| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | // codeman.cpp - a managment class for handling multiple code managers |
| 5 | // |
| 6 | |
| 7 | // |
| 8 | |
| 9 | #include "common.h" |
| 10 | #include "jitinterface.h" |
| 11 | #include "corjit.h" |
| 12 | #include "jithost.h" |
| 13 | #include "eetwain.h" |
| 14 | #include "eeconfig.h" |
| 15 | #include "excep.h" |
| 16 | #include "appdomain.hpp" |
| 17 | #include "codeman.h" |
| 18 | #include "nibblemapmacros.h" |
| 19 | #include "generics.h" |
| 20 | #include "dynamicmethod.h" |
| 21 | #include "eemessagebox.h" |
| 22 | #include "eventtrace.h" |
| 23 | #include "threadsuspend.h" |
| 24 | |
| 25 | #include "exceptionhandling.h" |
| 26 | |
| 27 | #include "rtlfunctions.h" |
| 28 | |
| 29 | #include "jitperf.h" |
| 30 | #include "shimload.h" |
| 31 | #include "debuginfostore.h" |
| 32 | #include "strsafe.h" |
| 33 | |
| 34 | #include "configuration.h" |
| 35 | |
| 36 | #ifdef _WIN64 |
| 37 | #define CHECK_DUPLICATED_STRUCT_LAYOUTS |
| 38 | #include "../debug/daccess/fntableaccess.h" |
| 39 | #endif // _WIN64 |
| 40 | |
| 41 | #ifdef FEATURE_PERFMAP |
| 42 | #include "perfmap.h" |
| 43 | #endif |
| 44 | |
| 45 | // Default number of jump stubs in a jump stub block |
| 46 | #define DEFAULT_JUMPSTUBS_PER_BLOCK 32 |
| 47 | |
| 48 | SPTR_IMPL(EECodeManager, ExecutionManager, m_pDefaultCodeMan); |
| 49 | |
| 50 | SPTR_IMPL(EEJitManager, ExecutionManager, m_pEEJitManager); |
| 51 | #ifdef FEATURE_PREJIT |
| 52 | SPTR_IMPL(NativeImageJitManager, ExecutionManager, m_pNativeImageJitManager); |
| 53 | #endif |
| 54 | #ifdef FEATURE_READYTORUN |
| 55 | SPTR_IMPL(ReadyToRunJitManager, ExecutionManager, m_pReadyToRunJitManager); |
| 56 | #endif |
| 57 | |
| 58 | #ifndef DACCESS_COMPILE |
| 59 | Volatile<RangeSection *> ExecutionManager::m_CodeRangeList = NULL; |
| 60 | Volatile<LONG> ExecutionManager::m_dwReaderCount = 0; |
| 61 | Volatile<LONG> ExecutionManager::m_dwWriterLock = 0; |
| 62 | #else |
| 63 | SPTR_IMPL(RangeSection, ExecutionManager, m_CodeRangeList); |
| 64 | SVAL_IMPL(LONG, ExecutionManager, m_dwReaderCount); |
| 65 | SVAL_IMPL(LONG, ExecutionManager, m_dwWriterLock); |
| 66 | #endif |
| 67 | |
| 68 | #ifndef DACCESS_COMPILE |
| 69 | |
| 70 | CrstStatic ExecutionManager::m_JumpStubCrst; |
| 71 | CrstStatic ExecutionManager::m_RangeCrst; |
| 72 | |
| 73 | unsigned ExecutionManager::m_normal_JumpStubLookup; |
| 74 | unsigned ExecutionManager::m_normal_JumpStubUnique; |
| 75 | unsigned ExecutionManager::m_normal_JumpStubBlockAllocCount; |
| 76 | unsigned ExecutionManager::m_normal_JumpStubBlockFullCount; |
| 77 | |
| 78 | unsigned ExecutionManager::m_LCG_JumpStubLookup; |
| 79 | unsigned ExecutionManager::m_LCG_JumpStubUnique; |
| 80 | unsigned ExecutionManager::m_LCG_JumpStubBlockAllocCount; |
| 81 | unsigned ExecutionManager::m_LCG_JumpStubBlockFullCount; |
| 82 | |
| 83 | #endif // DACCESS_COMPILE |
| 84 | |
| 85 | #if defined(_TARGET_AMD64_) && !defined(DACCESS_COMPILE) // We don't do this on ARM just amd64 |
| 86 | |
| 87 | // Support for new style unwind information (to allow OS to stack crawl JIT compiled code). |
| 88 | |
| 89 | typedef NTSTATUS (WINAPI* RtlAddGrowableFunctionTableFnPtr) ( |
| 90 | PVOID *DynamicTable, PRUNTIME_FUNCTION FunctionTable, ULONG EntryCount, |
| 91 | ULONG MaximumEntryCount, ULONG_PTR rangeStart, ULONG_PTR rangeEnd); |
| 92 | typedef VOID (WINAPI* RtlGrowFunctionTableFnPtr) (PVOID DynamicTable, ULONG NewEntryCount); |
| 93 | typedef VOID (WINAPI* RtlDeleteGrowableFunctionTableFnPtr) (PVOID DynamicTable); |
| 94 | |
| 95 | // OS entry points (only exist on Win8 and above) |
| 96 | static RtlAddGrowableFunctionTableFnPtr pRtlAddGrowableFunctionTable; |
| 97 | static RtlGrowFunctionTableFnPtr pRtlGrowFunctionTable; |
| 98 | static RtlDeleteGrowableFunctionTableFnPtr pRtlDeleteGrowableFunctionTable; |
| 99 | static Volatile<bool> RtlUnwindFtnsInited; |
| 100 | |
| 101 | // statics for UnwindInfoTable |
| 102 | Crst* UnwindInfoTable::s_pUnwindInfoTableLock = NULL; |
| 103 | Volatile<bool> UnwindInfoTable::s_publishingActive = false; |
| 104 | |
| 105 | |
| 106 | #if _DEBUG |
| 107 | // Fake functions on Win7 checked build to excercize the code paths, they are no-ops |
| 108 | NTSTATUS WINAPI FakeRtlAddGrowableFunctionTable ( |
| 109 | PVOID *DynamicTable, PT_RUNTIME_FUNCTION FunctionTable, ULONG EntryCount, |
| 110 | ULONG MaximumEntryCount, ULONG_PTR rangeStart, ULONG_PTR rangeEnd) { *DynamicTable = (PVOID) 1; return 0; } |
| 111 | VOID WINAPI FakeRtlGrowFunctionTable (PVOID DynamicTable, ULONG NewEntryCount) { } |
| 112 | VOID WINAPI FakeRtlDeleteGrowableFunctionTable (PVOID DynamicTable) {} |
| 113 | #endif |
| 114 | |
| 115 | /****************************************************************************/ |
| 116 | // initialize the entry points for new win8 unwind info publishing functions. |
| 117 | // return true if the initialize is successful (the functions exist) |
| 118 | |
| 119 | bool InitUnwindFtns() |
| 120 | { |
| 121 | CONTRACTL { |
| 122 | NOTHROW; |
| 123 | } CONTRACTL_END; |
| 124 | |
| 125 | #ifndef FEATURE_PAL |
| 126 | if (!RtlUnwindFtnsInited) |
| 127 | { |
| 128 | HINSTANCE hNtdll = WszGetModuleHandle(W("ntdll.dll" )); |
| 129 | if (hNtdll != NULL) |
| 130 | { |
| 131 | void* growFunctionTable = GetProcAddress(hNtdll, "RtlGrowFunctionTable" ); |
| 132 | void* deleteGrowableFunctionTable = GetProcAddress(hNtdll, "RtlDeleteGrowableFunctionTable" ); |
| 133 | void* addGrowableFunctionTable = GetProcAddress(hNtdll, "RtlAddGrowableFunctionTable" ); |
| 134 | |
| 135 | // All or nothing AddGroableFunctionTable is last (marker) |
| 136 | if (growFunctionTable != NULL && |
| 137 | deleteGrowableFunctionTable != NULL && |
| 138 | addGrowableFunctionTable != NULL) |
| 139 | { |
| 140 | pRtlGrowFunctionTable = (RtlGrowFunctionTableFnPtr) growFunctionTable; |
| 141 | pRtlDeleteGrowableFunctionTable = (RtlDeleteGrowableFunctionTableFnPtr) deleteGrowableFunctionTable; |
| 142 | pRtlAddGrowableFunctionTable = (RtlAddGrowableFunctionTableFnPtr) addGrowableFunctionTable; |
| 143 | } |
| 144 | // Don't call FreeLibrary(hNtdll) because GetModuleHandle did *NOT* increment the reference count! |
| 145 | } |
| 146 | else |
| 147 | { |
| 148 | #if _DEBUG |
| 149 | pRtlGrowFunctionTable = FakeRtlGrowFunctionTable; |
| 150 | pRtlDeleteGrowableFunctionTable = FakeRtlDeleteGrowableFunctionTable; |
| 151 | pRtlAddGrowableFunctionTable = FakeRtlAddGrowableFunctionTable; |
| 152 | #endif |
| 153 | } |
| 154 | RtlUnwindFtnsInited = true; |
| 155 | } |
| 156 | return (pRtlAddGrowableFunctionTable != NULL); |
| 157 | #else // !FEATURE_PAL |
| 158 | return false; |
| 159 | #endif // !FEATURE_PAL |
| 160 | } |
| 161 | |
| 162 | /****************************************************************************/ |
| 163 | UnwindInfoTable::UnwindInfoTable(ULONG_PTR rangeStart, ULONG_PTR rangeEnd, ULONG size) |
| 164 | { |
| 165 | STANDARD_VM_CONTRACT; |
| 166 | _ASSERTE(s_pUnwindInfoTableLock->OwnedByCurrentThread()); |
| 167 | _ASSERTE((rangeEnd - rangeStart) <= 0x7FFFFFFF); |
| 168 | |
| 169 | cTableCurCount = 0; |
| 170 | cTableMaxCount = size; |
| 171 | cDeletedEntries = 0; |
| 172 | iRangeStart = rangeStart; |
| 173 | iRangeEnd = rangeEnd; |
| 174 | hHandle = NULL; |
| 175 | pTable = new T_RUNTIME_FUNCTION[cTableMaxCount]; |
| 176 | } |
| 177 | |
| 178 | /****************************************************************************/ |
| 179 | UnwindInfoTable::~UnwindInfoTable() |
| 180 | { |
| 181 | CONTRACTL { |
| 182 | NOTHROW; |
| 183 | GC_NOTRIGGER; |
| 184 | } CONTRACTL_END; |
| 185 | _ASSERTE(s_publishingActive); |
| 186 | |
| 187 | // We do this lock free to because too many places still want no-trigger. It should be OK |
| 188 | // It would be cleaner if we could take the lock (we did not have to be GC_NOTRIGGER) |
| 189 | UnRegister(); |
| 190 | delete[] pTable; |
| 191 | } |
| 192 | |
| 193 | /*****************************************************************************/ |
| 194 | void UnwindInfoTable::Register() |
| 195 | { |
| 196 | _ASSERTE(s_pUnwindInfoTableLock->OwnedByCurrentThread()); |
| 197 | EX_TRY |
| 198 | { |
| 199 | hHandle = NULL; |
| 200 | NTSTATUS ret = pRtlAddGrowableFunctionTable(&hHandle, pTable, cTableCurCount, cTableMaxCount, iRangeStart, iRangeEnd); |
| 201 | if (ret != STATUS_SUCCESS) |
| 202 | { |
| 203 | _ASSERTE(!"Failed to publish UnwindInfo (ignorable)" ); |
| 204 | hHandle = NULL; |
| 205 | STRESS_LOG3(LF_JIT, LL_ERROR, "UnwindInfoTable::Register ERROR %x creating table [%p, %p]\n" , ret, iRangeStart, iRangeEnd); |
| 206 | } |
| 207 | else |
| 208 | { |
| 209 | STRESS_LOG3(LF_JIT, LL_INFO100, "UnwindInfoTable::Register Handle: %p [%p, %p]\n" , hHandle, iRangeStart, iRangeEnd); |
| 210 | } |
| 211 | } |
| 212 | EX_CATCH |
| 213 | { |
| 214 | hHandle = NULL; |
| 215 | STRESS_LOG2(LF_JIT, LL_ERROR, "UnwindInfoTable::Register Exception while creating table [%p, %p]\n" , |
| 216 | iRangeStart, iRangeEnd); |
| 217 | _ASSERTE(!"Failed to publish UnwindInfo (ignorable)" ); |
| 218 | } |
| 219 | EX_END_CATCH(SwallowAllExceptions) |
| 220 | } |
| 221 | |
| 222 | /*****************************************************************************/ |
| 223 | void UnwindInfoTable::UnRegister() |
| 224 | { |
| 225 | PVOID handle = hHandle; |
| 226 | hHandle = 0; |
| 227 | if (handle != 0) |
| 228 | { |
| 229 | STRESS_LOG3(LF_JIT, LL_INFO100, "UnwindInfoTable::UnRegister Handle: %p [%p, %p]\n" , handle, iRangeStart, iRangeEnd); |
| 230 | pRtlDeleteGrowableFunctionTable(handle); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | /*****************************************************************************/ |
| 235 | // Add 'data' to the linked list whose head is pointed at by 'unwindInfoPtr' |
| 236 | // |
| 237 | /* static */ |
| 238 | void UnwindInfoTable::AddToUnwindInfoTable(UnwindInfoTable** unwindInfoPtr, PT_RUNTIME_FUNCTION data, |
| 239 | TADDR rangeStart, TADDR rangeEnd) |
| 240 | { |
| 241 | CONTRACTL |
| 242 | { |
| 243 | THROWS; |
| 244 | GC_TRIGGERS; |
| 245 | } |
| 246 | CONTRACTL_END; |
| 247 | _ASSERTE(data->BeginAddress <= RUNTIME_FUNCTION__EndAddress(data, rangeStart)); |
| 248 | _ASSERTE(RUNTIME_FUNCTION__EndAddress(data, rangeStart) <= (rangeEnd-rangeStart)); |
| 249 | _ASSERTE(unwindInfoPtr != NULL); |
| 250 | |
| 251 | if (!s_publishingActive) |
| 252 | return; |
| 253 | |
| 254 | CrstHolder ch(s_pUnwindInfoTableLock); |
| 255 | |
| 256 | UnwindInfoTable* unwindInfo = *unwindInfoPtr; |
| 257 | // was the original list null, If so lazy initialize. |
| 258 | if (unwindInfo == NULL) |
| 259 | { |
| 260 | // We can choose the average method size estimate dynamically based on past experience |
| 261 | // 128 is the estimated size of an average method, so we can accurately predict |
| 262 | // how many RUNTIME_FUNCTION entries are in each chunk we allocate. |
| 263 | |
| 264 | ULONG size = (ULONG) ((rangeEnd - rangeStart) / 128) + 1; |
| 265 | |
| 266 | // To insure the test the growing logic in debug code make the size much smaller. |
| 267 | INDEBUG(size = size / 4 + 1); |
| 268 | unwindInfo = (PTR_UnwindInfoTable)new UnwindInfoTable(rangeStart, rangeEnd, size); |
| 269 | unwindInfo->Register(); |
| 270 | *unwindInfoPtr = unwindInfo; |
| 271 | } |
| 272 | _ASSERTE(unwindInfo != NULL); // If new had failed, we would have thrown OOM |
| 273 | _ASSERTE(unwindInfo->cTableCurCount <= unwindInfo->cTableMaxCount); |
| 274 | _ASSERTE(unwindInfo->iRangeStart == rangeStart); |
| 275 | _ASSERTE(unwindInfo->iRangeEnd == rangeEnd); |
| 276 | |
| 277 | // Means we had a failure publishing to the OS, in this case we give up |
| 278 | if (unwindInfo->hHandle == NULL) |
| 279 | return; |
| 280 | |
| 281 | // Check for the fast path: we are adding the the end of an UnwindInfoTable with space |
| 282 | if (unwindInfo->cTableCurCount < unwindInfo->cTableMaxCount) |
| 283 | { |
| 284 | if (unwindInfo->cTableCurCount == 0 || |
| 285 | unwindInfo->pTable[unwindInfo->cTableCurCount-1].BeginAddress < data->BeginAddress) |
| 286 | { |
| 287 | // Yeah, we can simply add to the end of table and we are done! |
| 288 | unwindInfo->pTable[unwindInfo->cTableCurCount] = *data; |
| 289 | unwindInfo->cTableCurCount++; |
| 290 | |
| 291 | // Add to the function table |
| 292 | pRtlGrowFunctionTable(unwindInfo->hHandle, unwindInfo->cTableCurCount); |
| 293 | |
| 294 | STRESS_LOG5(LF_JIT, LL_INFO1000, "AddToUnwindTable Handle: %p [%p, %p] ADDING 0x%xp TO END, now 0x%x entries\n" , |
| 295 | unwindInfo->hHandle, unwindInfo->iRangeStart, unwindInfo->iRangeEnd, |
| 296 | data->BeginAddress, unwindInfo->cTableCurCount); |
| 297 | return; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | // OK we need to rellocate the table and reregister. First figure out our 'desiredSpace' |
| 302 | // We could imagine being much more efficient for 'bulk' updates, but we don't try |
| 303 | // because we assume that this is rare and we want to keep the code simple |
| 304 | |
| 305 | int usedSpace = unwindInfo->cTableCurCount - unwindInfo->cDeletedEntries; |
| 306 | int desiredSpace = usedSpace * 5 / 4 + 1; // Increase by 20% |
| 307 | // Be more aggresive if we used all of our space; |
| 308 | if (usedSpace == unwindInfo->cTableMaxCount) |
| 309 | desiredSpace = usedSpace * 3 / 2 + 1; // Increase by 50% |
| 310 | |
| 311 | STRESS_LOG7(LF_JIT, LL_INFO100, "AddToUnwindTable Handle: %p [%p, %p] SLOW Realloc Cnt 0x%x Max 0x%x NewMax 0x%x, Adding %x\n" , |
| 312 | unwindInfo->hHandle, unwindInfo->iRangeStart, unwindInfo->iRangeEnd, |
| 313 | unwindInfo->cTableCurCount, unwindInfo->cTableMaxCount, desiredSpace, data->BeginAddress); |
| 314 | |
| 315 | UnwindInfoTable* newTab = new UnwindInfoTable(unwindInfo->iRangeStart, unwindInfo->iRangeEnd, desiredSpace); |
| 316 | |
| 317 | // Copy in the entries, removing deleted entries and adding the new entry wherever it belongs |
| 318 | int toIdx = 0; |
| 319 | bool inserted = false; // Have we inserted 'data' into the table |
| 320 | for(ULONG fromIdx = 0; fromIdx < unwindInfo->cTableCurCount; fromIdx++) |
| 321 | { |
| 322 | if (!inserted && data->BeginAddress < unwindInfo->pTable[fromIdx].BeginAddress) |
| 323 | { |
| 324 | STRESS_LOG1(LF_JIT, LL_INFO100, "AddToUnwindTable Inserted at MID position 0x%x\n" , toIdx); |
| 325 | newTab->pTable[toIdx++] = *data; |
| 326 | inserted = true; |
| 327 | } |
| 328 | if (unwindInfo->pTable[fromIdx].UnwindData != 0) // A 'non-deleted' entry |
| 329 | newTab->pTable[toIdx++] = unwindInfo->pTable[fromIdx]; |
| 330 | } |
| 331 | if (!inserted) |
| 332 | { |
| 333 | STRESS_LOG1(LF_JIT, LL_INFO100, "AddToUnwindTable Inserted at END position 0x%x\n" , toIdx); |
| 334 | newTab->pTable[toIdx++] = *data; |
| 335 | } |
| 336 | newTab->cTableCurCount = toIdx; |
| 337 | STRESS_LOG2(LF_JIT, LL_INFO100, "AddToUnwindTable New size 0x%x max 0x%x\n" , |
| 338 | newTab->cTableCurCount, newTab->cTableMaxCount); |
| 339 | _ASSERTE(newTab->cTableCurCount <= newTab->cTableMaxCount); |
| 340 | |
| 341 | // Unregister the old table |
| 342 | *unwindInfoPtr = 0; |
| 343 | unwindInfo->UnRegister(); |
| 344 | |
| 345 | // Note that there is a short time when we are not publishing... |
| 346 | |
| 347 | // Register the new table |
| 348 | newTab->Register(); |
| 349 | *unwindInfoPtr = newTab; |
| 350 | |
| 351 | delete unwindInfo; |
| 352 | } |
| 353 | |
| 354 | /*****************************************************************************/ |
| 355 | /* static */ void UnwindInfoTable::RemoveFromUnwindInfoTable(UnwindInfoTable** unwindInfoPtr, TADDR baseAddress, TADDR entryPoint) |
| 356 | { |
| 357 | CONTRACTL { |
| 358 | NOTHROW; |
| 359 | GC_TRIGGERS; |
| 360 | } CONTRACTL_END; |
| 361 | _ASSERTE(unwindInfoPtr != NULL); |
| 362 | |
| 363 | if (!s_publishingActive) |
| 364 | return; |
| 365 | CrstHolder ch(s_pUnwindInfoTableLock); |
| 366 | |
| 367 | UnwindInfoTable* unwindInfo = *unwindInfoPtr; |
| 368 | if (unwindInfo != NULL) |
| 369 | { |
| 370 | DWORD relativeEntryPoint = (DWORD)(entryPoint - baseAddress); |
| 371 | STRESS_LOG3(LF_JIT, LL_INFO100, "RemoveFromUnwindInfoTable Removing %p BaseAddress %p rel %x\n" , |
| 372 | entryPoint, baseAddress, relativeEntryPoint); |
| 373 | for(ULONG i = 0; i < unwindInfo->cTableCurCount; i++) |
| 374 | { |
| 375 | if (unwindInfo->pTable[i].BeginAddress <= relativeEntryPoint && |
| 376 | relativeEntryPoint < RUNTIME_FUNCTION__EndAddress(&unwindInfo->pTable[i], unwindInfo->iRangeStart)) |
| 377 | { |
| 378 | if (unwindInfo->pTable[i].UnwindData != 0) |
| 379 | unwindInfo->cDeletedEntries++; |
| 380 | unwindInfo->pTable[i].UnwindData = 0; // Mark the entry for deletion |
| 381 | STRESS_LOG1(LF_JIT, LL_INFO100, "RemoveFromUnwindInfoTable Removed entry 0x%x\n" , i); |
| 382 | return; |
| 383 | } |
| 384 | } |
| 385 | } |
| 386 | STRESS_LOG2(LF_JIT, LL_WARNING, "RemoveFromUnwindInfoTable COULD NOT FIND %p BaseAddress %p\n" , |
| 387 | entryPoint, baseAddress); |
| 388 | } |
| 389 | |
| 390 | /****************************************************************************/ |
| 391 | // Publish the stack unwind data 'data' which is relative 'baseAddress' |
| 392 | // to the operating system in a way ETW stack tracing can use. |
| 393 | |
| 394 | /* static */ void UnwindInfoTable::PublishUnwindInfoForMethod(TADDR baseAddress, PT_RUNTIME_FUNCTION unwindInfo, int unwindInfoCount) |
| 395 | { |
| 396 | STANDARD_VM_CONTRACT; |
| 397 | if (!s_publishingActive) |
| 398 | return; |
| 399 | |
| 400 | TADDR entry = baseAddress + unwindInfo->BeginAddress; |
| 401 | RangeSection * pRS = ExecutionManager::FindCodeRange(entry, ExecutionManager::GetScanFlags()); |
| 402 | _ASSERTE(pRS != NULL); |
| 403 | if (pRS != NULL) |
| 404 | { |
