| 1 | #include "duckdb/execution/operator/projection/physical_unnest.hpp" |
| 2 | |
| 3 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 4 | #include "duckdb/execution/expression_executor.hpp" |
| 5 | #include "duckdb/planner/expression/bound_reference_expression.hpp" |
| 6 | #include "duckdb/planner/expression/bound_unnest_expression.hpp" |
| 7 | |
| 8 | using namespace duckdb; |
| 9 | using namespace std; |
| 10 | |
| 11 | //! The operator state of the window |
| 12 | class PhysicalUnnestOperatorState : public PhysicalOperatorState { |
| 13 | public: |
| 14 | PhysicalUnnestOperatorState(PhysicalOperator *child) |
| 15 | : PhysicalOperatorState(child), parent_position(0), list_position(0), list_length(-1) { |
| 16 | } |
| 17 | |
| 18 | idx_t parent_position; |
| 19 | idx_t list_position; |
| 20 | int64_t list_length = -1; |
| 21 | |
| 22 | DataChunk list_data; |
| 23 | }; |
| 24 | |
| 25 | // this implements a sorted window functions variant |
| 26 | PhysicalUnnest::PhysicalUnnest(LogicalOperator &op, vector<unique_ptr<Expression>> select_list, |
| 27 | PhysicalOperatorType type) |
| 28 | : PhysicalOperator(type, op.types), select_list(std::move(select_list)) { |
| 29 | |
| 30 | assert(this->select_list.size() > 0); |
| 31 | } |
| 32 | |
| 33 | void PhysicalUnnest::GetChunkInternal(ClientContext &context, DataChunk &chunk, PhysicalOperatorState *state_) { |
| 34 | auto state = reinterpret_cast<PhysicalUnnestOperatorState *>(state_); |
| 35 | while (true) { // repeat until we actually have produced some rows |
| 36 | if (state->child_chunk.size() == 0 || state->parent_position >= state->child_chunk.size()) { |
| 37 | // get the child data |
| 38 | children[0]->GetChunk(context, state->child_chunk, state->child_state.get()); |
| 39 | if (state->child_chunk.size() == 0) { |
| 40 | return; |
| 41 | } |
| 42 | state->parent_position = 0; |
| 43 | state->list_position = 0; |
| 44 | state->list_length = -1; |
| 45 | |
| 46 | // get the list data to unnest |
| 47 | ExpressionExecutor executor; |
| 48 | vector<TypeId> list_data_types; |
| 49 | for (auto &exp : select_list) { |
| 50 | assert(exp->type == ExpressionType::BOUND_UNNEST); |
| 51 | auto bue = (BoundUnnestExpression *)exp.get(); |
| 52 | list_data_types.push_back(bue->child->return_type); |
| 53 | executor.AddExpression(*bue->child.get()); |
| 54 | } |
| 55 | state->list_data.Destroy(); |
| 56 | state->list_data.Initialize(list_data_types); |
| 57 | executor.Execute(state->child_chunk, state->list_data); |
| 58 | |
| 59 | // paranoia aplenty |
| 60 | state->child_chunk.Verify(); |
| 61 | state->list_data.Verify(); |
| 62 | assert(state->child_chunk.size() == state->list_data.size()); |
| 63 | assert(state->list_data.column_count() == select_list.size()); |
| 64 | } |
| 65 | |
| 66 | // need to figure out how many times we need to repeat for current row |
| 67 | if (state->list_length < 0) { |
| 68 | for (idx_t col_idx = 0; col_idx < state->list_data.column_count(); col_idx++) { |
| 69 | auto &v = state->list_data.data[col_idx]; |
| 70 | |
| 71 | assert(v.type == TypeId::LIST); |
| 72 | // TODO deal with NULL values here! |
| 73 | auto list_data = FlatVector::GetData<list_entry_t>(v); |
| 74 | auto list_entry = list_data[state->parent_position]; |
| 75 | if ((int64_t)list_entry.length > state->list_length) { |
| 76 | state->list_length = list_entry.length; |
| 77 | } |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | assert(state->list_length >= 0); |
| 82 | |
| 83 | auto this_chunk_len = min((idx_t)STANDARD_VECTOR_SIZE, state->list_length - state->list_position); |
| 84 | |
| 85 | // first cols are from child, last n cols from unnest |
| 86 | chunk.SetCardinality(this_chunk_len); |
| 87 | |
| 88 | for (idx_t col_idx = 0; col_idx < state->child_chunk.column_count(); col_idx++) { |
| 89 | auto val = state->child_chunk.data[col_idx].GetValue(state->parent_position); |
| 90 | chunk.data[col_idx].Reference(val); |
| 91 | } |
| 92 | |
| 93 | // FIXME do not use GetValue/SetValue here |
| 94 | // TODO now that list entries are chunk collections, simply scan them! |
| 95 | for (idx_t col_idx = 0; col_idx < state->list_data.column_count(); col_idx++) { |
| 96 | auto target_col = col_idx + state->child_chunk.column_count(); |
| 97 | auto &v = state->list_data.data[col_idx]; |
| 98 | auto list_data = FlatVector::GetData<list_entry_t>(v); |
| 99 | auto list_entry = list_data[state->parent_position]; |
| 100 | auto &child_cc = ListVector::GetEntry(v); |
| 101 | |
| 102 | idx_t i = 0; |
| 103 | if (list_entry.length > state->list_position) { |
| 104 | for (i = 0; i < min((idx_t)this_chunk_len, list_entry.length - state->list_position); i++) { |
| 105 | chunk.data[target_col].SetValue(i, |
| 106 | child_cc.GetValue(0, list_entry.offset + i + state->list_position)); |
| 107 | } |
| 108 | } |
| 109 | for (; i < (idx_t)this_chunk_len; i++) { |
| 110 | chunk.data[target_col].SetValue(i, Value()); |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | state->list_position += this_chunk_len; |
| 115 | if ((int64_t)state->list_position == state->list_length) { |
| 116 | state->parent_position++; |
| 117 | state->list_length = -1; |
| 118 | state->list_position = 0; |
| 119 | } |
| 120 | |
| 121 | chunk.Verify(); |
| 122 | if (chunk.size() > 0) { |
| 123 | return; |
| 124 | } |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | unique_ptr<PhysicalOperatorState> PhysicalUnnest::GetOperatorState() { |
| 129 | return make_unique<PhysicalUnnestOperatorState>(children[0].get()); |
| 130 | } |
| 131 | |