| 1 | #include "duckdb/common/types/chunk_collection.hpp" |
| 2 | |
| 3 | #include "duckdb/common/exception.hpp" |
| 4 | #include "duckdb/common/printer.hpp" |
| 5 | #include "duckdb/common/value_operations/value_operations.hpp" |
| 6 | #include "duckdb/common/operator/comparison_operators.hpp" |
| 7 | #include "duckdb/common/assert.hpp" |
| 8 | |
| 9 | #include <algorithm> |
| 10 | #include <cstring> |
| 11 | |
| 12 | using namespace duckdb; |
| 13 | using namespace std; |
| 14 | |
| 15 | void ChunkCollection::Verify() { |
| 16 | #ifdef DEBUG |
| 17 | for (auto &chunk : chunks) { |
| 18 | chunk->Verify(); |
| 19 | } |
| 20 | #endif |
| 21 | } |
| 22 | |
| 23 | void ChunkCollection::Append(ChunkCollection &other) { |
| 24 | for (auto &chunk : other.chunks) { |
| 25 | Append(*chunk.get()); |
| 26 | } |
| 27 | } |
| 28 | |
| 29 | void ChunkCollection::Append(DataChunk &new_chunk) { |
| 30 | if (new_chunk.size() == 0) { |
| 31 | return; |
| 32 | } |
| 33 | new_chunk.Verify(); |
| 34 | |
| 35 | // we have to ensure that every chunk in the ChunkCollection is completely |
| 36 | // filled, otherwise our O(1) lookup in GetValue and SetValue does not work |
| 37 | // first fill the latest chunk, if it exists |
| 38 | count += new_chunk.size(); |
| 39 | |
| 40 | idx_t remaining_data = new_chunk.size(); |
| 41 | idx_t offset = 0; |
| 42 | if (chunks.size() == 0) { |
| 43 | // first chunk |
| 44 | types = new_chunk.GetTypes(); |
| 45 | } else { |
| 46 | // the types of the new chunk should match the types of the previous one |
| 47 | assert(types.size() == new_chunk.column_count()); |
| 48 | auto new_types = new_chunk.GetTypes(); |
| 49 | for (idx_t i = 0; i < types.size(); i++) { |
| 50 | if (new_types[i] != types[i]) { |
| 51 | throw TypeMismatchException(new_types[i], types[i], "Type mismatch when combining rows" ); |
| 52 | } |
| 53 | if (types[i] == TypeId::LIST) { |
| 54 | for (auto &chunk : |
| 55 | chunks) { // need to check all the chunks because they can have only-null list entries |
| 56 | auto &chunk_vec = chunk->data[i]; |
| 57 | auto &new_vec = new_chunk.data[i]; |
| 58 | if (ListVector::HasEntry(chunk_vec) && ListVector::HasEntry(new_vec)) { |
| 59 | auto &chunk_types = ListVector::GetEntry(chunk_vec).types; |
| 60 | auto &new_types = ListVector::GetEntry(new_vec).types; |
| 61 | if (chunk_types.size() > 0 && new_types.size() > 0 && chunk_types != new_types) { |
| 62 | throw TypeMismatchException(chunk_types[0], new_types[i], |
| 63 | "Type mismatch when combining lists" ); |
| 64 | } |
| 65 | } |
| 66 | } |
| 67 | } |
| 68 | // TODO check structs, too |
| 69 | } |
| 70 | |
| 71 | // first append data to the current chunk |
| 72 | DataChunk &last_chunk = *chunks.back(); |
| 73 | idx_t added_data = std::min(remaining_data, (idx_t)(STANDARD_VECTOR_SIZE - last_chunk.size())); |
| 74 | if (added_data > 0) { |
| 75 | // copy <added_data> elements to the last chunk |
| 76 | idx_t old_count = new_chunk.size(); |
| 77 | new_chunk.SetCardinality(added_data); |
| 78 | |
| 79 | last_chunk.Append(new_chunk); |
| 80 | remaining_data -= added_data; |
| 81 | // reset the chunk to the old data |
| 82 | new_chunk.SetCardinality(old_count); |
| 83 | offset = added_data; |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | if (remaining_data > 0) { |
| 88 | // create a new chunk and fill it with the remainder |