| 405 | for(int i = 0; i < unwindInfoCount; i++) |
| 406 | AddToUnwindInfoTable(&pRS->pUnwindInfoTable, &unwindInfo[i], pRS->LowAddress, pRS->HighAddress); |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | /*****************************************************************************/ |
| 411 | /* static */ void UnwindInfoTable::UnpublishUnwindInfoForMethod(TADDR entryPoint) |
| 412 | { |
| 413 | CONTRACTL { |
| 414 | NOTHROW; |
| 415 | GC_TRIGGERS; |
| 416 | } CONTRACTL_END; |
| 417 | if (!s_publishingActive) |
| 418 | return; |
| 419 | |
| 420 | RangeSection * pRS = ExecutionManager::FindCodeRange(entryPoint, ExecutionManager::GetScanFlags()); |
| 421 | _ASSERTE(pRS != NULL); |
| 422 | if (pRS != NULL) |
| 423 | { |
| 424 | _ASSERTE(pRS->pjit->GetCodeType() == (miManaged | miIL)); |
| 425 | if (pRS->pjit->GetCodeType() == (miManaged | miIL)) |
| 426 | { |
| 427 | // This cast is justified because only EEJitManager's have the code type above. |
| 428 | EEJitManager* pJitMgr = (EEJitManager*)(pRS->pjit); |
| 429 | CodeHeader * pHeader = pJitMgr->GetCodeHeaderFromStartAddress(entryPoint); |
| 430 | for(ULONG i = 0; i < pHeader->GetNumberOfUnwindInfos(); i++) |
| 431 | RemoveFromUnwindInfoTable(&pRS->pUnwindInfoTable, pRS->LowAddress, pRS->LowAddress + pHeader->GetUnwindInfo(i)->BeginAddress); |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | #ifdef STUBLINKER_GENERATES_UNWIND_INFO |
| 437 | extern StubUnwindInfoHeapSegment *g_StubHeapSegments; |
| 438 | #endif // STUBLINKER_GENERATES_UNWIND_INFO |
| 439 | |
| 440 | extern CrstStatic g_StubUnwindInfoHeapSegmentsCrst; |
| 441 | /*****************************************************************************/ |
| 442 | // Publish all existing JIT compiled methods by iterating through the code heap |
| 443 | // Note that because we need to keep the entries in order we have to hold |
| 444 | // s_pUnwindInfoTableLock so that all entries get inserted in the correct order. |
| 445 | // (we rely on heapIterator walking the methods in a heap section in order). |
| 446 | |
| 447 | /* static */ void UnwindInfoTable::PublishUnwindInfoForExistingMethods() |
| 448 | { |
| 449 | STANDARD_VM_CONTRACT; |
| 450 | { |
| 451 | // CodeHeapIterator holds the m_CodeHeapCritSec, which insures code heaps don't get deallocated while being walked |
| 452 | EEJitManager::CodeHeapIterator heapIterator(NULL); |
| 453 | |
| 454 | // Currently m_CodeHeapCritSec is given the CRST_UNSAFE_ANYMODE flag which allows it to be taken in a GC_NOTRIGGER |
| 455 | // region but also disallows GC_TRIGGERS. We need GC_TRIGGERS because we take another lock. Ideally we would |
| 456 | // fix m_CodeHeapCritSec to not have the CRST_UNSAFE_ANYMODE flag, but I currently reached my threshold for fixing |
| 457 | // contracts. |
| 458 | CONTRACT_VIOLATION(GCViolation); |
| 459 | |
| 460 | while(heapIterator.Next()) |
| 461 | { |
| 462 | MethodDesc *pMD = heapIterator.GetMethod(); |
| 463 | if(pMD) |
| 464 | { |
| 465 | PCODE methodEntry =(PCODE) heapIterator.GetMethodCode(); |
| 466 | RangeSection * pRS = ExecutionManager::FindCodeRange(methodEntry, ExecutionManager::GetScanFlags()); |
| 467 | _ASSERTE(pRS != NULL); |
| 468 | _ASSERTE(pRS->pjit->GetCodeType() == (miManaged | miIL)); |
| 469 | if (pRS != NULL && pRS->pjit->GetCodeType() == (miManaged | miIL)) |
| 470 | { |
| 471 | // This cast is justified because only EEJitManager's have the code type above. |
| 472 | EEJitManager* pJitMgr = (EEJitManager*)(pRS->pjit); |
| 473 | CodeHeader * pHeader = pJitMgr->GetCodeHeaderFromStartAddress(methodEntry); |
| 474 | int unwindInfoCount = pHeader->GetNumberOfUnwindInfos(); |
| 475 | for(int i = 0; i < unwindInfoCount; i++) |
| 476 | AddToUnwindInfoTable(&pRS->pUnwindInfoTable, pHeader->GetUnwindInfo(i), pRS->LowAddress, pRS->HighAddress); |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | #ifdef STUBLINKER_GENERATES_UNWIND_INFO |
| 483 | // Enumerate all existing stubs |
| 484 | CrstHolder crst(&g_StubUnwindInfoHeapSegmentsCrst); |
| 485 | for (StubUnwindInfoHeapSegment* pStubHeapSegment = g_StubHeapSegments; pStubHeapSegment; pStubHeapSegment = pStubHeapSegment->pNext) |
| 486 | { |
| 487 | // The stubs are in reverse order, so we reverse them so they are in memory order |
| 488 | CQuickArrayList<StubUnwindInfoHeader*> list; |
| 489 | for (StubUnwindInfoHeader *pHeader = pStubHeapSegment->pUnwindHeaderList; pHeader; pHeader = pHeader->pNext) |
| 490 | list.Push(pHeader); |
| 491 | |
| 492 | for(int i = (int) list.Size()-1; i >= 0; --i) |
| 493 | { |
| 494 | StubUnwindInfoHeader *pHeader = list[i]; |
| 495 | AddToUnwindInfoTable(&pStubHeapSegment->pUnwindInfoTable, &pHeader->FunctionEntry, |
| 496 | (TADDR) pStubHeapSegment->pbBaseAddress, (TADDR) pStubHeapSegment->pbBaseAddress + pStubHeapSegment->cbSegment); |
| 497 | } |
| 498 | } |
| 499 | #endif // STUBLINKER_GENERATES_UNWIND_INFO |
| 500 | } |
| 501 | |
| 502 | /*****************************************************************************/ |
| 503 | // turn on the publishing of unwind info. Called when the ETW rundown provider |
| 504 | // is turned on. |
| 505 | |
| 506 | /* static */ void UnwindInfoTable::PublishUnwindInfo(bool publishExisting) |
| 507 | { |
| 508 | CONTRACTL { |
| 509 | NOTHROW; |
| 510 | GC_TRIGGERS; |
| 511 | } CONTRACTL_END; |
| 512 | |
| 513 | if (s_publishingActive) |
| 514 | return; |
| 515 | |
| 516 | // If we don't have the APIs we need, give up |
| 517 | if (!InitUnwindFtns()) |
| 518 | return; |
| 519 | |
| 520 | EX_TRY |
| 521 | { |
| 522 | // Create the lock |
| 523 | Crst* newCrst = new Crst(CrstUnwindInfoTableLock); |
| 524 | if (InterlockedCompareExchangeT(&s_pUnwindInfoTableLock, newCrst, NULL) == NULL) |
| 525 | { |
| 526 | s_publishingActive = true; |
| 527 | if (publishExisting) |
| 528 | PublishUnwindInfoForExistingMethods(); |
| 529 | } |
| 530 | else |
| 531 | delete newCrst; // we were in a race and failed, throw away the Crst we made. |
| 532 | |
| 533 | } EX_CATCH { |
| 534 | STRESS_LOG1(LF_JIT, LL_ERROR, "Exception happened when doing unwind Info rundown. EIP of last AV = %p\n" , g_LastAccessViolationEIP); |
| 535 | _ASSERTE(!"Exception thrown while publishing 'catchup' ETW unwind information" ); |
| 536 | s_publishingActive = false; // Try to minimize damage. |
| 537 | } EX_END_CATCH(SwallowAllExceptions); |
| 538 | } |
| 539 | |
| 540 | #endif // defined(_TARGET_AMD64_) && !defined(DACCESS_COMPILE) |
| 541 | |
| 542 | /*----------------------------------------------------------------------------- |
| 543 | This is a listing of which methods uses which synchronization mechanism |
| 544 | in the EEJitManager. |
| 545 | //----------------------------------------------------------------------------- |
| 546 | |
| 547 | Setters of EEJitManager::m_CodeHeapCritSec |
| 548 | ----------------------------------------------- |
| 549 | allocCode |
| 550 | allocGCInfo |
| 551 | allocEHInfo |
| 552 | allocJumpStubBlock |
| 553 | ResolveEHClause |
| 554 | RemoveJitData |
| 555 | Unload |
| 556 | ReleaseReferenceToHeap |
| 557 | JitCodeToMethodInfo |
| 558 | |
| 559 | |
| 560 | Need EEJitManager::m_CodeHeapCritSec to be set |
| 561 | ----------------------------------------------- |
| 562 | NewCodeHeap |
| 563 | allocCodeRaw |
| 564 | GetCodeHeapList |
| 565 | RemoveCodeHeapFromDomainList |
| 566 | DeleteCodeHeap |
| 567 | AddRangeToJitHeapCache |
| 568 | DeleteJitHeapCache |
| 569 | |
| 570 | */ |
| 571 | |
| 572 | |
| 573 | #if !defined(DACCESS_COMPILE) |
| 574 | EEJitManager::CodeHeapIterator::CodeHeapIterator(LoaderAllocator *pLoaderAllocatorFilter) |
| 575 | : m_lockHolder(&(ExecutionManager::GetEEJitManager()->m_CodeHeapCritSec)), m_Iterator(NULL, 0, NULL, 0) |
| 576 | { |
| 577 | CONTRACTL |
| 578 | { |
| 579 | NOTHROW; |
| 580 | GC_NOTRIGGER; |
| 581 | MODE_ANY; |
| 582 | } |
| 583 | CONTRACTL_END; |
| 584 | |
| 585 | m_pHeapList = NULL; |
| 586 | m_pLoaderAllocator = pLoaderAllocatorFilter; |
| 587 | m_pHeapList = ExecutionManager::GetEEJitManager()->GetCodeHeapList(); |
| 588 | if(m_pHeapList) |
| 589 | new (&m_Iterator) MethodSectionIterator((const void *)m_pHeapList->mapBase, (COUNT_T)m_pHeapList->maxCodeHeapSize, m_pHeapList->pHdrMap, (COUNT_T)HEAP2MAPSIZE(ROUND_UP_TO_PAGE(m_pHeapList->maxCodeHeapSize))); |
| 590 | }; |
| 591 | |
| 592 | EEJitManager::CodeHeapIterator::~CodeHeapIterator() |
| 593 | { |
| 594 | CONTRACTL |
| 595 | { |
| 596 | NOTHROW; |
| 597 | GC_NOTRIGGER; |
| 598 | MODE_ANY; |
| 599 | } |
| 600 | CONTRACTL_END; |
| 601 | } |
| 602 | |
| 603 | BOOL EEJitManager::CodeHeapIterator::Next() |
| 604 | { |
| 605 | CONTRACTL |
| 606 | { |
| 607 | NOTHROW; |
| 608 | GC_NOTRIGGER; |
| 609 | MODE_ANY; |
| 610 | } |
| 611 | CONTRACTL_END; |
| 612 | |
| 613 | if(!m_pHeapList) |
| 614 | return FALSE; |
| 615 | |
| 616 | while(1) |
| 617 | { |
| 618 | if(!m_Iterator.Next()) |
| 619 | { |
| 620 | m_pHeapList = m_pHeapList->GetNext(); |
| 621 | if(!m_pHeapList) |
| 622 | return FALSE; |
| 623 | new (&m_Iterator) MethodSectionIterator((const void *)m_pHeapList->mapBase, (COUNT_T)m_pHeapList->maxCodeHeapSize, m_pHeapList->pHdrMap, (COUNT_T)HEAP2MAPSIZE(ROUND_UP_TO_PAGE(m_pHeapList->maxCodeHeapSize))); |
| 624 | } |
| 625 | else |
| 626 | { |
| 627 | BYTE * code = m_Iterator.GetMethodCode(); |
| 628 | CodeHeader * pHdr = (CodeHeader *)(code - sizeof(CodeHeader)); |
| 629 | m_pCurrent = !pHdr->IsStubCodeBlock() ? pHdr->GetMethodDesc() : NULL; |
| 630 | |
| 631 | // LoaderAllocator filter |
| 632 | if (m_pLoaderAllocator && m_pCurrent) |
| 633 | { |
| 634 | LoaderAllocator *pCurrentLoaderAllocator = m_pCurrent->GetLoaderAllocatorForCode(); |
| 635 | if(pCurrentLoaderAllocator != m_pLoaderAllocator) |
| 636 | continue; |
| 637 | } |
| 638 | |
| 639 | return TRUE; |
| 640 | } |
| 641 | } |
| 642 | } |
| 643 | #endif // !DACCESS_COMPILE |
| 644 | |
| 645 | #ifndef DACCESS_COMPILE |
| 646 | |
| 647 | //--------------------------------------------------------------------------------------- |
| 648 | // |
| 649 | // ReaderLockHolder::ReaderLockHolder takes the reader lock, checks for the writer lock |
| 650 | // and either aborts if the writer lock is held, or yields until the writer lock is released, |
| 651 | // keeping the reader lock. This is normally called in the constructor for the |
| 652 | // ReaderLockHolder. |
| 653 | // |
| 654 | // The writer cannot be taken if there are any readers. The WriterLockHolder functions take the |
| 655 | // writer lock and check for any readers. If there are any, the WriterLockHolder functions |
| 656 | // release the writer and yield to wait for the readers to be done. |
| 657 | |
| 658 | ExecutionManager::ReaderLockHolder::ReaderLockHolder(HostCallPreference hostCallPreference /*=AllowHostCalls*/) |
| 659 | { |
| 660 | CONTRACTL { |
| 661 | NOTHROW; |
| 662 | if (hostCallPreference == AllowHostCalls) { HOST_CALLS; } else { HOST_NOCALLS; } |
| 663 | GC_NOTRIGGER; |
| 664 | SO_TOLERANT; |
| 665 | CAN_TAKE_LOCK; |
| 666 | } CONTRACTL_END; |
| 667 | |
| 668 | IncCantAllocCount(); |
| 669 | |
| 670 | FastInterlockIncrement(&m_dwReaderCount); |
| 671 | |
| 672 | EE_LOCK_TAKEN(GetPtrForLockContract()); |
| 673 | |
| 674 | if (VolatileLoad(&m_dwWriterLock) != 0) |
| 675 | { |
| 676 | if (hostCallPreference != AllowHostCalls) |
| 677 | { |
| 678 | // Rats, writer lock is held. Gotta bail. Since the reader count was already |
| 679 | // incremented, we're technically still blocking writers at the moment. But |
| 680 | // the holder who called us is about to call DecrementReader in its |
| 681 | // destructor and unblock writers. |
| 682 | return; |
| 683 | } |
| 684 | |
| 685 | YIELD_WHILE ((VolatileLoad(&m_dwWriterLock) != 0)); |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | //--------------------------------------------------------------------------------------- |
| 690 | // |
| 691 | // See code:ExecutionManager::ReaderLockHolder::ReaderLockHolder. This just decrements the reader count. |
| 692 | |
| 693 | ExecutionManager::ReaderLockHolder::~ReaderLockHolder() |
| 694 | { |
| 695 | CONTRACTL |
| 696 | { |
| 697 | NOTHROW; |
| 698 | GC_NOTRIGGER; |
| 699 | SO_TOLERANT; |
| 700 | MODE_ANY; |
| 701 | } |
| 702 | CONTRACTL_END; |
| 703 | |
| 704 | FastInterlockDecrement(&m_dwReaderCount); |
| 705 | DecCantAllocCount(); |
| 706 | |
| 707 | EE_LOCK_RELEASED(GetPtrForLockContract()); |
| 708 | } |
| 709 | |
| 710 | //--------------------------------------------------------------------------------------- |
| 711 | // |
| 712 | // Returns whether the reader lock is acquired |
| 713 | |
| 714 | BOOL ExecutionManager::ReaderLockHolder::Acquired() |
| 715 | { |
| 716 | LIMITED_METHOD_CONTRACT; |
| 717 | return VolatileLoad(&m_dwWriterLock) == 0; |
| 718 | } |
| 719 | |
| 720 | ExecutionManager::WriterLockHolder::WriterLockHolder() |
| 721 | { |
| 722 | CONTRACTL { |
| 723 | NOTHROW; |
| 724 | GC_NOTRIGGER; |
| 725 | CAN_TAKE_LOCK; |
| 726 | } CONTRACTL_END; |
| 727 | |
| 728 | _ASSERTE(m_dwWriterLock == 0); |
| 729 | |
| 730 | // Signal to a debugger that this thread cannot stop now |
| 731 | IncCantStopCount(); |
| 732 | |
| 733 | IncCantAllocCount(); |
| 734 | |
| 735 | DWORD dwSwitchCount = 0; |
| 736 | while (TRUE) |
| 737 | { |
| 738 | // While this thread holds the writer lock, we must not try to suspend it |
| 739 | // or allow a profiler to walk its stack |
| 740 | Thread::IncForbidSuspendThread(); |
| 741 | |
| 742 | FastInterlockIncrement(&m_dwWriterLock); |
| 743 | if (m_dwReaderCount == 0) |
| 744 | break; |
| 745 | FastInterlockDecrement(&m_dwWriterLock); |
| 746 | |
| 747 | // Before we loop and retry, it's safe to suspend or hijack and inspect |
| 748 | // this thread |
| 749 | Thread::DecForbidSuspendThread(); |
| 750 | |
| 751 | __SwitchToThread(0, ++dwSwitchCount); |
| 752 | } |
| 753 | EE_LOCK_TAKEN(GetPtrForLockContract()); |
| 754 | } |
| 755 | |
| 756 | ExecutionManager::WriterLockHolder::~WriterLockHolder() |
| 757 | { |
| 758 | LIMITED_METHOD_CONTRACT; |
| 759 | |
| 760 | FastInterlockDecrement(&m_dwWriterLock); |
| 761 | |
| 762 | // Writer lock released, so it's safe again for this thread to be |
| 763 | // suspended or have its stack walked by a profiler |
| 764 | Thread::DecForbidSuspendThread(); |
| 765 | |
| 766 | DecCantAllocCount(); |
| 767 | |
| 768 | // Signal to a debugger that it's again safe to stop this thread |
| 769 | DecCantStopCount(); |
| 770 | |
| 771 | EE_LOCK_RELEASED(GetPtrForLockContract()); |
| 772 | } |
| 773 | |
| 774 | #else |
| 775 | |
| 776 | // For DAC builds, we only care whether the writer lock is held. |
| 777 | // If it is, we will assume the locked data is in an inconsistent |
| 778 | // state and throw. We never actually take the lock. |
| 779 | // Note: Throws |
| 780 | ExecutionManager::ReaderLockHolder::ReaderLockHolder(HostCallPreference hostCallPreference /*=AllowHostCalls*/) |
| 781 | { |
| 782 | SUPPORTS_DAC; |
| 783 | |
| 784 | if (m_dwWriterLock != 0) |
| 785 | { |
| 786 | ThrowHR(CORDBG_E_PROCESS_NOT_SYNCHRONIZED); |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | ExecutionManager::ReaderLockHolder::~ReaderLockHolder() |
| 791 | { |
| 792 | } |
| 793 | |
| 794 | #endif // DACCESS_COMPILE |
| 795 | |
| 796 | /*----------------------------------------------------------------------------- |
| 797 | This is a listing of which methods uses which synchronization mechanism |
| 798 | in the ExecutionManager |
| 799 | //----------------------------------------------------------------------------- |
| 800 | |
| 801 | ============================================================================== |
| 802 | ExecutionManger::ReaderLockHolder and ExecutionManger::WriterLockHolder |
| 803 | Protects the callers of ExecutionManager::GetRangeSection from heap deletions |
| 804 | while walking RangeSections. You need to take a reader lock before reading the |
| 805 | values: m_CodeRangeList and hold it while walking the lists |
| 806 | |
| 807 | Uses ReaderLockHolder (allows multiple reeaders with no writers) |
| 808 | ----------------------------------------- |
| 809 | ExecutionManager::FindCodeRange |
| 810 | ExecutionManager::FindZapModule |
| 811 | ExecutionManager::EnumMemoryRegions |
| 812 | |
| 813 | Uses WriterLockHolder (allows single writer and no readers) |
| 814 | ----------------------------------------- |
| 815 | ExecutionManager::AddRangeHelper |
| 816 | ExecutionManager::DeleteRangeHelper |
| 817 | |
| 818 | */ |
| 819 | |
| 820 | //----------------------------------------------------------------------------- |
| 821 | |
| 822 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 823 | #define EXCEPTION_DATA_SUPPORTS_FUNCTION_FRAGMENTS |
| 824 | #endif |
| 825 | |
| 826 | #if defined(EXCEPTION_DATA_SUPPORTS_FUNCTION_FRAGMENTS) |
| 827 | // The function fragments can be used in Hot/Cold splitting, expressing Large Functions or in 'ShrinkWrapping', which is |
| 828 | // delaying saving and restoring some callee-saved registers later inside the body of the method. |
| 829 | // (It's assumed that JIT will not emit any ShrinkWrapping-style methods) |
| 830 | // For these cases multiple RUNTIME_FUNCTION entries (a.k.a function fragments) are used to define |
| 831 | // all the regions of the function or funclet. And one of these function fragments cover the beginning of the function/funclet, |
| 832 | // including the prolog section and is referred as the 'Host Record'. |
| 833 | // This function returns TRUE if the inspected RUNTIME_FUNCTION entry is NOT a host record |
| 834 | |
| 835 | BOOL IsFunctionFragment(TADDR baseAddress, PTR_RUNTIME_FUNCTION pFunctionEntry) |
| 836 | { |
| 837 | LIMITED_METHOD_DAC_CONTRACT; |
| 838 | |
| 839 | _ASSERTE((pFunctionEntry->UnwindData & 3) == 0); // The unwind data must be an RVA; we don't support packed unwind format |
