | working_table->count = intermediate_table.count; |
| 68 | working_table->chunks = move(intermediate_table.chunks); |
| 69 | |
| 70 | intermediate_table.count = 0; |
| 71 | intermediate_table.chunks.clear(); |
| 72 | |
| 73 | state->bottom_state = children[1]->GetOperatorState(); |
| 74 | |
| 75 | state->intermediate_empty = true; |
| 76 | continue; |
| 77 | } |
| 78 | |
| 79 | if (!union_all) { |
| 80 | // If we evaluate using UNION semantics, we have to eliminate duplicates before appending them to |
| 81 | // intermediate tables. |
| 82 | idx_t match_count = ProbeHT(chunk, state); |
| 83 | if (match_count > 0) { |
| 84 | intermediate_table.Append(chunk); |
| 85 | state->intermediate_empty = false; |
| 86 | } |
| 87 | } else { |
| 88 | intermediate_table.Append(chunk); |
| 89 | state->intermediate_empty = false; |
| 90 | } |
| 91 | |
| 92 | return; |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | idx_t PhysicalRecursiveCTE::ProbeHT(DataChunk &chunk, PhysicalOperatorState *state_) { |
| 97 | auto state = reinterpret_cast<PhysicalRecursiveCTEState *>(state_); |
| 98 | |
| 99 | Vector dummy_addresses(TypeId::POINTER); |
| 100 | |
| 101 | // Use the HT to eliminate duplicate rows |
| 102 | SelectionVector new_groups(STANDARD_VECTOR_SIZE); |
| 103 | idx_t new_group_count = state->ht->FindOrCreateGroups(chunk, dummy_addresses, new_groups); |
| 104 | |
| 105 | // we only return entries we have not seen before (i.e. new groups) |
| 106 | chunk.Slice(new_groups, new_group_count); |
| 107 | |
| 108 | return new_group_count; |
| 109 | } |
| 110 | |
| 111 | unique_ptr<PhysicalOperatorState> PhysicalRecursiveCTE::GetOperatorState() { |
| 112 | auto state = make_unique<PhysicalRecursiveCTEState>(); |
| 113 | state->top_state = children[0]->GetOperatorState(); |
| 114 | state->bottom_state = children[1]->GetOperatorState(); |
| 115 | state->ht = make_unique<SuperLargeHashTable>(1024, types, vector<TypeId>(), vector<BoundAggregateExpression *>()); |
| 116 | return (move(state)); |
| 117 | } |
| 118 | |