| 89 | auto chunk = make_unique<DataChunk>(); |
| 90 | chunk->Initialize(types); |
| 91 | new_chunk.Copy(*chunk, offset); |
| 92 | chunks.push_back(move(chunk)); |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | // returns an int similar to a C comparator: |
| 97 | // -1 if left < right |
| 98 | // 0 if left == right |
| 99 | // 1 if left > right |
| 100 | |
| 101 | template <class TYPE> |
| 102 | static int8_t templated_compare_value(Vector &left_vec, Vector &right_vec, idx_t left_idx, idx_t right_idx) { |
| 103 | assert(left_vec.type == right_vec.type); |
| 104 | auto left_val = FlatVector::GetData<TYPE>(left_vec)[left_idx]; |
| 105 | auto right_val = FlatVector::GetData<TYPE>(right_vec)[right_idx]; |
| 106 | if (Equals::Operation<TYPE>(left_val, right_val)) { |
| 107 | return 0; |
| 108 | } |
| 109 | if (LessThan::Operation<TYPE>(left_val, right_val)) { |
| 110 | return -1; |
| 111 | } |
| 112 | return 1; |
| 113 | } |
| 114 | |
| 115 | // return type here is int32 because strcmp() on some platforms returns rather large values |
| 116 | static int32_t compare_value(Vector &left_vec, Vector &right_vec, idx_t vector_idx_left, idx_t vector_idx_right) { |
| 117 | auto left_null = FlatVector::Nullmask(left_vec)[vector_idx_left]; |
| 118 | auto right_null = FlatVector::Nullmask(right_vec)[vector_idx_right]; |
| 119 | |
| 120 | if (left_null && right_null) { |
| 121 | return 0; |
| 122 | } else if (right_null) { |
| 123 | return 1; |
| 124 | } else if (left_null) { |
| 125 | return -1; |
| 126 | } |
| 127 | |
| 128 | switch (left_vec.type) { |
| 129 | case TypeId::BOOL: |
| 130 | case TypeId::INT8: |
| 131 | return templated_compare_value<int8_t>(left_vec, right_vec, vector_idx_left, vector_idx_right); |
| 132 | case TypeId::INT16: |
| 133 | return templated_compare_value<int16_t>(left_vec, right_vec, vector_idx_left, vector_idx_right); |
| 134 | case TypeId::INT32: |
| 135 | return templated_compare_value<int32_t>(left_vec, right_vec, vector_idx_left, vector_idx_right); |
| 136 | case TypeId::INT64: |
| 137 | return templated_compare_value<int64_t>(left_vec, right_vec, vector_idx_left, vector_idx_right); |
| 138 | case TypeId::FLOAT: |
| 139 | return templated_compare_value<float>(left_vec, right_vec, vector_idx_left, vector_idx_right); |
| 140 | case TypeId::DOUBLE: |
| 141 | return templated_compare_value<double>(left_vec, right_vec, vector_idx_left, vector_idx_right); |
| 142 | case TypeId::VARCHAR: |
| 143 | return templated_compare_value<string_t>(left_vec, right_vec, vector_idx_left, vector_idx_right); |
| 144 | default: |
| 145 | throw NotImplementedException("Type for comparison" ); |
| 146 | } |
| 147 | return false; |
| 148 | } |
| 149 | |
| 150 | static int compare_tuple(ChunkCollection *sort_by, vector<OrderType> &desc, idx_t left, idx_t right) { |
| 151 | assert(sort_by); |
| 152 | |
| 153 | idx_t chunk_idx_left = left / STANDARD_VECTOR_SIZE; |
| 154 | idx_t chunk_idx_right = right / STANDARD_VECTOR_SIZE; |
| 155 | idx_t vector_idx_left = left % STANDARD_VECTOR_SIZE; |
| 156 | idx_t vector_idx_right = right % STANDARD_VECTOR_SIZE; |
| 157 | |
| 158 | auto &left_chunk = sort_by->chunks[chunk_idx_left]; |
| 159 | auto &right_chunk = sort_by->chunks[chunk_idx_right]; |
| 160 | |
| 161 | for (idx_t col_idx = 0; col_idx < desc.size(); col_idx++) { |
| 162 | auto order_type = desc[col_idx]; |
| 163 | |