| 840 | DWORD unwindHeader = *(PTR_DWORD)(baseAddress + pFunctionEntry->UnwindData); |
| 841 | _ASSERTE((0 == ((unwindHeader >> 18) & 3)) || !"unknown unwind data format, version != 0" ); |
| 842 | #if defined(_TARGET_ARM_) |
| 843 | |
| 844 | // On ARM, It's assumed that the prolog is always at the beginning of the function and cannot be split. |
| 845 | // Given that, there are 4 possible ways to fragment a function: |
| 846 | // 1. Prolog only: |
| 847 | // 2. Prolog and some epilogs: |
| 848 | // 3. Epilogs only: |
| 849 | // 4. No Prolog or epilog |
| 850 | // |
| 851 | // Function fragments describing 1 & 2 are host records, 3 & 4 are not. |
| 852 | // for 3 & 4, the .xdata record's F bit is set to 1, marking clearly what is NOT a host record |
| 853 | |
| 854 | _ASSERTE((pFunctionEntry->BeginAddress & THUMB_CODE) == THUMB_CODE); // Sanity check: it's a thumb address |
| 855 | DWORD Fbit = (unwindHeader >> 22) & 0x1; // F "fragment" bit |
| 856 | return (Fbit == 1); |
| 857 | #elif defined(_TARGET_ARM64_) |
| 858 | |
| 859 | // ARM64 is a little bit more flexible, in the sense that it supports partial prologs. However only one of the |
| 860 | // prolog regions are allowed to alter SP and that's the Host Record. Partial prologs are used in ShrinkWrapping |
| 861 | // scenarios which is not supported, hence we don't need to worry about them. discarding partial prologs |
| 862 | // simplifies identifying a host record a lot. |
| 863 | // |
| 864 | // 1. Prolog only: The host record. Epilog Count and E bit are all 0. |
| 865 | // 2. Prolog and some epilogs: The host record with accompanying epilog-only records |
| 866 | // 3. Epilogs only: First unwind code is Phantom prolog (Starting with an end_c, indicating an empty prolog) |
| 867 | // 4. No prologs or epilogs: First unwind code is Phantom prolog (Starting with an end_c, indicating an empty prolog) |
| 868 | // |
| 869 | |
| 870 | int EpilogCount = (int)(unwindHeader >> 22) & 0x1F; |
| 871 | int CodeWords = unwindHeader >> 27; |
| 872 | PTR_DWORD pUnwindCodes = (PTR_DWORD)(baseAddress + pFunctionEntry->UnwindData); |
| 873 | // Skip header. |
| 874 | pUnwindCodes++; |
| 875 | |
| 876 | // Skip extended header. |
| 877 | if ((CodeWords == 0) && (EpilogCount == 0)) |
| 878 | { |
| 879 | EpilogCount = (*pUnwindCodes) & 0xFFFF; |
| 880 | pUnwindCodes++; |
| 881 | } |
| 882 | |
| 883 | // Skip epilog scopes. |
| 884 | BOOL Ebit = (unwindHeader >> 21) & 0x1; |
| 885 | if (!Ebit && (EpilogCount != 0)) |
| 886 | { |
| 887 | // EpilogCount is the number of exception scopes defined right after the unwindHeader |
| 888 | pUnwindCodes += EpilogCount; |
| 889 | } |
| 890 | |
| 891 | return ((*pUnwindCodes & 0xFF) == 0xE5); |
| 892 | #else |
| 893 | PORTABILITY_ASSERT("IsFunctionFragnent - NYI on this platform" ); |
| 894 | #endif |
| 895 | } |
| 896 | |
| 897 | #endif // EXCEPTION_DATA_SUPPORTS_FUNCTION_FRAGMENTS |
| 898 | |
| 899 | |
| 900 | #ifndef DACCESS_COMPILE |
| 901 | |
| 902 | //********************************************************************************** |
| 903 | // IJitManager |
| 904 | //********************************************************************************** |
| 905 | IJitManager::IJitManager() |
| 906 | { |
| 907 | LIMITED_METHOD_CONTRACT; |
| 908 | |
| 909 | m_runtimeSupport = ExecutionManager::GetDefaultCodeManager(); |
| 910 | } |
| 911 | |
| 912 | #endif // #ifndef DACCESS_COMPILE |
| 913 | |
| 914 | // When we unload an appdomain, we need to make sure that any threads that are crawling through |
| 915 | // our heap or rangelist are out. For cooperative-mode threads, we know that they will have |
| 916 | // been stopped when we suspend the EE so they won't be touching an element that is about to be deleted. |
| 917 | // However for pre-emptive mode threads, they could be stalled right on top of the element we want |
| 918 | // to delete, so we need to apply the reader lock to them and wait for them to drain. |
| 919 | ExecutionManager::ScanFlag ExecutionManager::GetScanFlags() |
| 920 | { |
| 921 | CONTRACTL { |
| 922 | NOTHROW; |
| 923 | GC_NOTRIGGER; |
| 924 | SO_TOLERANT; |
| 925 | HOST_NOCALLS; |
| 926 | SUPPORTS_DAC; |
| 927 | } CONTRACTL_END; |
| 928 | |
| 929 | #if !defined(DACCESS_COMPILE) && !defined(CROSSGEN_COMPILE) |
| 930 | BEGIN_GETTHREAD_ALLOWED; |
| 931 | |
| 932 | Thread *pThread = GetThread(); |
| 933 | |
| 934 | if (!pThread) |
| 935 | return ScanNoReaderLock; |
| 936 | |
| 937 | // If this thread is hijacked by a profiler and crawling its own stack, |
| 938 | // we do need to take the lock |
| 939 | if (pThread->GetProfilerFilterContext() != NULL) |
| 940 | return ScanReaderLock; |
| 941 | |
| 942 | if (pThread->PreemptiveGCDisabled() || (pThread == ThreadSuspend::GetSuspensionThread())) |
| 943 | return ScanNoReaderLock; |
| 944 | |
| 945 | END_GETTHREAD_ALLOWED; |
| 946 | |
| 947 | return ScanReaderLock; |
| 948 | #else |
| 949 | return ScanNoReaderLock; |
| 950 | #endif |
| 951 | } |
| 952 | |
| 953 | #ifdef DACCESS_COMPILE |
| 954 | |
| 955 | void IJitManager::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 956 | { |
| 957 | DAC_ENUM_VTHIS(); |
| 958 | if (m_runtimeSupport.IsValid()) |
| 959 | { |
| 960 | m_runtimeSupport->EnumMemoryRegions(flags); |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | #endif // #ifdef DACCESS_COMPILE |
| 965 | |
| 966 | #if defined(WIN64EXCEPTIONS) |
| 967 | |
| 968 | PTR_VOID GetUnwindDataBlob(TADDR moduleBase, PTR_RUNTIME_FUNCTION pRuntimeFunction, /* out */ SIZE_T * pSize) |
| 969 | { |
| 970 | LIMITED_METHOD_CONTRACT; |
| 971 | |
| 972 | #if defined(_TARGET_AMD64_) |
| 973 | PTR_UNWIND_INFO pUnwindInfo(dac_cast<PTR_UNWIND_INFO>(moduleBase + RUNTIME_FUNCTION__GetUnwindInfoAddress(pRuntimeFunction))); |
| 974 | |
| 975 | *pSize = ALIGN_UP(offsetof(UNWIND_INFO, UnwindCode) + |
| 976 | sizeof(UNWIND_CODE) * pUnwindInfo->CountOfUnwindCodes + |
| 977 | sizeof(ULONG) /* personality routine is always present */, |
| 978 | sizeof(DWORD)); |
| 979 | |
| 980 | return pUnwindInfo; |
| 981 | |
| 982 | #elif defined(_TARGET_X86_) |
| 983 | PTR_UNWIND_INFO pUnwindInfo(dac_cast<PTR_UNWIND_INFO>(moduleBase + RUNTIME_FUNCTION__GetUnwindInfoAddress(pRuntimeFunction))); |
| 984 | |
| 985 | *pSize = sizeof(UNWIND_INFO); |
| 986 | |
| 987 | return pUnwindInfo; |
| 988 | |
| 989 | #elif defined(_TARGET_ARM_) |
| 990 | |
| 991 | // if this function uses packed unwind data then at least one of the two least significant bits |
| 992 | // will be non-zero. if this is the case then there will be no xdata record to enumerate. |
| 993 | _ASSERTE((pRuntimeFunction->UnwindData & 0x3) == 0); |
| 994 | |
| 995 | // compute the size of the unwind info |
| 996 | PTR_ULONG xdata = dac_cast<PTR_ULONG>(pRuntimeFunction->UnwindData + moduleBase); |
| 997 | |
| 998 | ULONG epilogScopes = 0; |
| 999 | ULONG unwindWords = 0; |
| 1000 | ULONG size = 0; |
| 1001 | |
| 1002 | if ((xdata[0] >> 23) != 0) |
| 1003 | { |
| 1004 | size = 4; |
| 1005 | epilogScopes = (xdata[0] >> 23) & 0x1f; |
| 1006 | unwindWords = (xdata[0] >> 28) & 0x0f; |
| 1007 | } |
| 1008 | else |
| 1009 | { |
| 1010 | size = 8; |
| 1011 | epilogScopes = xdata[1] & 0xffff; |
| 1012 | unwindWords = (xdata[1] >> 16) & 0xff; |
| 1013 | } |
| 1014 | |
| 1015 | if (!(xdata[0] & (1 << 21))) |
| 1016 | size += 4 * epilogScopes; |
| 1017 | |
| 1018 | size += 4 * unwindWords; |
| 1019 | |
| 1020 | _ASSERTE(xdata[0] & (1 << 20)); // personality routine should be always present |
| 1021 | size += 4; |
| 1022 | |
| 1023 | *pSize = size; |
| 1024 | return xdata; |
| 1025 | |
| 1026 | #elif defined(_TARGET_ARM64_) |
| 1027 | // if this function uses packed unwind data then at least one of the two least significant bits |
| 1028 | // will be non-zero. if this is the case then there will be no xdata record to enumerate. |
| 1029 | _ASSERTE((pRuntimeFunction->UnwindData & 0x3) == 0); |
| 1030 | |
| 1031 | // compute the size of the unwind info |
| 1032 | PTR_ULONG xdata = dac_cast<PTR_ULONG>(pRuntimeFunction->UnwindData + moduleBase); |
| 1033 | ULONG epilogScopes = 0; |
| 1034 | ULONG unwindWords = 0; |
| 1035 | ULONG size = 0; |
| 1036 | |
| 1037 | //If both Epilog Count and Code Word is not zero |
| 1038 | //Info of Epilog and Unwind scopes are given by 1 word header |
| 1039 | //Otherwise this info is given by a 2 word header |
| 1040 | if ((xdata[0] >> 27) != 0) |
| 1041 | { |
| 1042 | size = 4; |
| 1043 | epilogScopes = (xdata[0] >> 22) & 0x1f; |
| 1044 | unwindWords = (xdata[0] >> 27) & 0x0f; |
| 1045 | } |
| 1046 | else |
| 1047 | { |
| 1048 | size = 8; |
| 1049 | epilogScopes = xdata[1] & 0xffff; |
| 1050 | unwindWords = (xdata[1] >> 16) & 0xff; |
| 1051 | } |
| 1052 | |
| 1053 | if (!(xdata[0] & (1 << 21))) |
| 1054 | size += 4 * epilogScopes; |
| 1055 | |
| 1056 | size += 4 * unwindWords; |
| 1057 | |
| 1058 | _ASSERTE(xdata[0] & (1 << 20)); // personality routine should be always present |
| 1059 | size += 4; // exception handler RVA |
| 1060 | |
| 1061 | *pSize = size; |
| 1062 | return xdata; |
| 1063 | |
| 1064 | |
| 1065 | #else |
| 1066 | PORTABILITY_ASSERT("GetUnwindDataBlob" ); |
| 1067 | return NULL; |
| 1068 | #endif |
| 1069 | } |
| 1070 | |
| 1071 | // GetFuncletStartAddress returns the starting address of the function or funclet indicated by the EECodeInfo address. |
| 1072 | TADDR IJitManager::GetFuncletStartAddress(EECodeInfo * pCodeInfo) |
| 1073 | { |
| 1074 | PTR_RUNTIME_FUNCTION pFunctionEntry = pCodeInfo->GetFunctionEntry(); |
| 1075 | |
| 1076 | #ifdef _TARGET_AMD64_ |
| 1077 | _ASSERTE((pFunctionEntry->UnwindData & RUNTIME_FUNCTION_INDIRECT) == 0); |
| 1078 | #endif |
| 1079 | |
| 1080 | TADDR baseAddress = pCodeInfo->GetModuleBase(); |
| 1081 | TADDR funcletStartAddress = baseAddress + RUNTIME_FUNCTION__BeginAddress(pFunctionEntry); |
| 1082 | |
| 1083 | #if defined(EXCEPTION_DATA_SUPPORTS_FUNCTION_FRAGMENTS) |
| 1084 | // Is the RUNTIME_FUNCTION a fragment? If so, we need to walk backwards until we find the first |
| 1085 | // non-fragment RUNTIME_FUNCTION, and use that one. This happens when we have very large functions |
| 1086 | // and multiple RUNTIME_FUNCTION entries per function or funclet. However, all but the first will |
| 1087 | // have the "F" bit set in the unwind data, indicating a fragment (with phantom prolog unwind codes). |
| 1088 | |
| 1089 | for (;;) |
| 1090 | { |
| 1091 | if (!IsFunctionFragment(baseAddress, pFunctionEntry)) |
| 1092 | { |
| 1093 | // This is not a fragment; we're done |
| 1094 | break; |
| 1095 | } |
| 1096 | |
| 1097 | // We found a fragment. Walk backwards in the RUNTIME_FUNCTION array until we find a non-fragment. |
| 1098 | // We're guaranteed to find one, because we require that a fragment live in a function or funclet |
| 1099 | // that has a prolog, which will have non-fragment .xdata. |
| 1100 | --pFunctionEntry; |
| 1101 | |
| 1102 | funcletStartAddress = baseAddress + RUNTIME_FUNCTION__BeginAddress(pFunctionEntry); |
| 1103 | } |
| 1104 | #endif // EXCEPTION_DATA_SUPPORTS_FUNCTION_FRAGMENTS |
| 1105 | |
| 1106 | return funcletStartAddress; |
| 1107 | } |
| 1108 | |
| 1109 | BOOL IJitManager::IsFunclet(EECodeInfo * pCodeInfo) |
| 1110 | { |
| 1111 | CONTRACTL { |
| 1112 | NOTHROW; |
| 1113 | GC_NOTRIGGER; |
| 1114 | MODE_ANY; |
| 1115 | } |
| 1116 | CONTRACTL_END; |
| 1117 | |
| 1118 | TADDR funcletStartAddress = GetFuncletStartAddress(pCodeInfo); |
| 1119 | TADDR methodStartAddress = pCodeInfo->GetStartAddress(); |
| 1120 | |
| 1121 | return (funcletStartAddress != methodStartAddress); |
| 1122 | } |
| 1123 | |
| 1124 | BOOL IJitManager::IsFilterFunclet(EECodeInfo * pCodeInfo) |
| 1125 | { |
| 1126 | CONTRACTL { |
| 1127 | NOTHROW; |
| 1128 | GC_NOTRIGGER; |
| 1129 | MODE_ANY; |
| 1130 | } |
| 1131 | CONTRACTL_END; |
| 1132 | |
| 1133 | if (!pCodeInfo->IsFunclet()) |
| 1134 | return FALSE; |
| 1135 | |
| 1136 | TADDR funcletStartAddress = GetFuncletStartAddress(pCodeInfo); |
| 1137 | |
| 1138 | // This assumes no hot/cold splitting for funclets |
| 1139 | |
| 1140 | _ASSERTE(FitsInU4(pCodeInfo->GetCodeAddress() - funcletStartAddress)); |
| 1141 | DWORD relOffsetWithinFunclet = static_cast<DWORD>(pCodeInfo->GetCodeAddress() - funcletStartAddress); |
| 1142 | |
| 1143 | _ASSERTE(pCodeInfo->GetRelOffset() >= relOffsetWithinFunclet); |
| 1144 | DWORD funcletStartOffset = pCodeInfo->GetRelOffset() - relOffsetWithinFunclet; |
| 1145 | |
| 1146 | EH_CLAUSE_ENUMERATOR pEnumState; |
| 1147 | unsigned EHCount = InitializeEHEnumeration(pCodeInfo->GetMethodToken(), &pEnumState); |
| 1148 | _ASSERTE(EHCount > 0); |
| 1149 | |
| 1150 | EE_ILEXCEPTION_CLAUSE EHClause; |
| 1151 | for (ULONG i = 0; i < EHCount; i++) |
| 1152 | { |
| 1153 | GetNextEHClause(&pEnumState, &EHClause); |
| 1154 | |
| 1155 | // Duplicate clauses are always listed at the end, so when we hit a duplicate clause, |
| 1156 | // we have already visited all of the normal clauses. |
| 1157 | if (IsDuplicateClause(&EHClause)) |
| 1158 | { |
| 1159 | break; |
| 1160 | } |
| 1161 | |
| 1162 | if (IsFilterHandler(&EHClause)) |
| 1163 | { |
| 1164 | if (EHClause.FilterOffset == funcletStartOffset) |
| 1165 | { |
| 1166 | return true; |
| 1167 | } |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | return false; |
| 1172 | } |
| 1173 | |
| 1174 | #else // WIN64EXCEPTIONS |
| 1175 | |
| 1176 | PTR_VOID GetUnwindDataBlob(TADDR moduleBase, PTR_RUNTIME_FUNCTION pRuntimeFunction, /* out */ SIZE_T * pSize) |
| 1177 | { |
| 1178 | *pSize = 0; |
| 1179 | return dac_cast<PTR_VOID>(pRuntimeFunction->UnwindData + moduleBase); |
| 1180 | } |
| 1181 | |
| 1182 | #endif // WIN64EXCEPTIONS |
| 1183 | |
| 1184 | |
| 1185 | #ifndef CROSSGEN_COMPILE |
| 1186 | |
| 1187 | #ifndef DACCESS_COMPILE |
| 1188 | |
| 1189 | //********************************************************************************** |
| 1190 | // EEJitManager |
| 1191 | //********************************************************************************** |
| 1192 | |
| 1193 | EEJitManager::EEJitManager() |
| 1194 | : |
| 1195 | // CRST_DEBUGGER_THREAD - We take this lock on debugger thread during EnC add method, among other things |
| 1196 | // CRST_TAKEN_DURING_SHUTDOWN - We take this lock during shutdown if ETW is on (to do rundown) |
| 1197 | m_CodeHeapCritSec( CrstSingleUseLock, |
| 1198 | CrstFlags(CRST_UNSAFE_ANYMODE|CRST_DEBUGGER_THREAD|CRST_TAKEN_DURING_SHUTDOWN)), |
| 1199 | m_CPUCompileFlags(), |
| 1200 | m_EHClauseCritSec( CrstSingleUseLock ) |
| 1201 | { |
| 1202 | CONTRACTL { |
| 1203 | THROWS; |
| 1204 | GC_NOTRIGGER; |
| 1205 | } CONTRACTL_END; |
| 1206 | |
| 1207 | m_pCodeHeap = NULL; |
| 1208 | m_jit = NULL; |
| 1209 | m_JITCompiler = NULL; |
| 1210 | #ifdef _TARGET_AMD64_ |
| 1211 | m_pEmergencyJumpStubReserveList = NULL; |
| 1212 | #endif |
| 1213 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 1214 | m_JITCompilerOther = NULL; |
| 1215 | #endif |
| 1216 | |
| 1217 | #ifdef ALLOW_SXS_JIT |
| 1218 | m_alternateJit = NULL; |
| 1219 | m_AltJITCompiler = NULL; |
| 1220 | m_AltJITRequired = false; |
| 1221 | #endif |
| 1222 | |
| 1223 | m_cleanupList = NULL; |
| 1224 | } |
| 1225 | |
| 1226 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 1227 | |
| 1228 | bool DoesOSSupportAVX() |
| 1229 | { |
| 1230 | LIMITED_METHOD_CONTRACT; |
| 1231 | |
| 1232 | #ifndef FEATURE_PAL |
| 1233 | // On Windows we have an api(GetEnabledXStateFeatures) to check if AVX is supported |
| 1234 | typedef DWORD64 (WINAPI *PGETENABLEDXSTATEFEATURES)(); |
| 1235 | PGETENABLEDXSTATEFEATURES pfnGetEnabledXStateFeatures = NULL; |
| 1236 | |
| 1237 | HMODULE hMod = WszLoadLibraryEx(WINDOWS_KERNEL32_DLLNAME_W, NULL, LOAD_LIBRARY_SEARCH_SYSTEM32); |
| 1238 | if(hMod == NULL) |
| 1239 | return FALSE; |
| 1240 | |
| 1241 | pfnGetEnabledXStateFeatures = (PGETENABLEDXSTATEFEATURES)GetProcAddress(hMod, "GetEnabledXStateFeatures" ); |
| 1242 | |
| 1243 | if (pfnGetEnabledXStateFeatures == NULL) |
| 1244 | { |
| 1245 | return FALSE; |
| 1246 | } |
| 1247 | |
| 1248 | DWORD64 FeatureMask = pfnGetEnabledXStateFeatures(); |
| 1249 | if ((FeatureMask & XSTATE_MASK_AVX) == 0) |
| 1250 | { |
| 1251 | return FALSE; |
| 1252 | } |
| 1253 | #endif // !FEATURE_PAL |
| 1254 | |
| 1255 | return TRUE; |
| 1256 | } |
| 1257 | |
| 1258 | #endif // defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 1259 | |
| 1260 | void EEJitManager::SetCpuInfo() |
| 1261 | { |
| 1262 | LIMITED_METHOD_CONTRACT; |
| 1263 | |
| 1264 | // |
| 1265 | // NOTE: This function needs to be kept in sync with Zapper::CompileAssembly() |
| 1266 | // NOTE: This function needs to be kept in sync with compSetProcesor() in jit\compiler.cpp |
| 1267 | // |
| 1268 | |
| 1269 | CORJIT_FLAGS CPUCompileFlags; |
| 1270 | |
| 1271 | #if defined(_TARGET_X86_) |
| 1272 | // NOTE: if you're adding any flags here, you probably should also be doing it |
| 1273 | // for ngen (zapper.cpp) |
| 1274 | CORINFO_CPU cpuInfo; |
| 1275 | GetSpecificCpuInfo(&cpuInfo); |
| 1276 | |
| 1277 | switch (CPU_X86_FAMILY(cpuInfo.dwCPUType)) |
| 1278 | { |
| 1279 | case CPU_X86_PENTIUM_4: |
| 1280 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_TARGET_P4); |
| 1281 | break; |
| 1282 | |
| 1283 | default: |
| 1284 | break; |
| 1285 | } |
| 1286 | |
| 1287 | if (CPU_X86_USE_CMOV(cpuInfo.dwFeatures)) |
| 1288 | { |
| 1289 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_CMOV); |
| 1290 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_FCOMI); |
| 1291 | } |
| 1292 | |
| 1293 | if (CPU_X86_USE_SSE2(cpuInfo.dwFeatures)) |
| 1294 | { |
| 1295 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_SSE2); |
| 1296 | } |
| 1297 | #endif // _TARGET_X86_ |
| 1298 | |