| 164 | Vector &left_vec = left_chunk->data[col_idx]; |
| 165 | Vector &right_vec = right_chunk->data[col_idx]; |
| 166 | |
| 167 | assert(left_vec.vector_type == VectorType::FLAT_VECTOR); |
| 168 | assert(right_vec.vector_type == VectorType::FLAT_VECTOR); |
| 169 | assert(left_vec.type == right_vec.type); |
| 170 | |
| 171 | auto comp_res = compare_value(left_vec, right_vec, vector_idx_left, vector_idx_right); |
| 172 | |
| 173 | if (comp_res == 0) { |
| 174 | continue; |
| 175 | } |
| 176 | return comp_res < 0 ? (order_type == OrderType::ASCENDING ? -1 : 1) |
| 177 | : (order_type == OrderType::ASCENDING ? 1 : -1); |
| 178 | } |
| 179 | return 0; |
| 180 | } |
| 181 | |
| 182 | static int64_t _quicksort_initial(ChunkCollection *sort_by, vector<OrderType> &desc, idx_t *result) { |
| 183 | // select pivot |
| 184 | int64_t pivot = 0; |
| 185 | int64_t low = 0, high = sort_by->count - 1; |
| 186 | // now insert elements |
| 187 | for (idx_t i = 1; i < sort_by->count; i++) { |
| 188 | if (compare_tuple(sort_by, desc, i, pivot) <= 0) { |
| 189 | result[low++] = i; |
| 190 | } else { |
| 191 | result[high--] = i; |
| 192 | } |
| 193 | } |
| 194 | assert(low == high); |
| 195 | result[low] = pivot; |
| 196 | return low; |
| 197 | } |
| 198 | |
| 199 | static void _quicksort_inplace(ChunkCollection *sort_by, vector<OrderType> &desc, idx_t *result, int64_t left, |
| 200 | int64_t right) { |
| 201 | if (left >= right) { |
| 202 | return; |
| 203 | } |
| 204 | |
| 205 | int64_t middle = left + (right - left) / 2; |
| 206 | int64_t pivot = result[middle]; |
| 207 | // move the mid point value to the front. |
| 208 | int64_t i = left + 1; |
| 209 | int64_t j = right; |
| 210 | |
| 211 | std::swap(result[middle], result[left]); |
| 212 | while (i <= j) { |
| 213 | while (i <= j && compare_tuple(sort_by, desc, result[i], pivot) <= 0) { |
| 214 | i++; |
| 215 | } |
| 216 | |
| 217 | while (i <= j && compare_tuple(sort_by, desc, result[j], pivot) > 0) { |
| 218 | j--; |
| 219 | } |
| 220 | |
| 221 | if (i < j) { |
| 222 | std::swap(result[i], result[j]); |
| 223 | } |
| 224 | } |
| 225 | std::swap(result[i - 1], result[left]); |
| 226 | int64_t part = i - 1; |
| 227 | |
| 228 | _quicksort_inplace(sort_by, desc, result, left, part - 1); |
| 229 | _quicksort_inplace(sort_by, desc, result, part + 1, right); |
| 230 | } |
| 231 | |
| 232 | void ChunkCollection::Sort(vector<OrderType> &desc, idx_t result[]) { |
| 233 | assert(result); |
| 234 | if (count == 0) |
| 235 | return; |
| 236 | // quicksort |
| 237 | int64_t part = _quicksort_initial(this, desc, result); |
| 238 | _quicksort_inplace(this, desc, result, 0, part); |
| 239 | _quicksort_inplace(this, desc, result, part + 1, count - 1); |
| 240 | } |
| 241 | |
| 242 | // FIXME make this more efficient by not using the Value API |
| 243 | // just use memcpy in the vectors |
| 244 | // assert that there is no selection list |
| 245 | void ChunkCollection::Reorder(idx_t order_org[]) { |
| 246 | auto order = unique_ptr<idx_t[]>(new idx_t[count]); |
| 247 | memcpy(order.get(), order_org, sizeof(idx_t) * count); |
| 248 | |
| 249 | // adapted from https://stackoverflow.com/a/7366196/2652376 |
| 250 | |
| 251 | auto val_buf = vector<Value>(); |
| 252 | val_buf.resize(column_count()); |
| 253 | |
| 254 | idx_t j, k; |
| 255 | for (idx_t i = 0; i < count; i++) { |
| 256 | for (idx_t col_idx = 0; col_idx < column_count(); col_idx++) { |
| 257 | val_buf[col_idx] = GetValue(col_idx, i); |
| 258 | } |
| 259 | j = i; |
| 260 | while (true) { |
| 261 | k = order[j]; |
| 262 | order[j] = j; |
| 263 | if (k == i) { |
| 264 | break; |
| 265 | } |
| 266 | for (idx_t col_idx = 0; col_idx < column_count(); col_idx++) { |
| 267 | SetValue(col_idx, j, GetValue(col_idx, k)); |
| 268 | } |
| 269 | j = k; |
| 270 | } |
| 271 | for (idx_t col_idx = 0; col_idx < column_count(); col_idx++) { |
| 272 | SetValue(col_idx, j, val_buf[col_idx]); |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | template <class TYPE> |
| 278 | static void templated_set_values(ChunkCollection *src_coll, Vector &tgt_vec, idx_t order[], idx_t col_idx, |
| 279 | idx_t start_offset, idx_t remaining_data) { |
| 280 | assert(src_coll); |
| 281 | |
| 282 | for (idx_t row_idx = 0; row_idx < remaining_data; row_idx++) { |
| 283 | idx_t chunk_idx_src = order[start_offset + row_idx] / STANDARD_VECTOR_SIZE; |
| 284 | idx_t vector_idx_src = order[start_offset + row_idx] % STANDARD_VECTOR_SIZE; |
| 285 | |
| 286 | auto &src_chunk = src_coll->chunks[chunk_idx_src]; |
| 287 | Vector &src_vec = src_chunk->data[col_idx]; |
| 288 | auto source_data = FlatVector::GetData<TYPE>(src_vec); |
| 289 | auto target_data = FlatVector::GetData<TYPE>(tgt_vec); |
| 290 | |
| 291 | if (FlatVector::IsNull(src_vec, vector_idx_src)) { |
| 292 | FlatVector::SetNull(tgt_vec, row_idx, true); |
| 293 | } else { |
| 294 | target_data[row_idx] = source_data[vector_idx_src]; |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | // TODO: reorder functionality is similar, perhaps merge |
| 300 | void ChunkCollection::MaterializeSortedChunk(DataChunk &target, idx_t order[], idx_t start_offset) { |
| 301 | idx_t remaining_data = min((idx_t)STANDARD_VECTOR_SIZE, count - start_offset); |
| 302 | assert(target.GetTypes() == types); |
| 303 | |
| 304 | target.SetCardinality(remaining_data); |
| 305 | for (idx_t col_idx = 0; col_idx < column_count(); col_idx++) { |
| 306 | switch (types[col_idx]) { |
| 307 | case TypeId::BOOL: |
| 308 | case TypeId::INT8: |
| 309 | templated_set_values<int8_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 310 | break; |
| 311 | case TypeId::INT16: |
| 312 | templated_set_values<int16_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 313 | break; |
| 314 | case TypeId::INT32: |
| 315 | templated_set_values<int32_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 316 | break; |
| 317 | case TypeId::INT64: |
| 318 | templated_set_values<int64_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 319 | break; |
| 320 | case TypeId::FLOAT: |
| 321 | templated_set_values<float>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 322 | break; |
| 323 | case TypeId::DOUBLE: |
| 324 | templated_set_values<double>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 325 | break; |
| 326 | case TypeId::VARCHAR: |
| 327 | templated_set_values<string_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 328 | break; |
| 329 | |
| 330 | case TypeId::LIST: |
| 331 | case TypeId::STRUCT: { |
| 332 | for (idx_t row_idx = 0; row_idx < remaining_data; row_idx++) { |
| 333 | idx_t chunk_idx_src = order[start_offset + row_idx] / STANDARD_VECTOR_SIZE; |
| 334 | idx_t vector_idx_src = order[start_offset + row_idx] % STANDARD_VECTOR_SIZE; |
| 335 | |