| 1299 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 1300 | // NOTE: The below checks are based on the information reported by |
| 1301 | // Intel® 64 and IA-32 Architectures Software Developer’s Manual. Volume 2 |
| 1302 | // and |
| 1303 | // AMD64 Architecture Programmer’s Manual. Volume 3 |
| 1304 | // For more information, please refer to the CPUID instruction in the respective manuals |
| 1305 | |
| 1306 | // We will set the following flags: |
| 1307 | // CORJIT_FLAG_USE_SSE2 is required |
| 1308 | // SSE - EDX bit 25 (buffer[15] & 0x02) |
| 1309 | // SSE2 - EDX bit 26 (buffer[15] & 0x04) |
| 1310 | // CORJIT_FLAG_USE_SSE3 if the following feature bits are set (input EAX of 1) |
| 1311 | // CORJIT_FLAG_USE_SSE2 |
| 1312 | // SSE3 - ECX bit 0 (buffer[8] & 0x01) |
| 1313 | // CORJIT_FLAG_USE_SSSE3 if the following feature bits are set (input EAX of 1) |
| 1314 | // CORJIT_FLAG_USE_SSE3 |
| 1315 | // SSSE3 - ECX bit 9 (buffer[9] & 0x02) |
| 1316 | // CORJIT_FLAG_USE_SSE41 if the following feature bits are set (input EAX of 1) |
| 1317 | // CORJIT_FLAG_USE_SSSE3 |
| 1318 | // SSE4.1 - ECX bit 19 (buffer[10] & 0x08) |
| 1319 | // CORJIT_FLAG_USE_SSE42 if the following feature bits are set (input EAX of 1) |
| 1320 | // CORJIT_FLAG_USE_SSE41 |
| 1321 | // SSE4.2 - ECX bit 20 (buffer[10] & 0x10) |
| 1322 | // CORJIT_FLAG_USE_POPCNT if the following feature bits are set (input EAX of 1) |
| 1323 | // CORJIT_FLAG_USE_SSE42 |
| 1324 | // POPCNT - ECX bit 23 (buffer[10] & 0x80) |
| 1325 | // CORJIT_FLAG_USE_AVX if the following feature bits are set (input EAX of 1), and xmmYmmStateSupport returns 1: |
| 1326 | // CORJIT_FLAG_USE_SSE42 |
| 1327 | // OSXSAVE - ECX bit 27 (buffer[11] & 0x08) |
| 1328 | // XGETBV - XCR0[2:1] 11b |
| 1329 | // AVX - ECX bit 28 (buffer[11] & 0x10) |
| 1330 | // CORJIT_FLAG_USE_FMA if the following feature bits are set (input EAX of 1), and xmmYmmStateSupport returns 1: |
| 1331 | // CORJIT_FLAG_USE_AVX |
| 1332 | // FMA - ECX bit 12 (buffer[9] & 0x10) |
| 1333 | // CORJIT_FLAG_USE_AVX2 if the following feature bit is set (input EAX of 0x07 and input ECX of 0): |
| 1334 | // CORJIT_FLAG_USE_AVX |
| 1335 | // AVX2 - EBX bit 5 (buffer[4] & 0x20) |
| 1336 | // CORJIT_FLAG_USE_AVX_512 is not currently set, but defined so that it can be used in future without |
| 1337 | // CORJIT_FLAG_USE_AES |
| 1338 | // CORJIT_FLAG_USE_SSE2 |
| 1339 | // AES - ECX bit 25 (buffer[11] & 0x01) |
| 1340 | // CORJIT_FLAG_USE_PCLMULQDQ |
| 1341 | // CORJIT_FLAG_USE_SSE2 |
| 1342 | // PCLMULQDQ - ECX bit 1 (buffer[8] & 0x01) |
| 1343 | // CORJIT_FLAG_USE_BMI1 if the following feature bit is set (input EAX of 0x07 and input ECX of 0): |
| 1344 | // BMI1 - EBX bit 3 (buffer[4] & 0x08) |
| 1345 | // CORJIT_FLAG_USE_BMI2 if the following feature bit is set (input EAX of 0x07 and input ECX of 0): |
| 1346 | // BMI2 - EBX bit 8 (buffer[5] & 0x01) |
| 1347 | // CORJIT_FLAG_USE_LZCNT if the following feature bits are set (input EAX of 80000001H) |
| 1348 | // LZCNT - ECX bit 5 (buffer[8] & 0x20) |
| 1349 | // synchronously updating VM and JIT. |
| 1350 | |
| 1351 | unsigned char buffer[16]; |
| 1352 | DWORD maxCpuId = getcpuid(0, buffer); |
| 1353 | |
| 1354 | if (maxCpuId >= 1) |
| 1355 | { |
| 1356 | // getcpuid executes cpuid with eax set to its first argument, and ecx cleared. |
| 1357 | // It returns the resulting eax in buffer[0-3], ebx in buffer[4-7], ecx in buffer[8-11], |
| 1358 | // and edx in buffer[12-15]. |
| 1359 | |
| 1360 | (void) getcpuid(1, buffer); |
| 1361 | |
| 1362 | // If SSE/SSE2 is not enabled, there is no point in checking the rest. |
| 1363 | // SSE is bit 25 of EDX (buffer[15] & 0x02) |
| 1364 | // SSE2 is bit 26 of EDX (buffer[15] & 0x04) |
| 1365 | |
| 1366 | if ((buffer[15] & 0x06) == 0x06) // SSE & SSE2 |
| 1367 | { |
| 1368 | if ((buffer[11] & 0x02) != 0) // AESNI |
| 1369 | { |
| 1370 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_AES); |
| 1371 | } |
| 1372 | |
| 1373 | if ((buffer[8] & 0x02) != 0) // PCLMULQDQ |
| 1374 | { |
| 1375 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_PCLMULQDQ); |
| 1376 | } |
| 1377 | |
| 1378 | if ((buffer[8] & 0x01) != 0) // SSE3 |
| 1379 | { |
| 1380 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_SSE3); |
| 1381 | |
| 1382 | if ((buffer[9] & 0x02) != 0) // SSSE3 |
| 1383 | { |
| 1384 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_SSSE3); |
| 1385 | |
| 1386 | if ((buffer[10] & 0x08) != 0) // SSE4.1 |
| 1387 | { |
| 1388 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_SSE41); |
| 1389 | |
| 1390 | if ((buffer[10] & 0x10) != 0) // SSE4.2 |
| 1391 | { |
| 1392 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_SSE42); |
| 1393 | |
| 1394 | if ((buffer[10] & 0x80) != 0) // POPCNT |
| 1395 | { |
| 1396 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_POPCNT); |
| 1397 | } |
| 1398 | |
| 1399 | if ((buffer[11] & 0x18) == 0x18) // AVX & OSXSAVE |
| 1400 | { |
| 1401 | if(DoesOSSupportAVX() && (xmmYmmStateSupport() == 1)) |
| 1402 | { |
| 1403 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_AVX); |
| 1404 | |
| 1405 | if ((buffer[9] & 0x10) != 0) // FMA |
| 1406 | { |
| 1407 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_FMA); |
| 1408 | } |
| 1409 | |
| 1410 | if (maxCpuId >= 0x07) |
| 1411 | { |
| 1412 | (void) getextcpuid(0, 0x07, buffer); |
| 1413 | |
| 1414 | if ((buffer[4] & 0x20) != 0) // AVX2 |
| 1415 | { |
| 1416 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_AVX2); |
| 1417 | } |
| 1418 | } |
| 1419 | } |
| 1420 | } |
| 1421 | } |
| 1422 | } |
| 1423 | } |
| 1424 | } |
| 1425 | |
| 1426 | static ConfigDWORD fFeatureSIMD; |
| 1427 | |
| 1428 | if (fFeatureSIMD.val(CLRConfig::EXTERNAL_FeatureSIMD) != 0) |
| 1429 | { |
| 1430 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_FEATURE_SIMD); |
| 1431 | } |
| 1432 | |
| 1433 | if (CLRConfig::GetConfigValue(CLRConfig::INTERNAL_SIMD16ByteOnly) != 0) |
| 1434 | { |
| 1435 | CPUCompileFlags.Clear(CORJIT_FLAGS::CORJIT_FLAG_USE_AVX2); |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | if (maxCpuId >= 0x07) |
| 1440 | { |
| 1441 | (void)getextcpuid(0, 0x07, buffer); |
| 1442 | |
| 1443 | if ((buffer[4] & 0x08) != 0) // BMI1 |
| 1444 | { |
| 1445 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_BMI1); |
| 1446 | } |
| 1447 | |
| 1448 | if ((buffer[5] & 0x01) != 0) // BMI2 |
| 1449 | { |
| 1450 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_BMI2); |
| 1451 | } |
| 1452 | } |
| 1453 | } |
| 1454 | |
| 1455 | DWORD maxCpuIdEx = getcpuid(0x80000000, buffer); |
| 1456 | |
| 1457 | if (maxCpuIdEx >= 0x80000001) |
| 1458 | { |
| 1459 | // getcpuid executes cpuid with eax set to its first argument, and ecx cleared. |
| 1460 | // It returns the resulting eax in buffer[0-3], ebx in buffer[4-7], ecx in buffer[8-11], |
| 1461 | // and edx in buffer[12-15]. |
| 1462 | |
| 1463 | (void) getcpuid(0x80000001, buffer); |
| 1464 | |
| 1465 | if ((buffer[8] & 0x20) != 0) // LZCNT |
| 1466 | { |
| 1467 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_USE_LZCNT); |
| 1468 | } |
| 1469 | } |
| 1470 | #endif // defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 1471 | |
| 1472 | #if defined(_TARGET_ARM64_) |
| 1473 | static ConfigDWORD fFeatureSIMD; |
| 1474 | if (fFeatureSIMD.val(CLRConfig::EXTERNAL_FeatureSIMD) != 0) |
| 1475 | { |
| 1476 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_FEATURE_SIMD); |
| 1477 | } |
| 1478 | #if defined(FEATURE_PAL) |
| 1479 | PAL_GetJitCpuCapabilityFlags(&CPUCompileFlags); |
| 1480 | #elif defined(_WIN64) |
| 1481 | // FP and SIMD support are enabled by default |
| 1482 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_HAS_ARM64_SIMD); |
| 1483 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_HAS_ARM64_FP); |
| 1484 | // PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE (30) |
| 1485 | if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE)) |
| 1486 | { |
| 1487 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_HAS_ARM64_AES); |
| 1488 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_HAS_ARM64_SHA1); |
| 1489 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_HAS_ARM64_SHA256); |
| 1490 | } |
| 1491 | // PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE (31) |
| 1492 | if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE)) |
| 1493 | { |
| 1494 | CPUCompileFlags.Set(CORJIT_FLAGS::CORJIT_FLAG_HAS_ARM64_CRC32); |
| 1495 | } |
| 1496 | #endif // _WIN64 |
| 1497 | #endif // _TARGET_ARM64_ |
| 1498 | |
| 1499 | m_CPUCompileFlags = CPUCompileFlags; |
| 1500 | } |
| 1501 | |
| 1502 | // Define some data that we can use to get a better idea of what happened when we get a Watson dump that indicates the JIT failed to load. |
| 1503 | // This will be used and updated by the JIT loading and initialization functions, and the data written will get written into a Watson dump. |
| 1504 | |
| 1505 | enum JIT_LOAD_JIT_ID |
| 1506 | { |
| 1507 | JIT_LOAD_MAIN = 500, // The "main" JIT. Normally, this is named "clrjit.dll". Start at a number that is somewhat uncommon (i.e., not zero or 1) to help distinguish from garbage, in process dumps. |
| 1508 | // 501 is JIT_LOAD_LEGACY on some platforms; please do not reuse this value. |
| 1509 | JIT_LOAD_ALTJIT = 502 // An "altjit". By default, named "protojit.dll". Used both internally, as well as externally for JIT CTP builds. |
| 1510 | }; |
| 1511 | |
| 1512 | enum JIT_LOAD_STATUS |
| 1513 | { |
| 1514 | JIT_LOAD_STATUS_STARTING = 1001, // The JIT load process is starting. Start at a number that is somewhat uncommon (i.e., not zero or 1) to help distinguish from garbage, in process dumps. |
| 1515 | JIT_LOAD_STATUS_DONE_LOAD, // LoadLibrary of the JIT dll succeeded. |
| 1516 | JIT_LOAD_STATUS_DONE_GET_SXSJITSTARTUP, // GetProcAddress for "sxsJitStartup" succeeded. |
| 1517 | JIT_LOAD_STATUS_DONE_CALL_SXSJITSTARTUP, // Calling sxsJitStartup() succeeded. |
| 1518 | JIT_LOAD_STATUS_DONE_GET_JITSTARTUP, // GetProcAddress for "jitStartup" succeeded. |
| 1519 | JIT_LOAD_STATUS_DONE_CALL_JITSTARTUP, // Calling jitStartup() succeeded. |
| 1520 | JIT_LOAD_STATUS_DONE_GET_GETJIT, // GetProcAddress for "getJit" succeeded. |
| 1521 | JIT_LOAD_STATUS_DONE_CALL_GETJIT, // Calling getJit() succeeded. |
| 1522 | JIT_LOAD_STATUS_DONE_CALL_GETVERSIONIDENTIFIER, // Calling ICorJitCompiler::getVersionIdentifier() succeeded. |
| 1523 | JIT_LOAD_STATUS_DONE_VERSION_CHECK, // The JIT-EE version identifier check succeeded. |
| 1524 | JIT_LOAD_STATUS_DONE, // The JIT load is complete, and successful. |
| 1525 | }; |
| 1526 | |
| 1527 | struct JIT_LOAD_DATA |
| 1528 | { |
| 1529 | JIT_LOAD_JIT_ID jld_id; // Which JIT are we currently loading? |
| 1530 | JIT_LOAD_STATUS jld_status; // The current load status of a JIT load attempt. |
| 1531 | HRESULT jld_hr; // If the JIT load fails, the last jld_status will be JIT_LOAD_STATUS_STARTING. |
| 1532 | // In that case, this will contain the HRESULT returned by LoadLibrary. |
| 1533 | // Otherwise, this will be S_OK (which is zero). |
| 1534 | }; |
| 1535 | |
| 1536 | // Here's the global data for JIT load and initialization state. |
| 1537 | JIT_LOAD_DATA g_JitLoadData; |
| 1538 | |
| 1539 | #if !defined(FEATURE_MERGE_JIT_AND_ENGINE) |
| 1540 | |
| 1541 | // Global that holds the path to custom JIT location |
| 1542 | extern "C" LPCWSTR g_CLRJITPath = nullptr; |
| 1543 | |
| 1544 | #endif // !defined(FEATURE_MERGE_JIT_AND_ENGINE) |
| 1545 | |
| 1546 | |
| 1547 | // LoadAndInitializeJIT: load the JIT dll into the process, and initialize it (call the UtilCode initialization function, |
| 1548 | // check the JIT-EE interface GUID, etc.) |
| 1549 | // |
| 1550 | // Parameters: |
| 1551 | // |
| 1552 | // pwzJitName - The filename of the JIT .dll file to load. E.g., "altjit.dll". |
| 1553 | // phJit - On return, *phJit is the Windows module handle of the loaded JIT dll. It will be NULL if the load failed. |
| 1554 | // ppICorJitCompiler - On return, *ppICorJitCompiler is the ICorJitCompiler* returned by the JIT's getJit() entrypoint. |
| 1555 | // It is NULL if the JIT returns a NULL interface pointer, or if the JIT-EE interface GUID is mismatched. |
| 1556 | // Note that if the given JIT is loaded, but the interface is mismatched, then *phJit will be legal and non-NULL |
| 1557 | // even though *ppICorJitCompiler is NULL. This allows the caller to unload the JIT dll, if necessary |
| 1558 | // (nobody does this today). |
| 1559 | // pJitLoadData - Pointer to a structure that we update as we load and initialize the JIT to indicate how far we've gotten. This |
| 1560 | // is used to help understand problems we see with JIT loading that come in via Watson dumps. Since we don't throw |
| 1561 | // an exception immediately upon failure, we can lose information about what the failure was if we don't store this |
| 1562 | // information in a way that persists into a process dump. |
| 1563 | // |
| 1564 | |
| 1565 | static void LoadAndInitializeJIT(LPCWSTR pwzJitName, OUT HINSTANCE* phJit, OUT ICorJitCompiler** ppICorJitCompiler, IN OUT JIT_LOAD_DATA* pJitLoadData) |
| 1566 | { |
| 1567 | STANDARD_VM_CONTRACT; |
| 1568 | |
| 1569 | _ASSERTE(phJit != NULL); |
| 1570 | _ASSERTE(ppICorJitCompiler != NULL); |
| 1571 | _ASSERTE(pJitLoadData != NULL); |
| 1572 | |
| 1573 | pJitLoadData->jld_status = JIT_LOAD_STATUS_STARTING; |
| 1574 | pJitLoadData->jld_hr = S_OK; |
| 1575 | |
| 1576 | *phJit = NULL; |
| 1577 | *ppICorJitCompiler = NULL; |
| 1578 | |
| 1579 | HRESULT hr = E_FAIL; |
| 1580 | |
| 1581 | PathString CoreClrFolderHolder; |
| 1582 | extern HINSTANCE g_hThisInst; |
| 1583 | bool havePath = false; |
| 1584 | |
| 1585 | #if !defined(FEATURE_MERGE_JIT_AND_ENGINE) |
| 1586 | if (g_CLRJITPath != nullptr) |
| 1587 | { |
| 1588 | // If we have been asked to load a specific JIT binary, load from that path. |
| 1589 | // The main JIT load will use exactly that name because pwzJitName will have |
| 1590 | // been computed as the last component of g_CLRJITPath by ExecutionManager::GetJitName(). |
| 1591 | // Non-primary JIT names (such as compatjit or altjit) will be loaded from the |
| 1592 | // same directory. |
| 1593 | // (Ideally, g_CLRJITPath would just be the JIT path without the filename component, |
| 1594 | // but that's not how the JIT_PATH variable was originally defined.) |
| 1595 | CoreClrFolderHolder.Set(g_CLRJITPath); |
| 1596 | havePath = true; |
| 1597 | } |
| 1598 | else |
| 1599 | #endif // !defined(FEATURE_MERGE_JIT_AND_ENGINE) |
| 1600 | if (WszGetModuleFileName(g_hThisInst, CoreClrFolderHolder)) |
| 1601 | { |
| 1602 | // Load JIT from next to CoreCLR binary |
| 1603 | havePath = true; |
| 1604 | } |
| 1605 | |
| 1606 | if (havePath && !CoreClrFolderHolder.IsEmpty()) |
| 1607 | { |
| 1608 | SString::Iterator iter = CoreClrFolderHolder.End(); |
| 1609 | BOOL findSep = CoreClrFolderHolder.FindBack(iter, DIRECTORY_SEPARATOR_CHAR_W); |
| 1610 | if (findSep) |
| 1611 | { |
| 1612 | SString sJitName(pwzJitName); |
| 1613 | CoreClrFolderHolder.Replace(iter + 1, CoreClrFolderHolder.End() - (iter + 1), sJitName); |
| 1614 | |
| 1615 | *phJit = CLRLoadLibrary(CoreClrFolderHolder.GetUnicode()); |
| 1616 | if (*phJit != NULL) |
| 1617 | { |
| 1618 | hr = S_OK; |
| 1619 | } |
| 1620 | } |
| 1621 | } |
| 1622 | |
| 1623 | |
| 1624 | if (SUCCEEDED(hr)) |
| 1625 | { |
| 1626 | pJitLoadData->jld_status = JIT_LOAD_STATUS_DONE_LOAD; |
| 1627 | |
| 1628 | EX_TRY |
| 1629 | { |
| 1630 | bool fContinueToLoadJIT = false; |
| 1631 | // For CoreCLR, we never use "sxsJitStartup" as that is Desktop utilcode initialization |
| 1632 | // specific. Thus, assume we always got |
| 1633 | fContinueToLoadJIT = true; |
| 1634 | |
| 1635 | if (fContinueToLoadJIT) |
| 1636 | { |
| 1637 | typedef void (__stdcall* pjitStartup)(ICorJitHost*); |
| 1638 | pjitStartup jitStartupFn = (pjitStartup) GetProcAddress(*phJit, "jitStartup" ); |
| 1639 | |
| 1640 | if (jitStartupFn) |
| 1641 | { |
| 1642 | pJitLoadData->jld_status = JIT_LOAD_STATUS_DONE_GET_JITSTARTUP; |
| 1643 | |
| 1644 | (*jitStartupFn)(JitHost::getJitHost()); |
| 1645 | |
| 1646 | pJitLoadData->jld_status = JIT_LOAD_STATUS_DONE_CALL_JITSTARTUP; |
| 1647 | } |
| 1648 | |
| 1649 | typedef ICorJitCompiler* (__stdcall* pGetJitFn)(); |
| 1650 | pGetJitFn getJitFn = (pGetJitFn) GetProcAddress(*phJit, "getJit" ); |
| 1651 | |
| 1652 | if (getJitFn) |
| 1653 | { |
| 1654 | pJitLoadData->jld_status = JIT_LOAD_STATUS_DONE_GET_GETJIT; |
| 1655 | |
| 1656 | ICorJitCompiler* pICorJitCompiler = (*getJitFn)(); |
| 1657 | if (pICorJitCompiler != NULL) |
| 1658 | { |
| 1659 | pJitLoadData->jld_status = JIT_LOAD_STATUS_DONE_CALL_GETJIT; |
| 1660 | |
| 1661 | GUID versionId; |
| 1662 | memset(&versionId, 0, sizeof(GUID)); |
| 1663 | pICorJitCompiler->getVersionIdentifier(&versionId); |
| 1664 | |
| 1665 | pJitLoadData->jld_status = JIT_LOAD_STATUS_DONE_CALL_GETVERSIONIDENTIFIER; |
| 1666 | |
| 1667 | if (memcmp(&versionId, &JITEEVersionIdentifier, sizeof(GUID)) == 0) |
| 1668 | { |
| 1669 | pJitLoadData->jld_status = JIT_LOAD_STATUS_DONE_VERSION_CHECK; |
| 1670 | |
| 1671 | // The JIT has loaded and passed the version identifier test, so publish the JIT interface to the caller. |
| 1672 | *ppICorJitCompiler = pICorJitCompiler; |
| 1673 | |
| 1674 | // The JIT is completely loaded and initialized now. |
| 1675 | pJitLoadData->jld_status = JIT_LOAD_STATUS_DONE; |
| 1676 | } |
| 1677 | else |
| 1678 | { |
| 1679 | // Mismatched version ID. Fail the load. |
| 1680 | LOG((LF_JIT, LL_FATALERROR, "LoadAndInitializeJIT: mismatched JIT version identifier in %S\n" , pwzJitName)); |
| 1681 | } |
| 1682 | } |
| 1683 | else |
| 1684 | { |
| 1685 | LOG((LF_JIT, LL_FATALERROR, "LoadAndInitializeJIT: failed to get ICorJitCompiler in %S\n" , pwzJitName)); |