| 336 | auto &src_chunk = chunks[chunk_idx_src]; |
| 337 | Vector &src_vec = src_chunk->data[col_idx]; |
| 338 | auto &tgt_vec = target.data[col_idx]; |
| 339 | if (FlatVector::IsNull(src_vec, vector_idx_src)) { |
| 340 | FlatVector::SetNull(tgt_vec, row_idx, true); |
| 341 | } else { |
| 342 | tgt_vec.SetValue(row_idx, src_vec.GetValue(vector_idx_src)); |
| 343 | } |
| 344 | } |
| 345 | } break; |
| 346 | default: |
| 347 | throw NotImplementedException("Type is unsupported in MaterializeSortedChunk()" ); |
| 348 | } |
| 349 | } |
| 350 | target.Verify(); |
| 351 | } |
| 352 | |
| 353 | Value ChunkCollection::GetValue(idx_t column, idx_t index) { |
| 354 | return chunks[LocateChunk(index)]->GetValue(column, index % STANDARD_VECTOR_SIZE); |
| 355 | } |
| 356 | |
| 357 | vector<Value> ChunkCollection::GetRow(idx_t index) { |
| 358 | vector<Value> values; |
| 359 | values.resize(column_count()); |
| 360 | |
| 361 | for (idx_t p_idx = 0; p_idx < column_count(); p_idx++) { |
| 362 | values[p_idx] = GetValue(p_idx, index); |
| 363 | } |
| 364 | return values; |
| 365 | } |
| 366 | |
| 367 | void ChunkCollection::SetValue(idx_t column, idx_t index, Value value) { |
| 368 | chunks[LocateChunk(index)]->SetValue(column, index % STANDARD_VECTOR_SIZE, value); |
| 369 | } |
| 370 | |
| 371 | void ChunkCollection::Print() { |
| 372 | Printer::Print(ToString()); |
| 373 | } |
| 374 | |
| 375 | bool ChunkCollection::Equals(ChunkCollection &other) { |
| 376 | if (count != other.count) { |
| 377 | return false; |
| 378 | } |
| 379 | if (column_count() != other.column_count()) { |
| 380 | return false; |
| 381 | } |
| 382 | if (types != other.types) { |
| 383 | return false; |
| 384 | } |
| 385 | // if count is equal amount of chunks should be equal |
| 386 | for (idx_t row_idx = 0; row_idx < count; row_idx++) { |
| 387 | for (idx_t col_idx = 0; col_idx < column_count(); col_idx++) { |
| 388 | auto lvalue = GetValue(col_idx, row_idx); |
| 389 | auto rvalue = other.GetValue(col_idx, row_idx); |
| 390 | if (!Value::ValuesAreEqual(lvalue, rvalue)) { |
| 391 | return false; |
| 392 | } |
| 393 | } |
| 394 | } |
| 395 | return true; |
| 396 | } |
| 397 | static void _heapify(ChunkCollection *input, vector<OrderType> &desc, idx_t *heap, idx_t heap_size, |
| 398 | idx_t current_index) { |
| 399 | if (current_index >= heap_size) { |
| 400 | return; |
| 401 | } |
| 402 | idx_t left_child_index = current_index * 2 + 1; |
| 403 | idx_t right_child_index = current_index * 2 + 2; |
| 404 | idx_t swap_index = current_index; |
| 405 | |
| 406 | if (left_child_index < heap_size) { |
| 407 | swap_index = |
| 408 | compare_tuple(input, desc, heap[swap_index], heap[left_child_index]) <= 0 ? left_child_index : swap_index; |
| 409 | } |
| 410 | |
| 411 | if (right_child_index < heap_size) { |
| 412 | swap_index = |
| 413 | compare_tuple(input, desc, heap[swap_index], heap[right_child_index]) <= 0 ? right_child_index : swap_index; |
| 414 | } |
| 415 | |
| 416 | if (swap_index != current_index) { |
| 417 | std::swap(heap[current_index], heap[swap_index]); |
| 418 | _heapify(input, desc, heap, heap_size, swap_index); |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | static void _heap_create(ChunkCollection *input, vector<OrderType> &desc, idx_t *heap, idx_t heap_size) { |
| 423 | for (idx_t i = 0; i < heap_size; i++) { |
| 424 | heap[i] = i; |