| 1686 | } |
| 1687 | } |
| 1688 | else |
| 1689 | { |
| 1690 | LOG((LF_JIT, LL_FATALERROR, "LoadAndInitializeJIT: failed to find 'getJit' entrypoint in %S\n" , pwzJitName)); |
| 1691 | } |
| 1692 | } |
| 1693 | else |
| 1694 | { |
| 1695 | LOG((LF_JIT, LL_FATALERROR, "LoadAndInitializeJIT: failed to find 'sxsJitStartup' entrypoint in %S\n" , pwzJitName)); |
| 1696 | } |
| 1697 | } |
| 1698 | EX_CATCH |
| 1699 | { |
| 1700 | LOG((LF_JIT, LL_FATALERROR, "LoadAndInitializeJIT: caught an exception trying to initialize %S\n" , pwzJitName)); |
| 1701 | } |
| 1702 | EX_END_CATCH(SwallowAllExceptions) |
| 1703 | } |
| 1704 | else |
| 1705 | { |
| 1706 | pJitLoadData->jld_hr = hr; |
| 1707 | LOG((LF_JIT, LL_FATALERROR, "LoadAndInitializeJIT: failed to load %S, hr=0x%08x\n" , pwzJitName, hr)); |
| 1708 | } |
| 1709 | } |
| 1710 | |
| 1711 | #ifdef FEATURE_MERGE_JIT_AND_ENGINE |
| 1712 | EXTERN_C void __stdcall jitStartup(ICorJitHost* host); |
| 1713 | EXTERN_C ICorJitCompiler* __stdcall getJit(); |
| 1714 | #endif // FEATURE_MERGE_JIT_AND_ENGINE |
| 1715 | |
| 1716 | // Set this to the result of LoadJIT as a courtesy to code:CorCompileGetRuntimeDll |
| 1717 | extern HMODULE s_ngenCompilerDll; |
| 1718 | |
| 1719 | BOOL EEJitManager::LoadJIT() |
| 1720 | { |
| 1721 | STANDARD_VM_CONTRACT; |
| 1722 | |
| 1723 | // If the JIT is already loaded, don't take the lock. |
| 1724 | if (IsJitLoaded()) |
| 1725 | return TRUE; |
| 1726 | |
| 1727 | // Abuse m_EHClauseCritSec to ensure that the JIT is loaded on one thread only |
| 1728 | CrstHolder chRead(&m_EHClauseCritSec); |
| 1729 | |
| 1730 | // Did someone load the JIT before we got the lock? |
| 1731 | if (IsJitLoaded()) |
| 1732 | return TRUE; |
| 1733 | |
| 1734 | SetCpuInfo(); |
| 1735 | |
| 1736 | ICorJitCompiler* newJitCompiler = NULL; |
| 1737 | |
| 1738 | #ifdef FEATURE_MERGE_JIT_AND_ENGINE |
| 1739 | |
| 1740 | EX_TRY |
| 1741 | { |
| 1742 | jitStartup(JitHost::getJitHost()); |
| 1743 | |
| 1744 | newJitCompiler = getJit(); |
| 1745 | |
| 1746 | // We don't need to call getVersionIdentifier(), since the JIT is linked together with the VM. |
| 1747 | } |
| 1748 | EX_CATCH |
| 1749 | { |
| 1750 | } |
| 1751 | EX_END_CATCH(SwallowAllExceptions) |
| 1752 | |
| 1753 | #else // !FEATURE_MERGE_JIT_AND_ENGINE |
| 1754 | |
| 1755 | m_JITCompiler = NULL; |
| 1756 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 1757 | m_JITCompilerOther = NULL; |
| 1758 | #endif |
| 1759 | |
| 1760 | g_JitLoadData.jld_id = JIT_LOAD_MAIN; |
| 1761 | LoadAndInitializeJIT(ExecutionManager::GetJitName(), &m_JITCompiler, &newJitCompiler, &g_JitLoadData); |
| 1762 | |
| 1763 | // Set as a courtesy to code:CorCompileGetRuntimeDll |
| 1764 | s_ngenCompilerDll = m_JITCompiler; |
| 1765 | #endif // !FEATURE_MERGE_JIT_AND_ENGINE |
| 1766 | |
| 1767 | #ifdef ALLOW_SXS_JIT |
| 1768 | |
| 1769 | // Do not load altjit.dll unless COMPlus_AltJit is set. |
| 1770 | // Even if the main JIT fails to load, if the user asks for an altjit we try to load it. |
| 1771 | // This allows us to display load error messages for loading altjit. |
| 1772 | |
| 1773 | ICorJitCompiler* newAltJitCompiler = NULL; |
| 1774 | |
| 1775 | LPWSTR altJitConfig; |
| 1776 | IfFailThrow(CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_AltJit, &altJitConfig)); |
| 1777 | |
| 1778 | m_AltJITCompiler = NULL; |
| 1779 | |
| 1780 | if (altJitConfig != NULL) |
| 1781 | { |
| 1782 | // Load the altjit into the system. |
| 1783 | // Note: altJitName must be declared as a const otherwise assigning the string |
| 1784 | // constructed by MAKEDLLNAME_W() to altJitName will cause a build break on Unix. |
| 1785 | LPCWSTR altJitName; |
| 1786 | IfFailThrow(CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_AltJitName, (LPWSTR*)&altJitName)); |
| 1787 | |
| 1788 | if (altJitName == NULL) |
| 1789 | { |
| 1790 | altJitName = MAKEDLLNAME_W(W("protojit" )); |
| 1791 | } |
| 1792 | |
| 1793 | g_JitLoadData.jld_id = JIT_LOAD_ALTJIT; |
| 1794 | LoadAndInitializeJIT(altJitName, &m_AltJITCompiler, &newAltJitCompiler, &g_JitLoadData); |
| 1795 | } |
| 1796 | |
| 1797 | #endif // ALLOW_SXS_JIT |
| 1798 | |
| 1799 | // Publish the compilers. |
| 1800 | |
| 1801 | #ifdef ALLOW_SXS_JIT |
| 1802 | m_AltJITRequired = (altJitConfig != NULL); |
| 1803 | m_alternateJit = newAltJitCompiler; |
| 1804 | #endif // ALLOW_SXS_JIT |
| 1805 | |
| 1806 | m_jit = newJitCompiler; |
| 1807 | |
| 1808 | // Failing to load the main JIT is a failure. |
| 1809 | // If the user requested an altjit and we failed to load an altjit, that is also a failure. |
| 1810 | // In either failure case, we'll rip down the VM (so no need to clean up (unload) either JIT that did load successfully. |
| 1811 | return IsJitLoaded(); |
| 1812 | } |
| 1813 | |
| 1814 | #ifndef CROSSGEN_COMPILE |
| 1815 | //************************************************************************** |
| 1816 | |
| 1817 | CodeFragmentHeap::CodeFragmentHeap(LoaderAllocator * pAllocator, StubCodeBlockKind kind) |
| 1818 | : m_pAllocator(pAllocator), m_pFreeBlocks(NULL), m_kind(kind), |
| 1819 | // CRST_DEBUGGER_THREAD - We take this lock on debugger thread during EnC add meth |
| 1820 | m_CritSec(CrstCodeFragmentHeap, CrstFlags(CRST_UNSAFE_ANYMODE | CRST_DEBUGGER_THREAD)) |
| 1821 | { |
| 1822 | WRAPPER_NO_CONTRACT; |
| 1823 | } |
| 1824 | |
| 1825 | void CodeFragmentHeap::AddBlock(VOID * pMem, size_t dwSize) |
| 1826 | { |
| 1827 | LIMITED_METHOD_CONTRACT; |
| 1828 | FreeBlock * pBlock = (FreeBlock *)pMem; |
| 1829 | pBlock->m_pNext = m_pFreeBlocks; |
| 1830 | pBlock->m_dwSize = dwSize; |
| 1831 | m_pFreeBlocks = pBlock; |
| 1832 | } |
| 1833 | |
| 1834 | void CodeFragmentHeap::RemoveBlock(FreeBlock ** ppBlock) |
| 1835 | { |
| 1836 | LIMITED_METHOD_CONTRACT; |
| 1837 | FreeBlock * pBlock = *ppBlock; |
| 1838 | *ppBlock = pBlock->m_pNext; |
| 1839 | ZeroMemory(pBlock, sizeof(FreeBlock)); |
| 1840 | } |
| 1841 | |
| 1842 | TaggedMemAllocPtr CodeFragmentHeap::RealAllocAlignedMem(size_t dwRequestedSize |
| 1843 | ,unsigned dwAlignment |
| 1844 | #ifdef _DEBUG |
| 1845 | ,__in __in_z const char *szFile |
| 1846 | ,int lineNum |
| 1847 | #endif |
| 1848 | ) |
| 1849 | { |
| 1850 | CrstHolder ch(&m_CritSec); |
| 1851 | |
| 1852 | dwRequestedSize = ALIGN_UP(dwRequestedSize, sizeof(TADDR)); |
| 1853 | |
| 1854 | if (dwRequestedSize < sizeof(FreeBlock)) |
| 1855 | dwRequestedSize = sizeof(FreeBlock); |
| 1856 | |
| 1857 | // We will try to batch up allocation of small blocks into one large allocation |
| 1858 | #define SMALL_BLOCK_THRESHOLD 0x100 |
| 1859 | SIZE_T nFreeSmallBlocks = 0; |
| 1860 | |
| 1861 | FreeBlock ** ppBestFit = NULL; |
| 1862 | FreeBlock ** ppFreeBlock = &m_pFreeBlocks; |
| 1863 | while (*ppFreeBlock != NULL) |
| 1864 | { |
| 1865 | FreeBlock * pFreeBlock = *ppFreeBlock; |
| 1866 | if (((BYTE *)pFreeBlock + pFreeBlock->m_dwSize) - (BYTE *)ALIGN_UP(pFreeBlock, dwAlignment) >= (SSIZE_T)dwRequestedSize) |
| 1867 | { |
| 1868 | if (ppBestFit == NULL || pFreeBlock->m_dwSize < (*ppBestFit)->m_dwSize) |
| 1869 | ppBestFit = ppFreeBlock; |
| 1870 | } |
| 1871 | else |
| 1872 | { |
| 1873 | if (pFreeBlock->m_dwSize < SMALL_BLOCK_THRESHOLD) |
| 1874 | nFreeSmallBlocks++; |
| 1875 | } |
| 1876 | ppFreeBlock = &(*ppFreeBlock)->m_pNext; |
| 1877 | } |
| 1878 | |
| 1879 | VOID * pMem; |
| 1880 | SIZE_T dwSize; |
| 1881 | if (ppBestFit != NULL) |
| 1882 | { |
| 1883 | pMem = *ppBestFit; |
| 1884 | dwSize = (*ppBestFit)->m_dwSize; |
| 1885 | |
| 1886 | RemoveBlock(ppBestFit); |
| 1887 | } |
| 1888 | else |
| 1889 | { |
| 1890 | dwSize = dwRequestedSize; |
| 1891 | if (dwSize < SMALL_BLOCK_THRESHOLD) |
| 1892 | dwSize = 4 * SMALL_BLOCK_THRESHOLD; |
| 1893 | pMem = ExecutionManager::GetEEJitManager()->allocCodeFragmentBlock(dwSize, dwAlignment, m_pAllocator, m_kind); |
| 1894 | } |
| 1895 | |
| 1896 | SIZE_T dwExtra = (BYTE *)ALIGN_UP(pMem, dwAlignment) - (BYTE *)pMem; |
| 1897 | _ASSERTE(dwSize >= dwExtra + dwRequestedSize); |
| 1898 | SIZE_T dwRemaining = dwSize - (dwExtra + dwRequestedSize); |
| 1899 | |
| 1900 | // Avoid accumulation of too many small blocks. The more small free blocks we have, the more picky we are going to be about adding new ones. |
| 1901 | if ((dwRemaining >= max(sizeof(FreeBlock), sizeof(StubPrecode)) + (SMALL_BLOCK_THRESHOLD / 0x10) * nFreeSmallBlocks) || (dwRemaining >= SMALL_BLOCK_THRESHOLD)) |
| 1902 | { |
| 1903 | AddBlock((BYTE *)pMem + dwExtra + dwRequestedSize, dwRemaining); |
| 1904 | dwSize -= dwRemaining; |
| 1905 | } |
| 1906 | |
| 1907 | TaggedMemAllocPtr tmap; |
| 1908 | tmap.m_pMem = pMem; |
| 1909 | tmap.m_dwRequestedSize = dwSize; |
| 1910 | tmap.m_pHeap = this; |
| 1911 | tmap.m_dwExtra = dwExtra; |
| 1912 | #ifdef _DEBUG |
| 1913 | tmap.m_szFile = szFile; |
| 1914 | tmap.m_lineNum = lineNum; |
| 1915 | #endif |
| 1916 | return tmap; |
| 1917 | } |
| 1918 | |
| 1919 | void CodeFragmentHeap::RealBackoutMem(void *pMem |
| 1920 | , size_t dwSize |
| 1921 | #ifdef _DEBUG |
| 1922 | , __in __in_z const char *szFile |
| 1923 | , int lineNum |
| 1924 | , __in __in_z const char *szAllocFile |
| 1925 | , int allocLineNum |
| 1926 | #endif |
| 1927 | ) |
| 1928 | { |
| 1929 | CrstHolder ch(&m_CritSec); |
| 1930 | |
| 1931 | _ASSERTE(dwSize >= sizeof(FreeBlock)); |
| 1932 | |
| 1933 | ZeroMemory((BYTE *)pMem, dwSize); |
| 1934 | |
| 1935 | // |
| 1936 | // Try to coalesce blocks if possible |
| 1937 | // |
| 1938 | FreeBlock ** ppFreeBlock = &m_pFreeBlocks; |
| 1939 | while (*ppFreeBlock != NULL) |
| 1940 | { |
| 1941 | FreeBlock * pFreeBlock = *ppFreeBlock; |
| 1942 | |
| 1943 | if ((BYTE *)pFreeBlock == (BYTE *)pMem + dwSize) |
| 1944 | { |
| 1945 | // pMem = pMem; |
| 1946 | dwSize += pFreeBlock->m_dwSize; |
| 1947 | RemoveBlock(ppFreeBlock); |
| 1948 | continue; |
| 1949 | } |
| 1950 | else |
| 1951 | if ((BYTE *)pFreeBlock + pFreeBlock->m_dwSize == (BYTE *)pMem) |
| 1952 | { |
| 1953 | pMem = pFreeBlock; |
| 1954 | dwSize += pFreeBlock->m_dwSize; |
| 1955 | RemoveBlock(ppFreeBlock); |
| 1956 | continue; |
| 1957 | } |
| 1958 | |
| 1959 | ppFreeBlock = &(*ppFreeBlock)->m_pNext; |
| 1960 | } |
| 1961 | |
| 1962 | AddBlock(pMem, dwSize); |
| 1963 | } |
| 1964 | #endif // !CROSSGEN_COMPILE |
| 1965 | |
| 1966 | //************************************************************************** |
| 1967 | |
| 1968 | LoaderCodeHeap::LoaderCodeHeap(size_t * pPrivatePCLBytes) |
| 1969 | : m_LoaderHeap(pPrivatePCLBytes, |
| 1970 | 0, // RangeList *pRangeList |
| 1971 | TRUE), // BOOL fMakeExecutable |
| 1972 | m_cbMinNextPad(0) |
| 1973 | { |
| 1974 | WRAPPER_NO_CONTRACT; |
| 1975 | } |
| 1976 | |
| 1977 | void ThrowOutOfMemoryWithinRange() |
| 1978 | { |
| 1979 | CONTRACTL { |
| 1980 | THROWS; |
| 1981 | GC_NOTRIGGER; |
| 1982 | } CONTRACTL_END; |
| 1983 | |
| 1984 | // Allow breaking into debugger or terminating the process when this exception occurs |
| 1985 | switch (CLRConfig::GetConfigValue(CLRConfig::INTERNAL_BreakOnOutOfMemoryWithinRange)) |
| 1986 | { |
| 1987 | case 1: |
| 1988 | DebugBreak(); |
| 1989 | break; |
| 1990 | case 2: |
| 1991 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_OUTOFMEMORY); |
| 1992 | break; |
| 1993 | default: |
| 1994 | break; |
| 1995 | } |
| 1996 | |
| 1997 | EX_THROW(EEMessageException, (kOutOfMemoryException, IDS_EE_OUT_OF_MEMORY_WITHIN_RANGE)); |
| 1998 | } |
| 1999 | |
| 2000 | #ifdef _TARGET_AMD64_ |
| 2001 | BYTE * EEJitManager::AllocateFromEmergencyJumpStubReserve(const BYTE * loAddr, const BYTE * hiAddr, SIZE_T * pReserveSize) |
| 2002 | { |
| 2003 | CONTRACTL { |
| 2004 | NOTHROW; |
| 2005 | GC_NOTRIGGER; |
| 2006 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 2007 | } CONTRACTL_END; |
| 2008 | |
| 2009 | for (EmergencyJumpStubReserve ** ppPrev = &m_pEmergencyJumpStubReserveList; *ppPrev != NULL; ppPrev = &(*ppPrev)->m_pNext) |
| 2010 | { |
| 2011 | EmergencyJumpStubReserve * pList = *ppPrev; |
| 2012 | |
| 2013 | if (loAddr <= pList->m_ptr && |
| 2014 | pList->m_ptr + pList->m_size < hiAddr) |
| 2015 | { |
| 2016 | *ppPrev = pList->m_pNext; |
| 2017 | |
| 2018 | BYTE * pBlock = pList->m_ptr; |
| 2019 | *pReserveSize = pList->m_size; |
| 2020 | |
| 2021 | delete pList; |
| 2022 | |
| 2023 | return pBlock; |
| 2024 | } |
| 2025 | } |
| 2026 | |
| 2027 | return NULL; |
| 2028 | } |
| 2029 | |
| 2030 | VOID EEJitManager::EnsureJumpStubReserve(BYTE * pImageBase, SIZE_T imageSize, SIZE_T reserveSize) |
| 2031 | { |
| 2032 | CONTRACTL { |
| 2033 | THROWS; |
| 2034 | GC_NOTRIGGER; |
| 2035 | } CONTRACTL_END; |
| 2036 | |
| 2037 | CrstHolder ch(&m_CodeHeapCritSec); |
| 2038 | |
| 2039 | BYTE * loAddr = pImageBase + imageSize + INT32_MIN; |
| 2040 | if (loAddr > pImageBase) loAddr = NULL; // overflow |
| 2041 | |
| 2042 | BYTE * hiAddr = pImageBase + INT32_MAX; |
| 2043 | if (hiAddr < pImageBase) hiAddr = (BYTE *)UINT64_MAX; // overflow |
| 2044 | |
| 2045 | for (EmergencyJumpStubReserve * pList = m_pEmergencyJumpStubReserveList; pList != NULL; pList = pList->m_pNext) |
| 2046 | { |
| 2047 | if (loAddr <= pList->m_ptr && |
| 2048 | pList->m_ptr + pList->m_size < hiAddr) |
| 2049 | { |
| 2050 | SIZE_T used = min(reserveSize, pList->m_free); |
| 2051 | pList->m_free -= used; |
| 2052 | |
| 2053 | reserveSize -= used; |
| 2054 | if (reserveSize == 0) |
| 2055 | return; |
| 2056 | } |
| 2057 | } |
| 2058 | |
| 2059 | // Try several different strategies - the most efficient one first |
| 2060 | int allocMode = 0; |
| 2061 | |
| 2062 | // Try to reserve at least 16MB at a time |
| 2063 | SIZE_T allocChunk = max(ALIGN_UP(reserveSize, VIRTUAL_ALLOC_RESERVE_GRANULARITY), 16*1024*1024); |
| 2064 | |
| 2065 | while (reserveSize > 0) |
| 2066 | { |
| 2067 | NewHolder<EmergencyJumpStubReserve> pNewReserve(new EmergencyJumpStubReserve()); |
| 2068 | |
| 2069 | for (;;) |
| 2070 | { |
| 2071 | BYTE * loAddrCurrent = loAddr; |
| 2072 | BYTE * hiAddrCurrent = hiAddr; |
| 2073 | |
| 2074 | switch (allocMode) |
| 2075 | { |
| 2076 | case 0: |
| 2077 | // First, try to allocate towards the center of the allowed range. It is more likely to |
| 2078 | // satisfy subsequent reservations. |
| 2079 | loAddrCurrent = loAddr + (hiAddr - loAddr) / 8; |
| 2080 | hiAddrCurrent = hiAddr - (hiAddr - loAddr) / 8; |
| 2081 | break; |
| 2082 | case 1: |
| 2083 | // Try the whole allowed range |
| 2084 | break; |
| 2085 | case 2: |
| 2086 | // If the large allocation failed, retry with small chunk size |
| 2087 | allocChunk = VIRTUAL_ALLOC_RESERVE_GRANULARITY; |
| 2088 | break; |
| 2089 | default: |
| 2090 | return; // Unable to allocate the reserve - give up |
| 2091 | } |
| 2092 | |
| 2093 | pNewReserve->m_ptr = ClrVirtualAllocWithinRange(loAddrCurrent, hiAddrCurrent, |
| 2094 | allocChunk, MEM_RESERVE, PAGE_NOACCESS); |
| 2095 | |
| 2096 | if (pNewReserve->m_ptr != NULL) |
| 2097 | break; |
| 2098 | |
| 2099 | // Retry with the next allocation strategy |
| 2100 | allocMode++; |
| 2101 | } |
| 2102 | |
| 2103 | SIZE_T used = min(allocChunk, reserveSize); |
| 2104 | reserveSize -= used; |
| 2105 | |
| 2106 | pNewReserve->m_size = allocChunk; |
| 2107 | pNewReserve->m_free = allocChunk - used; |
| 2108 | |
| 2109 | // Add it to the list |
| 2110 | pNewReserve->m_pNext = m_pEmergencyJumpStubReserveList; |
| 2111 | m_pEmergencyJumpStubReserveList = pNewReserve.Extract(); |
| 2112 | } |
| 2113 | } |
| 2114 | #endif // _TARGET_AMD64_ |
| 2115 | |
| 2116 | static size_t GetDefaultReserveForJumpStubs(size_t codeHeapSize) |
| 2117 | { |
| 2118 | LIMITED_METHOD_CONTRACT; |
| 2119 | |
| 2120 | #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_) |
| 2121 | // |
| 2122 | // Keep a small default reserve at the end of the codeheap for jump stubs. It should reduce |
| 2123 | // chance that we won't be able allocate jump stub because of lack of suitable address space. |
| 2124 | // |
| 2125 | static ConfigDWORD configCodeHeapReserveForJumpStubs; |
| 2126 | int percentReserveForJumpStubs = configCodeHeapReserveForJumpStubs.val(CLRConfig::INTERNAL_CodeHeapReserveForJumpStubs); |
| 2127 | |
| 2128 | size_t reserveForJumpStubs = percentReserveForJumpStubs * (codeHeapSize / 100); |
| 2129 | |
| 2130 | size_t minReserveForJumpStubs = sizeof(CodeHeader) + |
| 2131 | sizeof(JumpStubBlockHeader) + (size_t) DEFAULT_JUMPSTUBS_PER_BLOCK * BACK_TO_BACK_JUMP_ALLOCATE_SIZE + |
| 2132 | CODE_SIZE_ALIGN + BYTES_PER_BUCKET; |
| 2133 | |
| 2134 | return max(reserveForJumpStubs, minReserveForJumpStubs); |
| 2135 | #else |
| 2136 | return 0; |
| 2137 | #endif |
| 2138 | } |
| 2139 | |
| 2140 | HeapList* LoaderCodeHeap::CreateCodeHeap(CodeHeapRequestInfo *pInfo, LoaderHeap *pJitMetaHeap) |
| 2141 | { |
| 2142 | CONTRACT(HeapList *) { |
| 2143 | THROWS; |
| 2144 | GC_NOTRIGGER; |
| 2145 | POSTCONDITION((RETVAL != NULL) || !pInfo->getThrowOnOutOfMemoryWithinRange()); |
| 2146 | } CONTRACT_END; |
| 2147 | |
| 2148 | size_t * pPrivatePCLBytes = NULL; |
| 2149 | size_t reserveSize = pInfo->getReserveSize(); |
| 2150 | size_t initialRequestSize = pInfo->getRequestSize(); |
| 2151 | const BYTE * loAddr = pInfo->m_loAddr; |
| 2152 | const BYTE * hiAddr = pInfo->m_hiAddr; |
| 2153 | |
| 2154 | // Make sure that what we are reserving will fix inside a DWORD |
| 2155 | if (reserveSize != (DWORD) reserveSize) |
| 2156 | { |
| 2157 | _ASSERTE(!"reserveSize does not fit in a DWORD" ); |
| 2158 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
| 2159 | } |
| 2160 | |
| 2161 | #ifdef ENABLE_PERF_COUNTERS |
| 2162 | pPrivatePCLBytes = &(GetPerfCounters().m_Loading.cbLoaderHeapSize); |
| 2163 | #endif |
| 2164 | |
| 2165 | LOG((LF_JIT, LL_INFO100, |
| 2166 | "Request new LoaderCodeHeap::CreateCodeHeap(%08x, %08x, for loader allocator" FMT_ADDR "in" FMT_ADDR ".." FMT_ADDR ")\n" , |
| 2167 | (DWORD) reserveSize, (DWORD) initialRequestSize, DBG_ADDR(pInfo->m_pAllocator), DBG_ADDR(loAddr), DBG_ADDR(hiAddr) |
| 2168 | )); |
| 2169 | |
| 2170 | NewHolder<LoaderCodeHeap> pCodeHeap(new LoaderCodeHeap(pPrivatePCLBytes)); |
| 2171 | |
| 2172 | BYTE * pBaseAddr = NULL; |
| 2173 | DWORD dwSizeAcquiredFromInitialBlock = 0; |
| 2174 | bool fAllocatedFromEmergencyJumpStubReserve = false; |
| 2175 | |
| 2176 | pBaseAddr = (BYTE *)pInfo->m_pAllocator->GetCodeHeapInitialBlock(loAddr, hiAddr, (DWORD)initialRequestSize, &dwSizeAcquiredFromInitialBlock); |
| 2177 | if (pBaseAddr != NULL) |
| 2178 | { |
| 2179 | pCodeHeap->m_LoaderHeap.SetReservedRegion(pBaseAddr, dwSizeAcquiredFromInitialBlock, FALSE); |
| 2180 | } |
| 2181 | else |
| 2182 | { |
| 2183 | if (loAddr != NULL || hiAddr != NULL) |
| 2184 | { |
| 2185 | #ifdef _DEBUG |
| 2186 | // Always exercise the fallback path in the caller when forced relocs are turned on |
| 2187 | if (!pInfo->getThrowOnOutOfMemoryWithinRange() && PEDecoder::GetForceRelocs()) |
| 2188 | RETURN NULL; |
| 2189 | #endif |
| 2190 | pBaseAddr = ClrVirtualAllocWithinRange(loAddr, hiAddr, |
| 2191 | reserveSize, MEM_RESERVE, PAGE_NOACCESS); |
| 2192 | |
| 2193 | if (!pBaseAddr) |
| 2194 | { |
| 2195 | // Conserve emergency jump stub reserve until when it is really needed |
| 2196 | if (!pInfo->getThrowOnOutOfMemoryWithinRange()) |
| 2197 | RETURN NULL; |
| 2198 | #ifdef _TARGET_AMD64_ |
| 2199 | pBaseAddr = ExecutionManager::GetEEJitManager()->AllocateFromEmergencyJumpStubReserve(loAddr, hiAddr, &reserveSize); |
| 2200 | if (!pBaseAddr) |
| 2201 | ThrowOutOfMemoryWithinRange(); |
| 2202 | fAllocatedFromEmergencyJumpStubReserve = true; |
| 2203 | #else |
| 2204 | ThrowOutOfMemoryWithinRange(); |
| 2205 | #endif // _TARGET_AMD64_ |
| 2206 | } |
| 2207 | } |
| 2208 | else |
| 2209 | { |
| 2210 | pBaseAddr = ClrVirtualAllocExecutable(reserveSize, MEM_RESERVE, PAGE_NOACCESS); |
| 2211 | if (!pBaseAddr) |
| 2212 | ThrowOutOfMemory(); |
| 2213 | } |
| 2214 | pCodeHeap->m_LoaderHeap.SetReservedRegion(pBaseAddr, reserveSize, TRUE); |
| 2215 | } |
| 2216 | |
| 2217 | |
| 2218 | // this first allocation is critical as it sets up correctly the loader heap info |
| 2219 | HeapList *pHp = (HeapList*)pCodeHeap->m_LoaderHeap.AllocMem(sizeof(HeapList)); |
| 2220 | |
| 2221 | pHp->pHeap = pCodeHeap; |
| 2222 | |
| 2223 | size_t heapSize = pCodeHeap->m_LoaderHeap.GetReservedBytesFree(); |
| 2224 | size_t nibbleMapSize = HEAP2MAPSIZE(ROUND_UP_TO_PAGE(heapSize)); |
| 2225 | |
| 2226 | pHp->startAddress = (TADDR)pHp + sizeof(HeapList); |
| 2227 | |
| 2228 | pHp->endAddress = pHp->startAddress; |
| 2229 | pHp->maxCodeHeapSize = heapSize; |
| 2230 | pHp->reserveForJumpStubs = fAllocatedFromEmergencyJumpStubReserve ? pHp->maxCodeHeapSize : GetDefaultReserveForJumpStubs(pHp->maxCodeHeapSize); |
| 2231 | |
| 2232 | _ASSERTE(heapSize >= initialRequestSize); |
| 2233 | |
| 2234 | // We do not need to memset this memory, since ClrVirtualAlloc() guarantees that the memory is zero. |
| 2235 | // Furthermore, if we avoid writing to it, these pages don't come into our working set |
| 2236 | |
| 2237 | pHp->mapBase = ROUND_DOWN_TO_PAGE(pHp->startAddress); // round down to next lower page align |
| 2238 | pHp->pHdrMap = (DWORD*)(void*)pJitMetaHeap->AllocMem(S_SIZE_T(nibbleMapSize)); |
| 2239 | |
| 2240 | LOG((LF_JIT, LL_INFO100, |
| 2241 | "Created new CodeHeap(" FMT_ADDR ".." FMT_ADDR ")\n" , |
| 2242 | DBG_ADDR(pHp->startAddress), DBG_ADDR(pHp->startAddress+pHp->maxCodeHeapSize) |
| 2243 | )); |
| 2244 | |
| 2245 | #ifdef _TARGET_64BIT_ |
| 2246 | emitJump((LPBYTE)pHp->CLRPersonalityRoutine, (void *)ProcessCLRException); |
| 2247 | #endif // _TARGET_64BIT_ |
| 2248 | |
| 2249 | pCodeHeap.SuppressRelease(); |
| 2250 | RETURN pHp; |
| 2251 | } |
| 2252 | |
| 2253 | void * LoaderCodeHeap::AllocMemForCode_NoThrow(size_t header, size_t size, DWORD alignment, size_t reserveForJumpStubs) |
| 2254 | { |
| 2255 | CONTRACTL { |
| 2256 | NOTHROW; |
| 2257 | GC_NOTRIGGER; |
| 2258 | } CONTRACTL_END; |
| 2259 | |
| 2260 | if (m_cbMinNextPad > (SSIZE_T)header) header = m_cbMinNextPad; |
| 2261 | |
| 2262 | void * p = m_LoaderHeap.AllocMemForCode_NoThrow(header, size, alignment, reserveForJumpStubs); |
| 2263 | if (p == NULL) |
| 2264 | return NULL; |
| 2265 | |
| 2266 | // If the next allocation would have started in the same nibble map entry, allocate extra space to prevent it from happening |
| 2267 | // Note that m_cbMinNextPad can be negative |
| 2268 | m_cbMinNextPad = ALIGN_UP((SIZE_T)p + 1, BYTES_PER_BUCKET) - ((SIZE_T)p + size); |
| 2269 | |
| 2270 | return p; |
| 2271 | } |
| 2272 | |
| 2273 | void CodeHeapRequestInfo::Init() |
| 2274 | { |
| 2275 | CONTRACTL { |
| 2276 | NOTHROW; |
| 2277 | GC_NOTRIGGER; |
| 2278 | PRECONDITION((m_hiAddr == 0) || |
| 2279 | ((m_loAddr < m_hiAddr) && |
| 2280 | ((m_loAddr + m_requestSize) < m_hiAddr))); |
| 2281 | } CONTRACTL_END; |
| 2282 | |
| 2283 | if (m_pAllocator == NULL) |
| 2284 | m_pAllocator = m_pMD->GetLoaderAllocatorForCode(); |
| 2285 | m_isDynamicDomain = (m_pMD != NULL) ? m_pMD->IsLCGMethod() : false; |
| 2286 | m_isCollectible = m_pAllocator->IsCollectible() ? true : false; |
| 2287 | m_throwOnOutOfMemoryWithinRange = true; |
| 2288 | } |
| 2289 | |
| 2290 | #ifdef WIN64EXCEPTIONS |
| 2291 | |
| 2292 | #ifdef _WIN64 |
| 2293 | extern "C" PT_RUNTIME_FUNCTION GetRuntimeFunctionCallback(IN ULONG64 ControlPc, |
| 2294 | IN PVOID Context) |
| 2295 | #else |
| 2296 | extern "C" PT_RUNTIME_FUNCTION GetRuntimeFunctionCallback(IN ULONG ControlPc, |
| 2297 | IN PVOID Context) |
| 2298 | #endif |
| 2299 | { |
| 2300 | WRAPPER_NO_CONTRACT; |
| 2301 | |
| 2302 | PT_RUNTIME_FUNCTION prf = NULL; |
| 2303 | |
| 2304 | // We must preserve this so that GCStress=4 eh processing doesnt kill last error. |
| 2305 | BEGIN_PRESERVE_LAST_ERROR; |
| 2306 | |
| 2307 | #ifdef ENABLE_CONTRACTS |
| 2308 | // Some 64-bit OOM tests use the hosting interface to re-enter the CLR via |
| 2309 | // RtlVirtualUnwind to track unique stacks at each failure point. RtlVirtualUnwind can |
| 2310 | // result in the EEJitManager taking a reader lock. This, in turn, results in a |
| 2311 | // CANNOT_TAKE_LOCK contract violation if a CANNOT_TAKE_LOCK function were on the stack |
| 2312 | // at the time. While it's theoretically possible for "real" hosts also to re-enter the |
| 2313 | // CLR via RtlVirtualUnwind, generally they don't, and we'd actually like to catch a real |
| 2314 | // host causing such a contract violation. Therefore, we'd like to suppress such contract |
| 2315 | // asserts when these OOM tests are running, but continue to enforce the contracts by |
| 2316 | // default. This function returns whether to suppress locking violations. |
| 2317 | CONDITIONAL_CONTRACT_VIOLATION( |
| 2318 | TakesLockViolation, |
| 2319 | g_pConfig->SuppressLockViolationsOnReentryFromOS()); |
| 2320 | #endif // ENABLE_CONTRACTS |
| 2321 | |
| 2322 | EECodeInfo codeInfo((PCODE)ControlPc); |
| 2323 | if (codeInfo.IsValid()) |
| 2324 | prf = codeInfo.GetFunctionEntry(); |
| 2325 | |
| 2326 | LOG((LF_EH, LL_INFO1000000, "GetRuntimeFunctionCallback(%p) returned %p\n" , ControlPc, prf)); |
| 2327 | |
| 2328 | END_PRESERVE_LAST_ERROR; |
| 2329 | |
| 2330 | return prf; |
| 2331 | } |
| 2332 | #endif // WIN64EXCEPTIONS |
| 2333 | |
| 2334 | HeapList* EEJitManager::NewCodeHeap(CodeHeapRequestInfo *pInfo, DomainCodeHeapList *pADHeapList) |
| 2335 | { |
| 2336 | CONTRACT(HeapList *) { |
| 2337 | THROWS; |
| 2338 | GC_NOTRIGGER; |
| 2339 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 2340 | POSTCONDITION((RETVAL != NULL) || !pInfo->getThrowOnOutOfMemoryWithinRange()); |
| 2341 | } CONTRACT_END; |
| 2342 | |
| 2343 | size_t initialRequestSize = pInfo->getRequestSize(); |
| 2344 | size_t minReserveSize = VIRTUAL_ALLOC_RESERVE_GRANULARITY; // ( 64 KB) |
| 2345 | |
| 2346 | #ifdef _WIN64 |
| 2347 | if (pInfo->m_hiAddr == 0) |
| 2348 | { |
| 2349 | if (pADHeapList->m_CodeHeapList.Count() > CODE_HEAP_SIZE_INCREASE_THRESHOLD) |
| 2350 | { |
| 2351 | minReserveSize *= 4; // Increase the code heap size to 256 KB for workloads with a lot of code. |
| 2352 | } |
| 2353 | |
| 2354 | // For non-DynamicDomains that don't have a loAddr/hiAddr range |
| 2355 | // we bump up the reserve size for the 64-bit platforms |
| 2356 | if (!pInfo->IsDynamicDomain()) |
| 2357 | { |
| 2358 | minReserveSize *= 8; // CodeHeaps are larger on AMD64 (256 KB to 2048 KB) |
| 2359 | } |
| 2360 | } |
| 2361 | #endif |
| 2362 | |
| 2363 | // <BUGNUM> VSW 433293 </BUGNUM> |
| 2364 | // SETUP_NEW_BLOCK reserves the first sizeof(LoaderHeapBlock) bytes for LoaderHeapBlock. |
| 2365 | // In other word, the first m_pAllocPtr starts at sizeof(LoaderHeapBlock) bytes |
| 2366 | // after the allocated memory. Therefore, we need to take it into account. |
| 2367 | size_t requestAndHeadersSize = sizeof(LoaderHeapBlock) + sizeof(HeapList) + initialRequestSize; |
| 2368 | |
| 2369 | size_t reserveSize = requestAndHeadersSize; |
| 2370 | if (reserveSize < minReserveSize) |
| 2371 | reserveSize = minReserveSize; |
| 2372 | reserveSize = ALIGN_UP(reserveSize, VIRTUAL_ALLOC_RESERVE_GRANULARITY); |
| 2373 | |
| 2374 | pInfo->setReserveSize(reserveSize); |
| 2375 | |
| 2376 | HeapList *pHp = NULL; |
| 2377 | |
| 2378 | DWORD flags = RangeSection::RANGE_SECTION_CODEHEAP; |
| 2379 | |
| 2380 | if (pInfo->IsDynamicDomain()) |
| 2381 | { |
| 2382 | flags |= RangeSection::RANGE_SECTION_COLLECTIBLE; |
| 2383 | pHp = HostCodeHeap::CreateCodeHeap(pInfo, this); |
| 2384 | } |
| 2385 | else |
| 2386 | { |
| 2387 | LoaderHeap *pJitMetaHeap = pADHeapList->m_pAllocator->GetLowFrequencyHeap(); |
| 2388 | |
| 2389 | if (pInfo->IsCollectible()) |
| 2390 | flags |= RangeSection::RANGE_SECTION_COLLECTIBLE; |
| 2391 | |
| 2392 | pHp = LoaderCodeHeap::CreateCodeHeap(pInfo, pJitMetaHeap); |
| 2393 | } |
| 2394 | if (pHp == NULL) |
| 2395 | { |
| 2396 | _ASSERTE(!pInfo->getThrowOnOutOfMemoryWithinRange()); |
| 2397 | RETURN(NULL); |
| 2398 | } |
| 2399 | |
| 2400 | _ASSERTE (pHp != NULL); |
| 2401 | _ASSERTE (pHp->maxCodeHeapSize >= initialRequestSize); |
| 2402 | |
| 2403 | pHp->SetNext(GetCodeHeapList()); |
| 2404 | |
| 2405 | EX_TRY |
| 2406 | { |
| 2407 | TADDR pStartRange = (TADDR) pHp; |
| 2408 | TADDR pEndRange = (TADDR) &((BYTE*)pHp->startAddress)[pHp->maxCodeHeapSize]; |
| 2409 | |
| 2410 | ExecutionManager::AddCodeRange(pStartRange, |
| 2411 | pEndRange, |
| 2412 | this, |
| 2413 | (RangeSection::RangeSectionFlags)flags, |
| 2414 | pHp); |
| 2415 | // |
| 2416 | // add a table to cover each range in the range list |
| 2417 | // |
| 2418 | InstallEEFunctionTable( |
| 2419 | (PVOID)pStartRange, // this is just an ID that gets passed to RtlDeleteFunctionTable; |
| 2420 | (PVOID)pStartRange, |
| 2421 | (ULONG)((ULONG64)pEndRange - (ULONG64)pStartRange), |
| 2422 | GetRuntimeFunctionCallback, |
| 2423 | this, |
| 2424 | DYNFNTABLE_JIT); |
| 2425 | } |
| 2426 | EX_CATCH |
| 2427 | { |
| 2428 | // If we failed to alloc memory in ExecutionManager::AddCodeRange() |
| 2429 | // then we will delete the LoaderHeap that we allocated |
| 2430 | |
| 2431 | // pHp is allocated in pHeap, so only need to delete the LoaderHeap itself |
| 2432 | delete pHp->pHeap; |
| 2433 | |
| 2434 | pHp = NULL; |
| 2435 | } |
| 2436 | EX_END_CATCH(SwallowAllExceptions) |
| 2437 | |
| 2438 | if (pHp == NULL) |
| 2439 | { |
| 2440 | ThrowOutOfMemory(); |
| 2441 | } |
| 2442 | |
| 2443 | m_pCodeHeap = pHp; |
| 2444 | |
| 2445 | HeapList **ppHeapList = pADHeapList->m_CodeHeapList.AppendThrowing(); |
| 2446 | *ppHeapList = pHp; |
| 2447 | |
| 2448 | RETURN(pHp); |
| 2449 | } |
| 2450 | |
| 2451 | void* EEJitManager::allocCodeRaw(CodeHeapRequestInfo *pInfo, |
| 2452 | size_t header, size_t blockSize, unsigned align, |
| 2453 | HeapList ** ppCodeHeap) |
| 2454 | { |
| 2455 | CONTRACT(void *) { |
| 2456 | THROWS; |
| 2457 | GC_NOTRIGGER; |
| 2458 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 2459 | POSTCONDITION((RETVAL != NULL) || !pInfo->getThrowOnOutOfMemoryWithinRange()); |
| 2460 | } CONTRACT_END; |
| 2461 | |
| 2462 | pInfo->setRequestSize(header+blockSize+(align-1)+pInfo->getReserveForJumpStubs()); |
| 2463 | |
| 2464 | void * mem = NULL; |
| 2465 | HeapList * pCodeHeap = NULL; |
| 2466 | DomainCodeHeapList *pList = NULL; |
| 2467 | |
| 2468 | // Avoid going through the full list in the common case - try to use the most recently used codeheap |
| 2469 | if (pInfo->IsDynamicDomain()) |
| 2470 | { |
| 2471 | pCodeHeap = (HeapList *)pInfo->m_pAllocator->m_pLastUsedDynamicCodeHeap; |
| 2472 | pInfo->m_pAllocator->m_pLastUsedDynamicCodeHeap = NULL; |
| 2473 | } |
| 2474 | else |
| 2475 | { |
| 2476 | pCodeHeap = (HeapList *)pInfo->m_pAllocator->m_pLastUsedCodeHeap; |
| 2477 | pInfo->m_pAllocator->m_pLastUsedCodeHeap = NULL; |
| 2478 | } |
| 2479 | |
| 2480 | // If we will use a cached code heap, ensure that the code heap meets the constraints |
| 2481 | if (pCodeHeap && CanUseCodeHeap(pInfo, pCodeHeap)) |
| 2482 | { |
| 2483 | mem = (pCodeHeap->pHeap)->AllocMemForCode_NoThrow(header, blockSize, align, pInfo->getReserveForJumpStubs()); |
| 2484 | } |
| 2485 | |
| 2486 | if (mem == NULL) |
| 2487 | { |
| 2488 | pList = GetCodeHeapList(pInfo, pInfo->m_pAllocator); |
| 2489 | if (pList != NULL) |
| 2490 | { |
| 2491 | for (int i = 0; i < pList->m_CodeHeapList.Count(); i++) |
| 2492 | { |
| 2493 | pCodeHeap = pList->m_CodeHeapList[i]; |
| 2494 | |
| 2495 | // Validate that the code heap can be used for the current request |
| 2496 | if (CanUseCodeHeap(pInfo, pCodeHeap)) |
| 2497 | { |
| 2498 | mem = (pCodeHeap->pHeap)->AllocMemForCode_NoThrow(header, blockSize, align, pInfo->getReserveForJumpStubs()); |
| 2499 | if (mem != NULL) |
| 2500 | break; |
| 2501 | } |
| 2502 | } |
| 2503 | } |
| 2504 | |
| 2505 | if (mem == NULL) |
| 2506 | { |
| 2507 | // Let us create a new heap. |
| 2508 | if (pList == NULL) |
| 2509 | { |
| 2510 | // not found so need to create the first one |
| 2511 | pList = CreateCodeHeapList(pInfo); |
| 2512 | _ASSERTE(pList == GetCodeHeapList(pInfo, pInfo->m_pAllocator)); |
| 2513 | } |
| 2514 | _ASSERTE(pList); |
| 2515 | |
| 2516 | pCodeHeap = NewCodeHeap(pInfo, pList); |
| 2517 | if (pCodeHeap == NULL) |
| 2518 | { |
| 2519 | _ASSERTE(!pInfo->getThrowOnOutOfMemoryWithinRange()); |
| 2520 | RETURN(NULL); |
| 2521 | } |
| 2522 | |
| 2523 | mem = (pCodeHeap->pHeap)->AllocMemForCode_NoThrow(header, blockSize, align, pInfo->getReserveForJumpStubs()); |
| 2524 | if (mem == NULL) |
| 2525 | ThrowOutOfMemory(); |
| 2526 | _ASSERTE(mem); |
| 2527 | } |
| 2528 | } |
| 2529 | |
| 2530 | if (pInfo->IsDynamicDomain()) |
| 2531 | { |
| 2532 | pInfo->m_pAllocator->m_pLastUsedDynamicCodeHeap = pCodeHeap; |
| 2533 | } |
| 2534 | else |
| 2535 | { |
| 2536 | pInfo->m_pAllocator->m_pLastUsedCodeHeap = pCodeHeap; |
| 2537 | } |
| 2538 | |
| 2539 | // Record the pCodeHeap value into ppCodeHeap |
| 2540 | *ppCodeHeap = pCodeHeap; |
| 2541 | |
| 2542 | _ASSERTE((TADDR)mem >= pCodeHeap->startAddress); |
| 2543 | |
| 2544 | if (((TADDR) mem)+blockSize > (TADDR)pCodeHeap->endAddress) |
| 2545 | { |
| 2546 | // Update the CodeHeap endAddress |
| 2547 | pCodeHeap->endAddress = (TADDR)mem+blockSize; |
| 2548 | } |
| 2549 | |
| 2550 | RETURN(mem); |
| 2551 | } |
| 2552 | |
| 2553 | CodeHeader* EEJitManager::allocCode(MethodDesc* pMD, size_t blockSize, size_t reserveForJumpStubs, CorJitAllocMemFlag flag |
| 2554 | #ifdef WIN64EXCEPTIONS |
| 2555 | , UINT nUnwindInfos |
| 2556 | , TADDR * pModuleBase |
| 2557 | #endif |
| 2558 | ) |
| 2559 | { |
| 2560 | CONTRACT(CodeHeader *) { |
| 2561 | THROWS; |
| 2562 | GC_NOTRIGGER; |
| 2563 | POSTCONDITION(CheckPointer(RETVAL)); |
| 2564 | } CONTRACT_END; |
| 2565 | |
| 2566 | // |
| 2567 | // Alignment |
| 2568 | // |
| 2569 | |
| 2570 | unsigned alignment = CODE_SIZE_ALIGN; |
| 2571 | |
| 2572 | if ((flag & CORJIT_ALLOCMEM_FLG_16BYTE_ALIGN) != 0) |
| 2573 | { |
| 2574 | alignment = max(alignment, 16); |
| 2575 | } |
| 2576 | |
| 2577 | #if defined(_TARGET_X86_) |
| 2578 | // when not optimizing for code size, 8-byte align the method entry point, so that |
| 2579 | // the JIT can in turn 8-byte align the loop entry headers. |
| 2580 | // |
| 2581 | // when ReJIT is enabled, 8-byte-align the method entry point so that we may use an |
| 2582 | // 8-byte interlocked operation to atomically poke the top most bytes (e.g., to |
| 2583 | // redirect the rejit jmp-stamp at the top of the method from the prestub to the |
| 2584 | // rejitted code, or to reinstate original code on a revert). |
| 2585 | else if ((g_pConfig->GenOptimizeType() != OPT_SIZE) || |
| 2586 | pMD->IsVersionableWithJumpStamp()) |
| 2587 | { |
| 2588 | alignment = max(alignment, 8); |
| 2589 | } |
| 2590 | #endif |
| 2591 | |
| 2592 | // |
| 2593 | // Compute header layout |
| 2594 | // |
| 2595 | |
| 2596 | SIZE_T totalSize = blockSize; |
| 2597 | |
| 2598 | CodeHeader * pCodeHdr = NULL; |
| 2599 | |
| 2600 | CodeHeapRequestInfo requestInfo(pMD); |
| 2601 | #if defined(FEATURE_JIT_PITCHING) |
| 2602 | if (pMD && pMD->IsPitchable() && CLRConfig::GetConfigValue(CLRConfig::INTERNAL_JitPitchMethodSizeThreshold) < blockSize) |
| 2603 | { |
| 2604 | requestInfo.SetDynamicDomain(); |
| 2605 | } |
| 2606 | #endif |
| 2607 | requestInfo.setReserveForJumpStubs(reserveForJumpStubs); |
| 2608 | |
| 2609 | #if defined(USE_INDIRECT_CODEHEADER) |
| 2610 | SIZE_T realHeaderSize = offsetof(RealCodeHeader, unwindInfos[0]) + (sizeof(T_RUNTIME_FUNCTION) * nUnwindInfos); |
| 2611 | |
| 2612 | // if this is a LCG method then we will be allocating the RealCodeHeader |
| 2613 | // following the code so that the code block can be removed easily by |