| 425 | } |
| 426 | |
| 427 | // build heap |
| 428 | for (int64_t i = heap_size / 2 - 1; i >= 0; i--) { |
| 429 | _heapify(input, desc, heap, heap_size, i); |
| 430 | } |
| 431 | |
| 432 | // Run through all the rows. |
| 433 | for (idx_t i = heap_size; i < input->count; i++) { |
| 434 | if (compare_tuple(input, desc, i, heap[0]) <= 0) { |
| 435 | heap[0] = i; |
| 436 | _heapify(input, desc, heap, heap_size, 0); |
| 437 | } |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | void ChunkCollection::Heap(vector<OrderType> &desc, idx_t heap[], idx_t heap_size) { |
| 442 | assert(heap); |
| 443 | if (count == 0) |
| 444 | return; |
| 445 | |
| 446 | _heap_create(this, desc, heap, heap_size); |
| 447 | |
| 448 | // Heap is ready. Now do a heapsort |
| 449 | for (int64_t i = heap_size - 1; i >= 0; i--) { |
| 450 | std::swap(heap[i], heap[0]); |
| 451 | _heapify(this, desc, heap, i, 0); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | idx_t ChunkCollection::MaterializeHeapChunk(DataChunk &target, idx_t order[], idx_t start_offset, idx_t heap_size) { |
| 456 | idx_t remaining_data = min((idx_t)STANDARD_VECTOR_SIZE, heap_size - start_offset); |
| 457 | assert(target.GetTypes() == types); |
| 458 | |
| 459 | target.SetCardinality(remaining_data); |
| 460 | for (idx_t col_idx = 0; col_idx < column_count(); col_idx++) { |
| 461 | switch (types[col_idx]) { |
| 462 | case TypeId::BOOL: |
| 463 | case TypeId::INT8: |
| 464 | templated_set_values<int8_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 465 | break; |
| 466 | case TypeId::INT16: |
| 467 | templated_set_values<int16_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 468 | break; |
| 469 | case TypeId::INT32: |
| 470 | templated_set_values<int32_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 471 | break; |
| 472 | case TypeId::INT64: |
| 473 | templated_set_values<int64_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 474 | break; |
| 475 | case TypeId::FLOAT: |
| 476 | templated_set_values<float>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 477 | break; |
| 478 | case TypeId::DOUBLE: |
| 479 | templated_set_values<double>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 480 | break; |
| 481 | case TypeId::VARCHAR: |
| 482 | templated_set_values<string_t>(this, target.data[col_idx], order, col_idx, start_offset, remaining_data); |
| 483 | break; |
| 484 | // TODO this is ugly and sloooow! |
| 485 | case TypeId::STRUCT: |
| 486 | case TypeId::LIST: { |
| 487 | for (idx_t row_idx = 0; row_idx < remaining_data; row_idx++) { |
| 488 | idx_t chunk_idx_src = order[start_offset + row_idx] / STANDARD_VECTOR_SIZE; |
| 489 | idx_t vector_idx_src = order[start_offset + row_idx] % STANDARD_VECTOR_SIZE; |
| 490 | |
| 491 | auto &src_chunk = chunks[chunk_idx_src]; |
| 492 | Vector &src_vec = src_chunk->data[col_idx]; |
| 493 | auto &tgt_vec = target.data[col_idx]; |
| 494 | if (FlatVector::IsNull(src_vec, vector_idx_src)) { |
| 495 | FlatVector::SetNull(tgt_vec, row_idx, true); |
| 496 | } else { |
| 497 | tgt_vec.SetValue(row_idx, src_vec.GetValue(vector_idx_src)); |
| 498 | } |
| 499 | } |
| 500 | } break; |
| 501 | |
| 502 | default: |
| 503 | throw NotImplementedException("Type is unsupported in MaterializeHeapChunk()" ); |
| 504 | } |
| 505 | } |
| 506 | target.Verify(); |
| 507 | return remaining_data; |
| 508 | } |
| 509 | |