| 2614 | // the LCG code heap. |
| 2615 | if (requestInfo.IsDynamicDomain()) |
| 2616 | { |
| 2617 | totalSize = ALIGN_UP(totalSize, sizeof(void*)) + realHeaderSize; |
| 2618 | static_assert_no_msg(CODE_SIZE_ALIGN >= sizeof(void*)); |
| 2619 | } |
| 2620 | #endif // USE_INDIRECT_CODEHEADER |
| 2621 | |
| 2622 | // Scope the lock |
| 2623 | { |
| 2624 | CrstHolder ch(&m_CodeHeapCritSec); |
| 2625 | |
| 2626 | HeapList *pCodeHeap = NULL; |
| 2627 | |
| 2628 | TADDR pCode = (TADDR) allocCodeRaw(&requestInfo, sizeof(CodeHeader), totalSize, alignment, &pCodeHeap); |
| 2629 | |
| 2630 | _ASSERTE(pCodeHeap); |
| 2631 | |
| 2632 | if (pMD->IsLCGMethod()) |
| 2633 | { |
| 2634 | pMD->AsDynamicMethodDesc()->GetLCGMethodResolver()->m_recordCodePointer = (void*) pCode; |
| 2635 | } |
| 2636 | |
| 2637 | _ASSERTE(IS_ALIGNED(pCode, alignment)); |
| 2638 | |
| 2639 | JIT_PERF_UPDATE_X86_CODE_SIZE(totalSize); |
| 2640 | |
| 2641 | // Initialize the CodeHeader *BEFORE* we publish this code range via the nibble |
| 2642 | // map so that we don't have to harden readers against uninitialized data. |
| 2643 | // However because we hold the lock, this initialization should be fast and cheap! |
| 2644 | |
| 2645 | pCodeHdr = ((CodeHeader *)pCode) - 1; |
| 2646 | |
| 2647 | #ifdef USE_INDIRECT_CODEHEADER |
| 2648 | if (requestInfo.IsDynamicDomain()) |
| 2649 | { |
| 2650 | pCodeHdr->SetRealCodeHeader((BYTE*)pCode + ALIGN_UP(blockSize, sizeof(void*))); |
| 2651 | } |
| 2652 | else |
| 2653 | { |
| 2654 | // TODO: think about the CodeHeap carrying around a RealCodeHeader chunking mechanism |
| 2655 | // |
| 2656 | // allocate the real header in the low frequency heap |
| 2657 | BYTE* pRealHeader = (BYTE*)(void*)pMD->GetLoaderAllocator()->GetLowFrequencyHeap()->AllocMem(S_SIZE_T(realHeaderSize)); |
| 2658 | pCodeHdr->SetRealCodeHeader(pRealHeader); |
| 2659 | } |
| 2660 | #endif |
| 2661 | |
| 2662 | pCodeHdr->SetDebugInfo(NULL); |
| 2663 | pCodeHdr->SetEHInfo(NULL); |
| 2664 | pCodeHdr->SetGCInfo(NULL); |
| 2665 | pCodeHdr->SetMethodDesc(pMD); |
| 2666 | #ifdef WIN64EXCEPTIONS |
| 2667 | pCodeHdr->SetNumberOfUnwindInfos(nUnwindInfos); |
| 2668 | *pModuleBase = (TADDR)pCodeHeap; |
| 2669 | #endif |
| 2670 | |
| 2671 | NibbleMapSet(pCodeHeap, pCode, TRUE); |
| 2672 | } |
| 2673 | |
| 2674 | RETURN(pCodeHdr); |
| 2675 | } |
| 2676 | |
| 2677 | EEJitManager::DomainCodeHeapList *EEJitManager::GetCodeHeapList(CodeHeapRequestInfo *pInfo, LoaderAllocator *pAllocator, BOOL fDynamicOnly) |
| 2678 | { |
| 2679 | CONTRACTL { |
| 2680 | NOTHROW; |
| 2681 | GC_NOTRIGGER; |
| 2682 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 2683 | } CONTRACTL_END; |
| 2684 | |
| 2685 | DomainCodeHeapList *pList = NULL; |
| 2686 | DomainCodeHeapList **ppList = NULL; |
| 2687 | int count = 0; |
| 2688 | |
| 2689 | // get the appropriate list of heaps |
| 2690 | // pMD is NULL for NGen modules during Module::LoadTokenTables |
| 2691 | if (fDynamicOnly || (pInfo != NULL && pInfo->IsDynamicDomain())) |
| 2692 | { |
| 2693 | ppList = m_DynamicDomainCodeHeaps.Table(); |
| 2694 | count = m_DynamicDomainCodeHeaps.Count(); |
| 2695 | } |
| 2696 | else |
| 2697 | { |
| 2698 | ppList = m_DomainCodeHeaps.Table(); |
| 2699 | count = m_DomainCodeHeaps.Count(); |
| 2700 | } |
| 2701 | |
| 2702 | // this is a virtual call - pull it out of the loop |
| 2703 | BOOL fCanUnload = pAllocator->CanUnload(); |
| 2704 | |
| 2705 | // look for a DomainCodeHeapList |
| 2706 | for (int i=0; i < count; i++) |
| 2707 | { |
| 2708 | if (ppList[i]->m_pAllocator == pAllocator || |
| 2709 | (!fCanUnload && !ppList[i]->m_pAllocator->CanUnload())) |
| 2710 | { |
| 2711 | pList = ppList[i]; |
| 2712 | break; |
| 2713 | } |
| 2714 | } |
| 2715 | return pList; |
| 2716 | } |
| 2717 | |
| 2718 | bool EEJitManager::CanUseCodeHeap(CodeHeapRequestInfo *pInfo, HeapList *pCodeHeap) |
| 2719 | { |
| 2720 | CONTRACTL { |
| 2721 | NOTHROW; |
| 2722 | GC_NOTRIGGER; |
| 2723 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 2724 | } CONTRACTL_END; |
| 2725 | |
| 2726 | bool retVal = false; |
| 2727 | |
| 2728 | if ((pInfo->m_loAddr == 0) && (pInfo->m_hiAddr == 0)) |
| 2729 | { |
| 2730 | // We have no constraint so this non empty heap will be able to satisfy our request |
| 2731 | if (pInfo->IsDynamicDomain()) |
| 2732 | { |
| 2733 | _ASSERTE(pCodeHeap->reserveForJumpStubs == 0); |
| 2734 | retVal = true; |
| 2735 | } |
| 2736 | else |
| 2737 | { |
| 2738 | BYTE * lastAddr = (BYTE *) pCodeHeap->startAddress + pCodeHeap->maxCodeHeapSize; |
| 2739 | |
| 2740 | BYTE * loRequestAddr = (BYTE *) pCodeHeap->endAddress; |
| 2741 | BYTE * hiRequestAddr = loRequestAddr + pInfo->getRequestSize() + BYTES_PER_BUCKET; |
| 2742 | if (hiRequestAddr <= lastAddr - pCodeHeap->reserveForJumpStubs) |
| 2743 | { |
| 2744 | retVal = true; |
| 2745 | } |
| 2746 | } |
| 2747 | } |
| 2748 | else |
| 2749 | { |
| 2750 | // We also check to see if an allocation in this heap would satisfy |
| 2751 | // the [loAddr..hiAddr] requirement |
| 2752 | |
| 2753 | // Calculate the byte range that can ever be returned by |
| 2754 | // an allocation in this HeapList element |
| 2755 | // |
| 2756 | BYTE * firstAddr = (BYTE *) pCodeHeap->startAddress; |
| 2757 | BYTE * lastAddr = (BYTE *) pCodeHeap->startAddress + pCodeHeap->maxCodeHeapSize; |
| 2758 | |
| 2759 | _ASSERTE(pCodeHeap->startAddress <= pCodeHeap->endAddress); |
| 2760 | _ASSERTE(firstAddr <= lastAddr); |
| 2761 | |
| 2762 | if (pInfo->IsDynamicDomain()) |
| 2763 | { |
| 2764 | _ASSERTE(pCodeHeap->reserveForJumpStubs == 0); |
| 2765 | |
| 2766 | // We check to see if every allocation in this heap |
| 2767 | // will satisfy the [loAddr..hiAddr] requirement. |
| 2768 | // |
| 2769 | // Dynamic domains use a free list allocator, |
| 2770 | // thus we can receive any address in the range |
| 2771 | // when calling AllocMemory with a DynamicDomain |
| 2772 | |
| 2773 | // [firstaddr .. lastAddr] must be entirely within |
| 2774 | // [pInfo->m_loAddr .. pInfo->m_hiAddr] |
| 2775 | // |
| 2776 | if ((pInfo->m_loAddr <= firstAddr) && |
| 2777 | (lastAddr <= pInfo->m_hiAddr)) |
| 2778 | { |
| 2779 | // This heap will always satisfy our constraint |
| 2780 | retVal = true; |
| 2781 | } |
| 2782 | } |
| 2783 | else // non-DynamicDomain |
| 2784 | { |
| 2785 | // Calculate the byte range that would be allocated for the |
| 2786 | // next allocation request into [loRequestAddr..hiRequestAddr] |
| 2787 | // |
| 2788 | BYTE * loRequestAddr = (BYTE *) pCodeHeap->endAddress; |
| 2789 | BYTE * hiRequestAddr = loRequestAddr + pInfo->getRequestSize() + BYTES_PER_BUCKET; |
| 2790 | _ASSERTE(loRequestAddr <= hiRequestAddr); |
| 2791 | |
| 2792 | // loRequestAddr and hiRequestAddr must be entirely within |
| 2793 | // [pInfo->m_loAddr .. pInfo->m_hiAddr] |
| 2794 | // |
| 2795 | if ((pInfo->m_loAddr <= loRequestAddr) && |
| 2796 | (hiRequestAddr <= pInfo->m_hiAddr)) |
| 2797 | { |
| 2798 | // Additionally hiRequestAddr must also be less than or equal to lastAddr. |
| 2799 | // If throwOnOutOfMemoryWithinRange is not set, conserve reserveForJumpStubs until when it is really needed. |
| 2800 | if (hiRequestAddr <= lastAddr - (pInfo->getThrowOnOutOfMemoryWithinRange() ? 0 : pCodeHeap->reserveForJumpStubs)) |
| 2801 | { |
| 2802 | // This heap will be able to satisfy our constraint |
| 2803 | retVal = true; |
| 2804 | } |
| 2805 | } |
| 2806 | } |
| 2807 | } |
| 2808 | |
| 2809 | return retVal; |
| 2810 | } |
| 2811 | |
| 2812 | EEJitManager::DomainCodeHeapList * EEJitManager::CreateCodeHeapList(CodeHeapRequestInfo *pInfo) |
| 2813 | { |
| 2814 | CONTRACTL { |
| 2815 | THROWS; |
| 2816 | GC_NOTRIGGER; |
| 2817 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 2818 | } CONTRACTL_END; |
| 2819 | |
| 2820 | NewHolder<DomainCodeHeapList> pNewList(new DomainCodeHeapList()); |
| 2821 | pNewList->m_pAllocator = pInfo->m_pAllocator; |
| 2822 | |
| 2823 | DomainCodeHeapList **ppList = NULL; |
| 2824 | if (pInfo->IsDynamicDomain()) |
| 2825 | ppList = m_DynamicDomainCodeHeaps.AppendThrowing(); |
| 2826 | else |
| 2827 | ppList = m_DomainCodeHeaps.AppendThrowing(); |
| 2828 | *ppList = pNewList; |
| 2829 | |
| 2830 | return pNewList.Extract(); |
| 2831 | } |
| 2832 | |
| 2833 | LoaderHeap *EEJitManager::GetJitMetaHeap(MethodDesc *pMD) |
| 2834 | { |
| 2835 | CONTRACTL { |
| 2836 | NOTHROW; |
| 2837 | GC_NOTRIGGER; |
| 2838 | } CONTRACTL_END; |
| 2839 | |
| 2840 | LoaderAllocator *pAllocator = pMD->GetLoaderAllocator(); |
| 2841 | _ASSERTE(pAllocator); |
| 2842 | |
| 2843 | return pAllocator->GetLowFrequencyHeap(); |
| 2844 | } |
| 2845 | |
| 2846 | BYTE* EEJitManager::allocGCInfo(CodeHeader* pCodeHeader, DWORD blockSize, size_t * pAllocationSize) |
| 2847 | { |
| 2848 | CONTRACTL { |
| 2849 | THROWS; |
| 2850 | GC_NOTRIGGER; |
| 2851 | } CONTRACTL_END; |
| 2852 | |
| 2853 | MethodDesc* pMD = pCodeHeader->GetMethodDesc(); |
| 2854 | // sadly for light code gen I need the check in here. We should change GetJitMetaHeap |
| 2855 | if (pMD->IsLCGMethod()) |
| 2856 | { |
| 2857 | CrstHolder ch(&m_CodeHeapCritSec); |
| 2858 | pCodeHeader->SetGCInfo((BYTE*)(void*)pMD->AsDynamicMethodDesc()->GetResolver()->GetJitMetaHeap()->New(blockSize)); |
| 2859 | } |
| 2860 | else |
| 2861 | { |
| 2862 | pCodeHeader->SetGCInfo((BYTE*) (void*)GetJitMetaHeap(pMD)->AllocMem(S_SIZE_T(blockSize))); |
| 2863 | } |
| 2864 | _ASSERTE(pCodeHeader->GetGCInfo()); // AllocMem throws if there's not enough memory |
| 2865 | JIT_PERF_UPDATE_X86_CODE_SIZE(blockSize); |
| 2866 | |
| 2867 | * pAllocationSize = blockSize; // Store the allocation size so we can backout later. |
| 2868 | |
| 2869 | return(pCodeHeader->GetGCInfo()); |
| 2870 | } |
| 2871 | |
| 2872 | void* EEJitManager::allocEHInfoRaw(CodeHeader* pCodeHeader, DWORD blockSize, size_t * pAllocationSize) |
| 2873 | { |
| 2874 | CONTRACTL { |
| 2875 | THROWS; |
| 2876 | GC_NOTRIGGER; |
| 2877 | } CONTRACTL_END; |
| 2878 | |
| 2879 | MethodDesc* pMD = pCodeHeader->GetMethodDesc(); |
| 2880 | void * mem = NULL; |
| 2881 | |
| 2882 | // sadly for light code gen I need the check in here. We should change GetJitMetaHeap |
| 2883 | if (pMD->IsLCGMethod()) |
| 2884 | { |
| 2885 | CrstHolder ch(&m_CodeHeapCritSec); |
| 2886 | mem = (void*)pMD->AsDynamicMethodDesc()->GetResolver()->GetJitMetaHeap()->New(blockSize); |
| 2887 | } |
| 2888 | else |
| 2889 | { |
| 2890 | mem = (void*)GetJitMetaHeap(pMD)->AllocMem(S_SIZE_T(blockSize)); |
| 2891 | } |
| 2892 | _ASSERTE(mem); // AllocMem throws if there's not enough memory |
| 2893 | |
| 2894 | JIT_PERF_UPDATE_X86_CODE_SIZE(blockSize); |
| 2895 | |
| 2896 | * pAllocationSize = blockSize; // Store the allocation size so we can backout later. |
| 2897 | |
| 2898 | return(mem); |
| 2899 | } |
| 2900 | |
| 2901 | |
| 2902 | EE_ILEXCEPTION* EEJitManager::allocEHInfo(CodeHeader* pCodeHeader, unsigned numClauses, size_t * pAllocationSize) |
| 2903 | { |
| 2904 | CONTRACTL { |
| 2905 | THROWS; |
| 2906 | GC_NOTRIGGER; |
| 2907 | } CONTRACTL_END; |
| 2908 | |
| 2909 | // Note - pCodeHeader->phdrJitEHInfo - sizeof(size_t) contains the number of EH clauses |
| 2910 | |
| 2911 | DWORD temp = EE_ILEXCEPTION::Size(numClauses); |
| 2912 | DWORD blockSize = 0; |
| 2913 | if (!ClrSafeInt<DWORD>::addition(temp, sizeof(size_t), blockSize)) |
| 2914 | COMPlusThrowOM(); |
| 2915 | |
| 2916 | BYTE *EHInfo = (BYTE*)allocEHInfoRaw(pCodeHeader, blockSize, pAllocationSize); |
| 2917 | |
| 2918 | pCodeHeader->SetEHInfo((EE_ILEXCEPTION*) (EHInfo + sizeof(size_t))); |
| 2919 | pCodeHeader->GetEHInfo()->Init(numClauses); |
| 2920 | *((size_t *)EHInfo) = numClauses; |
| 2921 | return(pCodeHeader->GetEHInfo()); |
| 2922 | } |
| 2923 | |
| 2924 | JumpStubBlockHeader * EEJitManager::allocJumpStubBlock(MethodDesc* pMD, DWORD numJumps, |
| 2925 | BYTE * loAddr, BYTE * hiAddr, |
| 2926 | LoaderAllocator *pLoaderAllocator, |
| 2927 | bool throwOnOutOfMemoryWithinRange) |
| 2928 | { |
| 2929 | CONTRACT(JumpStubBlockHeader *) { |
| 2930 | THROWS; |
| 2931 | GC_NOTRIGGER; |
| 2932 | PRECONDITION(loAddr < hiAddr); |
| 2933 | PRECONDITION(pLoaderAllocator != NULL); |
| 2934 | POSTCONDITION((RETVAL != NULL) || !throwOnOutOfMemoryWithinRange); |
| 2935 | } CONTRACT_END; |
| 2936 | |
| 2937 | _ASSERTE((sizeof(JumpStubBlockHeader) % CODE_SIZE_ALIGN) == 0); |
| 2938 | |
| 2939 | size_t blockSize = sizeof(JumpStubBlockHeader) + (size_t) numJumps * BACK_TO_BACK_JUMP_ALLOCATE_SIZE; |
| 2940 | |
| 2941 | HeapList *pCodeHeap = NULL; |
| 2942 | CodeHeapRequestInfo requestInfo(pMD, pLoaderAllocator, loAddr, hiAddr); |
| 2943 | requestInfo.setThrowOnOutOfMemoryWithinRange(throwOnOutOfMemoryWithinRange); |
| 2944 | |
| 2945 | TADDR mem; |
| 2946 | JumpStubBlockHeader * pBlock; |
| 2947 | |
| 2948 | // Scope the lock |
| 2949 | { |
| 2950 | CrstHolder ch(&m_CodeHeapCritSec); |
| 2951 | |
| 2952 | mem = (TADDR) allocCodeRaw(&requestInfo, sizeof(TADDR), blockSize, CODE_SIZE_ALIGN, &pCodeHeap); |
| 2953 | if (mem == NULL) |
| 2954 | { |
| 2955 | _ASSERTE(!throwOnOutOfMemoryWithinRange); |
| 2956 | RETURN(NULL); |
| 2957 | } |
| 2958 | |
| 2959 | // CodeHeader comes immediately before the block |
| 2960 | CodeHeader * pCodeHdr = (CodeHeader *) (mem - sizeof(CodeHeader)); |
| 2961 | pCodeHdr->SetStubCodeBlockKind(STUB_CODE_BLOCK_JUMPSTUB); |
| 2962 | |
| 2963 | NibbleMapSet(pCodeHeap, mem, TRUE); |
| 2964 | |
| 2965 | pBlock = (JumpStubBlockHeader *)mem; |
| 2966 | |
| 2967 | _ASSERTE(IS_ALIGNED(pBlock, CODE_SIZE_ALIGN)); |
| 2968 | |
| 2969 | JIT_PERF_UPDATE_X86_CODE_SIZE(blockSize); |
| 2970 | } |
| 2971 | |
| 2972 | pBlock->m_next = NULL; |
| 2973 | pBlock->m_used = 0; |
| 2974 | pBlock->m_allocated = numJumps; |
| 2975 | if (pMD && pMD->IsLCGMethod()) |
| 2976 | pBlock->SetHostCodeHeap(static_cast<HostCodeHeap*>(pCodeHeap->pHeap)); |
| 2977 | else |
| 2978 | pBlock->SetLoaderAllocator(pLoaderAllocator); |
| 2979 | |
| 2980 | LOG((LF_JIT, LL_INFO1000, "Allocated new JumpStubBlockHeader for %d stubs at" FMT_ADDR " in loader allocator " FMT_ADDR "\n" , |
| 2981 | numJumps, DBG_ADDR(pBlock) , DBG_ADDR(pLoaderAllocator) )); |
| 2982 | |
| 2983 | RETURN(pBlock); |
| 2984 | } |
| 2985 | |
| 2986 | void * EEJitManager::allocCodeFragmentBlock(size_t blockSize, unsigned alignment, LoaderAllocator *pLoaderAllocator, StubCodeBlockKind kind) |
| 2987 | { |
| 2988 | CONTRACT(void *) { |
| 2989 | THROWS; |
| 2990 | GC_NOTRIGGER; |
| 2991 | PRECONDITION(pLoaderAllocator != NULL); |
| 2992 | POSTCONDITION(CheckPointer(RETVAL)); |
| 2993 | } CONTRACT_END; |
| 2994 | |
| 2995 | HeapList *pCodeHeap = NULL; |
| 2996 | CodeHeapRequestInfo requestInfo(NULL, pLoaderAllocator, NULL, NULL); |
| 2997 | |
| 2998 | #ifdef _TARGET_AMD64_ |
| 2999 | // CodeFragments are pretty much always Precodes that may need to be patched with jump stubs at some point in future |
| 3000 | // We will assume the worst case that every FixupPrecode will need to be patched and reserve the jump stubs accordingly |
| 3001 | requestInfo.setReserveForJumpStubs((blockSize / 8) * JUMP_ALLOCATE_SIZE); |
| 3002 | #endif |
| 3003 | |
| 3004 | TADDR mem; |
| 3005 | |
| 3006 | // Scope the lock |
| 3007 | { |
| 3008 | CrstHolder ch(&m_CodeHeapCritSec); |
| 3009 | |
| 3010 | mem = (TADDR) allocCodeRaw(&requestInfo, sizeof(CodeHeader), blockSize, alignment, &pCodeHeap); |
| 3011 | |
| 3012 | // CodeHeader comes immediately before the block |
| 3013 | CodeHeader * pCodeHdr = (CodeHeader *) (mem - sizeof(CodeHeader)); |
| 3014 | pCodeHdr->SetStubCodeBlockKind(kind); |
| 3015 | |
| 3016 | NibbleMapSet(pCodeHeap, (TADDR)mem, TRUE); |
| 3017 | |
| 3018 | // Record the jump stub reservation |
| 3019 | pCodeHeap->reserveForJumpStubs += requestInfo.getReserveForJumpStubs(); |
| 3020 | } |
| 3021 | |
| 3022 | RETURN((void *)mem); |
| 3023 | } |
| 3024 | |
| 3025 | #endif // !DACCESS_COMPILE |
| 3026 | |
| 3027 | |
| 3028 | GCInfoToken EEJitManager::GetGCInfoToken(const METHODTOKEN& MethodToken) |
| 3029 | { |
| 3030 | CONTRACTL { |
| 3031 | NOTHROW; |
| 3032 | GC_NOTRIGGER; |
| 3033 | HOST_NOCALLS; |
| 3034 | SUPPORTS_DAC; |
| 3035 | } CONTRACTL_END; |
| 3036 | |
| 3037 | // The JIT-ed code always has the current version of GCInfo |
| 3038 | return{ GetCodeHeader(MethodToken)->GetGCInfo(), GCINFO_VERSION }; |
| 3039 | } |
| 3040 | |
| 3041 | // creates an enumeration and returns the number of EH clauses |
| 3042 | unsigned EEJitManager::InitializeEHEnumeration(const METHODTOKEN& MethodToken, EH_CLAUSE_ENUMERATOR* pEnumState) |
| 3043 | { |
| 3044 | LIMITED_METHOD_CONTRACT; |
| 3045 | EE_ILEXCEPTION * EHInfo = GetCodeHeader(MethodToken)->GetEHInfo(); |
| 3046 | |
| 3047 | pEnumState->iCurrentPos = 0; // since the EH info is not compressed, the clause number is used to do the enumeration |
| 3048 | pEnumState->pExceptionClauseArray = NULL; |
| 3049 | |
| 3050 | if (!EHInfo) |
| 3051 | return 0; |
| 3052 | |
| 3053 | pEnumState->pExceptionClauseArray = dac_cast<TADDR>(EHInfo->EHClause(0)); |
| 3054 | return *(dac_cast<PTR_unsigned>(dac_cast<TADDR>(EHInfo) - sizeof(size_t))); |
| 3055 | } |
| 3056 | |
| 3057 | PTR_EXCEPTION_CLAUSE_TOKEN EEJitManager::GetNextEHClause(EH_CLAUSE_ENUMERATOR* pEnumState, |
| 3058 | EE_ILEXCEPTION_CLAUSE* pEHClauseOut) |
| 3059 | { |
| 3060 | CONTRACTL { |
| 3061 | NOTHROW; |
| 3062 | GC_NOTRIGGER; |
| 3063 | } CONTRACTL_END; |
| 3064 | |
| 3065 | unsigned iCurrentPos = pEnumState->iCurrentPos; |
| 3066 | pEnumState->iCurrentPos++; |
| 3067 | |
| 3068 | EE_ILEXCEPTION_CLAUSE* pClause = &(dac_cast<PTR_EE_ILEXCEPTION_CLAUSE>(pEnumState->pExceptionClauseArray)[iCurrentPos]); |
| 3069 | *pEHClauseOut = *pClause; |
| 3070 | return dac_cast<PTR_EXCEPTION_CLAUSE_TOKEN>(pClause); |
| 3071 | } |
| 3072 | |
| 3073 | #ifndef DACCESS_COMPILE |
| 3074 | TypeHandle EEJitManager::ResolveEHClause(EE_ILEXCEPTION_CLAUSE* pEHClause, |
| 3075 | CrawlFrame *pCf) |
| 3076 | { |
| 3077 | // We don't want to use a runtime contract here since this codepath is used during |
| 3078 | // the processing of a hard SO. Contracts use a significant amount of stack |
| 3079 | // which we can't afford for those cases. |
| 3080 | STATIC_CONTRACT_THROWS; |
| 3081 | STATIC_CONTRACT_GC_TRIGGERS; |
| 3082 | |
| 3083 | _ASSERTE(NULL != pCf); |
| 3084 | _ASSERTE(NULL != pEHClause); |
| 3085 | _ASSERTE(IsTypedHandler(pEHClause)); |
| 3086 | |
| 3087 | |
| 3088 | TypeHandle typeHnd = TypeHandle(); |
| 3089 | mdToken typeTok = mdTokenNil; |
| 3090 | |
| 3091 | { |
| 3092 | CrstHolder chRead(&m_EHClauseCritSec); |
| 3093 | if (HasCachedTypeHandle(pEHClause)) |
| 3094 | { |
| 3095 | typeHnd = TypeHandle::FromPtr(pEHClause->TypeHandle); |
| 3096 | } |
| 3097 | else |
| 3098 | { |
| 3099 | typeTok = pEHClause->ClassToken; |
| 3100 | } |
| 3101 | } |
| 3102 | |
| 3103 | if (!typeHnd.IsNull()) |
| 3104 | { |
| 3105 | return typeHnd; |
| 3106 | } |
| 3107 | |
| 3108 | MethodDesc* pMD = pCf->GetFunction(); |
| 3109 | Module* pModule = pMD->GetModule(); |
| 3110 | PREFIX_ASSUME(pModule != NULL); |
| 3111 | |
| 3112 | SigTypeContext typeContext(pMD); |
| 3113 | VarKind k = hasNoVars; |
| 3114 | |
| 3115 | // In the vast majority of cases the code under the "if" below |
| 3116 | // will not be executed. |
| 3117 | // |
| 3118 | // First grab the representative instantiations. For code |
| 3119 | // shared by multiple generic instantiations these are the |
| 3120 | // canonical (representative) instantiation. |
| 3121 | if (TypeFromToken(typeTok) == mdtTypeSpec) |
| 3122 | { |
| 3123 | PCCOR_SIGNATURE pSig; |
| 3124 | ULONG cSig; |
| 3125 | IfFailThrow(pModule->GetMDImport()->GetTypeSpecFromToken(typeTok, &pSig, &cSig)); |
| 3126 | |
| 3127 | SigPointer psig(pSig, cSig); |
| 3128 | k = psig.IsPolyType(&typeContext); |
| 3129 | |
| 3130 | // Grab the active class and method instantiation. This exact instantiation is only |
| 3131 | // needed in the corner case of "generic" exception catching in shared |
| 3132 | // generic code. We don't need the exact instantiation if the token |
| 3133 | // doesn't contain E_T_VAR or E_T_MVAR. |
| 3134 | if ((k & hasSharableVarsMask) != 0) |
| 3135 | { |
| 3136 | Instantiation classInst; |
| 3137 | Instantiation methodInst; |
| 3138 | pCf->GetExactGenericInstantiations(&classInst, &methodInst); |
| 3139 | SigTypeContext::InitTypeContext(pMD,classInst, methodInst,&typeContext); |
| 3140 | } |
| 3141 | } |
| 3142 | |
| 3143 | typeHnd = ClassLoader::LoadTypeDefOrRefOrSpecThrowing(pModule, typeTok, &typeContext, |
| 3144 | ClassLoader::ReturnNullIfNotFound); |
| 3145 | |
| 3146 | // If the type (pModule,typeTok) was not loaded or not |
| 3147 | // restored then the exception object won't have this type, because an |
| 3148 | // object of this type has not been allocated. |
| 3149 | if (typeHnd.IsNull()) |
| 3150 | return typeHnd; |
| 3151 | |
| 3152 | // We can cache any exception specification except: |
| 3153 | // - If the type contains type variables in generic code, |
| 3154 | // e.g. catch E<T> where T is a type variable. |
| 3155 | // We CANNOT cache E<T> in non-shared instantiations of generic code because |
| 3156 | // there is only one EHClause cache for the IL, shared across all instantiations. |
| 3157 | // |
| 3158 | if((k & hasAnyVarsMask) == 0) |
| 3159 | { |
| 3160 | CrstHolder chWrite(&m_EHClauseCritSec); |
| 3161 | |
| 3162 | // Note another thread might have beaten us to it ... |
| 3163 | if (!HasCachedTypeHandle(pEHClause)) |
| 3164 | { |
| 3165 | // We should never cache a NULL typeHnd. |
| 3166 | _ASSERTE(!typeHnd.IsNull()); |
| 3167 | pEHClause->TypeHandle = typeHnd.AsPtr(); |
| 3168 | SetHasCachedTypeHandle(pEHClause); |
| 3169 | } |
| 3170 | else |
| 3171 | { |
| 3172 | // If we raced in here with another thread and got held up on the lock, then we just need to return the |
| 3173 | // type handle that the other thread put into the clause. |
| 3174 | // The typeHnd we found and the typeHnd the racing thread found should always be the same |
| 3175 | _ASSERTE(typeHnd.AsPtr() == pEHClause->TypeHandle); |
| 3176 | typeHnd = TypeHandle::FromPtr(pEHClause->TypeHandle); |
| 3177 | } |
| 3178 | } |
| 3179 | return typeHnd; |
| 3180 | } |
| 3181 | |
| 3182 | void EEJitManager::RemoveJitData (CodeHeader * pCHdr, size_t GCinfo_len, size_t EHinfo_len) |
| 3183 | { |
| 3184 | CONTRACTL { |
| 3185 | NOTHROW; |
| 3186 | GC_TRIGGERS; |
| 3187 | } CONTRACTL_END; |
| 3188 | |
| 3189 | MethodDesc* pMD = pCHdr->GetMethodDesc(); |
| 3190 | |
| 3191 | if (pMD->IsLCGMethod()) { |
| 3192 | |
| 3193 | void * codeStart = (pCHdr + 1); |
| 3194 | |
| 3195 | { |
| 3196 | CrstHolder ch(&m_CodeHeapCritSec); |
| 3197 | |
| 3198 | LCGMethodResolver * pResolver = pMD->AsDynamicMethodDesc()->GetLCGMethodResolver(); |
| 3199 | |
| 3200 | // Clear the pointer only if it matches what we are about to free. |
| 3201 | // There can be cases where the JIT is reentered and we JITed the method multiple times. |
| 3202 | if (pResolver->m_recordCodePointer == codeStart) |
| 3203 | pResolver->m_recordCodePointer = NULL; |
| 3204 | } |
| 3205 | |
| 3206 | #if defined(_TARGET_AMD64_) |
| 3207 | // Remove the unwind information (if applicable) |
| 3208 | UnwindInfoTable::UnpublishUnwindInfoForMethod((TADDR)codeStart); |
| 3209 | #endif // defined(_TARGET_AMD64_) |
| 3210 | |
| 3211 | HostCodeHeap* pHeap = HostCodeHeap::GetCodeHeap((TADDR)codeStart); |
| 3212 | FreeCodeMemory(pHeap, codeStart); |
| 3213 | |
| 3214 | // We are leaking GCInfo and EHInfo. They will be freed once the dynamic method is destroyed. |
| 3215 | |
| 3216 | return; |
| 3217 | } |
| 3218 | |
| 3219 | { |
| 3220 | CrstHolder ch(&m_CodeHeapCritSec); |
| 3221 | |
| 3222 | HeapList *pHp = GetCodeHeapList(); |
| 3223 | |
| 3224 | while (pHp && ((pHp->startAddress > (TADDR)pCHdr) || |
| 3225 | (pHp->endAddress < (TADDR)pCHdr + sizeof(CodeHeader)))) |
| 3226 | { |
| 3227 | pHp = pHp->GetNext(); |
| 3228 | } |
| 3229 | |
| 3230 | _ASSERTE(pHp && pHp->pHdrMap); |
| 3231 | |
| 3232 | // Better to just return than AV? |
| 3233 | if (pHp == NULL) |
| 3234 | return; |
| 3235 | |
| 3236 | NibbleMapSet(pHp, (TADDR)(pCHdr + 1), FALSE); |
| 3237 | } |
| 3238 | |
| 3239 | // Backout the GCInfo |
| 3240 | if (GCinfo_len > 0) { |
| 3241 | GetJitMetaHeap(pMD)->BackoutMem(pCHdr->GetGCInfo(), GCinfo_len); |
| 3242 | } |
| 3243 | |
| 3244 | // Backout the EHInfo |
| 3245 | BYTE *EHInfo = (BYTE *)pCHdr->GetEHInfo(); |
| 3246 | if (EHInfo) { |
| 3247 | EHInfo -= sizeof(size_t); |
| 3248 | |
| 3249 | _ASSERTE(EHinfo_len>0); |
| 3250 | GetJitMetaHeap(pMD)->BackoutMem(EHInfo, EHinfo_len); |
| 3251 | } |
| 3252 | |
| 3253 | // <TODO> |
| 3254 | // TODO: Although we have backout the GCInfo and EHInfo, we haven't actually backout the |
| 3255 | // code buffer itself. As a result, we might leak the CodeHeap if jitting fails after |
| 3256 | // the code buffer is allocated. |
| 3257 | // |
| 3258 | // However, it appears non-trival to fix this. |
| 3259 | // Here are some of the reasons: |
| 3260 | // (1) AllocCode calls in AllocCodeRaw to alloc code buffer in the CodeHeap. The exact size |
| 3261 | // of the code buffer is not known until the alignment is calculated deep on the stack. |
| 3262 | // (2) AllocCodeRaw is called in 3 different places. We might need to remember the |
| 3263 | // information for these places. |
| 3264 | // (3) AllocCodeRaw might create a new CodeHeap. We should remember exactly which |
| 3265 | // CodeHeap is used to allocate the code buffer. |
| 3266 | // |
| 3267 | // Fortunately, this is not a severe leak since the CodeHeap will be reclaimed on appdomain unload. |
| 3268 | // |
| 3269 | // </TODO> |
| 3270 | return; |
| 3271 | } |
| 3272 | |
| 3273 | // appdomain is being unloaded, so delete any data associated with it. We have to do this in two stages. |
| 3274 | // On the first stage, we remove the elements from the list. On the second stage, which occurs after a GC |
| 3275 | // we know that only threads who were in preemptive mode prior to the GC could possibly still be looking |
| 3276 | // at an element that is about to be deleted. All such threads are guarded with a reader count, so if the |
| 3277 | // count is 0, we can safely delete, otherwise we must add to the cleanup list to be deleted later. We know |
| 3278 | // there can only be one unload at a time, so we can use a single var to hold the unlinked, but not deleted, |
| 3279 | // elements. |
| 3280 | void EEJitManager::Unload(LoaderAllocator *pAllocator) |
| 3281 | { |
| 3282 | CONTRACTL { |
| 3283 | NOTHROW; |
| 3284 | GC_NOTRIGGER; |
| 3285 | } CONTRACTL_END; |
| 3286 | |
| 3287 | CrstHolder ch(&m_CodeHeapCritSec); |
| 3288 | |
| 3289 | DomainCodeHeapList **ppList = m_DomainCodeHeaps.Table(); |
| 3290 | int count = m_DomainCodeHeaps.Count(); |
| 3291 | |
| 3292 | for (int i=0; i < count; i++) { |
| 3293 | if (ppList[i]->m_pAllocator== pAllocator) { |
| 3294 | DomainCodeHeapList *pList = ppList[i]; |
| 3295 | m_DomainCodeHeaps.DeleteByIndex(i); |
| 3296 | |
| 3297 | // pHeapList is allocated in pHeap, so only need to delete the LoaderHeap itself |
| 3298 | count = pList->m_CodeHeapList.Count(); |
| 3299 | for (i=0; i < count; i++) { |
| 3300 | HeapList *pHeapList = pList->m_CodeHeapList[i]; |
| 3301 | DeleteCodeHeap(pHeapList); |
| 3302 | } |
| 3303 | |
| 3304 | // this is ok to do delete as anyone accessing the DomainCodeHeapList structure holds the critical section. |
| 3305 | delete pList; |
| 3306 | |
| 3307 | break; |
| 3308 | } |
| 3309 | } |
| 3310 | ppList = m_DynamicDomainCodeHeaps.Table(); |
| 3311 | count = m_DynamicDomainCodeHeaps.Count(); |
| 3312 | for (int i=0; i < count; i++) { |
| 3313 | if (ppList[i]->m_pAllocator== pAllocator) { |
| 3314 | DomainCodeHeapList *pList = ppList[i]; |
| 3315 | m_DynamicDomainCodeHeaps.DeleteByIndex(i); |
| 3316 | |
| 3317 | // pHeapList is allocated in pHeap, so only need to delete the CodeHeap itself |
| 3318 | count = pList->m_CodeHeapList.Count(); |
| 3319 | for (i=0; i < count; i++) { |
| 3320 | HeapList *pHeapList = pList->m_CodeHeapList[i]; |
| 3321 | // m_DynamicDomainCodeHeaps should only contain HostCodeHeap. |
| 3322 | RemoveFromCleanupList(static_cast<HostCodeHeap*>(pHeapList->pHeap)); |
| 3323 | DeleteCodeHeap(pHeapList); |
| 3324 | } |
| 3325 | |
| 3326 | // this is ok to do delete as anyone accessing the DomainCodeHeapList structure holds the critical section. |
| 3327 | delete pList; |
| 3328 | |
| 3329 | break; |
| 3330 | } |
| 3331 | } |
| 3332 | |
| 3333 | ResetCodeAllocHint(); |
| 3334 | } |
| 3335 | |
| 3336 | EEJitManager::DomainCodeHeapList::DomainCodeHeapList() |
| 3337 | { |
| 3338 | LIMITED_METHOD_CONTRACT; |
| 3339 | m_pAllocator = NULL; |
| 3340 | } |
| 3341 | |
| 3342 | EEJitManager::DomainCodeHeapList::~DomainCodeHeapList() |
| 3343 | { |
| 3344 | LIMITED_METHOD_CONTRACT; |
| 3345 | } |
| 3346 | |
| 3347 | void EEJitManager::RemoveCodeHeapFromDomainList(CodeHeap *pHeap, LoaderAllocator *pAllocator) |
| 3348 | { |
| 3349 | CONTRACTL { |
| 3350 | NOTHROW; |
| 3351 | GC_NOTRIGGER; |
| 3352 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 3353 | } CONTRACTL_END; |
| 3354 | |
| 3355 | // get the AppDomain heap list for pAllocator in m_DynamicDomainCodeHeaps |
| 3356 | DomainCodeHeapList *pList = GetCodeHeapList(NULL, pAllocator, TRUE); |
| 3357 | |
| 3358 | // go through the heaps and find and remove pHeap |
| 3359 | int count = pList->m_CodeHeapList.Count(); |
| 3360 | for (int i = 0; i < count; i++) { |
| 3361 | HeapList *pHeapList = pList->m_CodeHeapList[i]; |
| 3362 | if (pHeapList->pHeap == pHeap) { |
| 3363 | // found the heap to remove. If this is the only heap we remove the whole DomainCodeHeapList |
| 3364 | // otherwise we just remove this heap |
| 3365 | if (count == 1) { |
| 3366 | m_DynamicDomainCodeHeaps.Delete(pList); |
| 3367 | delete pList; |
| 3368 | } |
| 3369 | else |
| 3370 | pList->m_CodeHeapList.Delete(i); |
| 3371 | |
| 3372 | // if this heaplist is cached in the loader allocator, we must clear it |
| 3373 | if (pAllocator->m_pLastUsedDynamicCodeHeap == ((void *) pHeapList)) |
| 3374 | { |
| 3375 | pAllocator->m_pLastUsedDynamicCodeHeap = NULL; |
| 3376 | } |
| 3377 | |
| 3378 | break; |
| 3379 | } |
| 3380 | } |
| 3381 | } |
| 3382 | |
| 3383 | void EEJitManager::FreeCodeMemory(HostCodeHeap *pCodeHeap, void * codeStart) |
| 3384 | { |
| 3385 | CONTRACTL |
| 3386 | { |
| 3387 | NOTHROW; |
| 3388 | GC_NOTRIGGER; |
| 3389 | } |
| 3390 | CONTRACTL_END; |
| 3391 | |
| 3392 | CrstHolder ch(&m_CodeHeapCritSec); |
| 3393 | |
| 3394 | // FreeCodeMemory is only supported on LCG methods, |
| 3395 | // so pCodeHeap can only be a HostCodeHeap. |
| 3396 | |
| 3397 | // clean up the NibbleMap |
| 3398 | NibbleMapSet(pCodeHeap->m_pHeapList, (TADDR)codeStart, FALSE); |
| 3399 | |
| 3400 | // The caller of this method doesn't call HostCodeHeap->FreeMemForCode |
| 3401 | // directly because the operation should be protected by m_CodeHeapCritSec. |
| 3402 | pCodeHeap->FreeMemForCode(codeStart); |
| 3403 | } |
| 3404 | |
| 3405 | void ExecutionManager::CleanupCodeHeaps() |
| 3406 | { |
| 3407 | CONTRACTL |
| 3408 | { |
| 3409 | NOTHROW; |
| 3410 | GC_NOTRIGGER; |
| 3411 | } |
| 3412 | CONTRACTL_END; |
| 3413 | |
| 3414 | _ASSERTE (g_fProcessDetach || (GCHeapUtilities::IsGCInProgress() && ::IsGCThread())); |
| 3415 | |
| 3416 | GetEEJitManager()->CleanupCodeHeaps(); |
| 3417 | } |
| 3418 | |
| 3419 | void EEJitManager::CleanupCodeHeaps() |
| 3420 | { |
| 3421 | CONTRACTL |
| 3422 | { |
| 3423 | NOTHROW; |
| 3424 | GC_NOTRIGGER; |
| 3425 | } |
| 3426 | CONTRACTL_END; |
| 3427 | |
| 3428 | _ASSERTE (g_fProcessDetach || (GCHeapUtilities::IsGCInProgress() && ::IsGCThread())); |
| 3429 | |
| 3430 | // Quick out, don't even take the lock if we have not cleanup to do. |
| 3431 | // This is important because ETW takes the CodeHeapLock when it is doing |
| 3432 | // rundown, and if there are many JIT compiled methods, this can take a while. |
| 3433 | // Because cleanup is called synchronously before a GC, this means GCs get |
| 3434 | // blocked while ETW is doing rundown. By not taking the lock we avoid |
| 3435 | // this stall most of the time since cleanup is rare, and ETW rundown is rare |
| 3436 | // the likelihood of both is very very rare. |
| 3437 | if (m_cleanupList == NULL) |
| 3438 | return; |
| 3439 | |
| 3440 | CrstHolder ch(&m_CodeHeapCritSec); |
| 3441 | |
| 3442 | if (m_cleanupList == NULL) |
| 3443 | return; |
| 3444 | |
| 3445 | HostCodeHeap *pHeap = m_cleanupList; |
| 3446 | m_cleanupList = NULL; |
| 3447 | |
| 3448 | while (pHeap) |
| 3449 | { |
| 3450 | HostCodeHeap *pNextHeap = pHeap->m_pNextHeapToRelease; |
| 3451 | |
| 3452 | DWORD allocCount = pHeap->m_AllocationCount; |
| 3453 | if (allocCount == 0) |
| 3454 | { |
| 3455 | LOG((LF_BCL, LL_INFO100, "Level2 - Destryoing CodeHeap [0x%p, vt(0x%x)] - ref count 0\n" , pHeap, *(size_t*)pHeap)); |
| 3456 | RemoveCodeHeapFromDomainList(pHeap, pHeap->m_pAllocator); |
| 3457 | DeleteCodeHeap(pHeap->m_pHeapList); |
| 3458 | } |
| 3459 | else |
| 3460 | { |
| 3461 | LOG((LF_BCL, LL_INFO100, "Level2 - Restoring CodeHeap [0x%p, vt(0x%x)] - ref count %d\n" , pHeap, *(size_t*)pHeap, allocCount)); |
| 3462 | } |
| 3463 | pHeap = pNextHeap; |
| 3464 | } |
| 3465 | } |
| 3466 | |
| 3467 | void EEJitManager::RemoveFromCleanupList(HostCodeHeap *pCodeHeap) |
| 3468 | { |
| 3469 | CONTRACTL { |
| 3470 | NOTHROW; |
| 3471 | GC_NOTRIGGER; |
| 3472 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 3473 | } CONTRACTL_END; |
| 3474 | |
| 3475 | HostCodeHeap *pHeap = m_cleanupList; |
| 3476 | HostCodeHeap *pPrevHeap = NULL; |
| 3477 | while (pHeap) |
| 3478 | { |
| 3479 | if (pHeap == pCodeHeap) |
| 3480 | { |
| 3481 | if (pPrevHeap) |
| 3482 | { |
| 3483 | // remove current heap from list |
| 3484 | pPrevHeap->m_pNextHeapToRelease = pHeap->m_pNextHeapToRelease; |
| 3485 | } |
| 3486 | else |
| 3487 | { |
| 3488 | m_cleanupList = pHeap->m_pNextHeapToRelease; |
| 3489 | } |
| 3490 | break; |
| 3491 | } |
| 3492 | pPrevHeap = pHeap; |
| 3493 | pHeap = pHeap->m_pNextHeapToRelease; |
| 3494 | } |
| 3495 | } |
| 3496 | |
| 3497 | void EEJitManager::AddToCleanupList(HostCodeHeap *pCodeHeap) |
| 3498 | { |
| 3499 | CONTRACTL { |
| 3500 | NOTHROW; |
| 3501 | GC_NOTRIGGER; |
| 3502 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 3503 | } CONTRACTL_END; |
| 3504 | |
| 3505 | // it may happen that the current heap count goes to 0 and later on, before it is destroyed, it gets reused |
| 3506 | // for another dynamic method. |
| 3507 | // It's then possible that the ref count reaches 0 multiple times. If so we simply don't add it again |
| 3508 | // Also on cleanup we check the the ref count is actually 0. |
| 3509 | HostCodeHeap *pHeap = m_cleanupList; |
| 3510 | while (pHeap) |
| 3511 | { |
| 3512 | if (pHeap == pCodeHeap) |
| 3513 | { |
| 3514 | LOG((LF_BCL, LL_INFO100, "Level2 - CodeHeap [0x%p, vt(0x%x)] - Already in list\n" , pCodeHeap, *(size_t*)pCodeHeap)); |
| 3515 | break; |
| 3516 | } |
| 3517 | pHeap = pHeap->m_pNextHeapToRelease; |
| 3518 | } |
| 3519 | if (pHeap == NULL) |
| 3520 | { |
| 3521 | pCodeHeap->m_pNextHeapToRelease = m_cleanupList; |
| 3522 | m_cleanupList = pCodeHeap; |
| 3523 | LOG((LF_BCL, LL_INFO100, "Level2 - CodeHeap [0x%p, vt(0x%x)] - ref count %d - Adding to cleanup list\n" , pCodeHeap, *(size_t*)pCodeHeap, pCodeHeap->m_AllocationCount)); |
| 3524 | } |
| 3525 | } |
| 3526 | |
| 3527 | void EEJitManager::DeleteCodeHeap(HeapList *pHeapList) |
| 3528 | { |
| 3529 | CONTRACTL { |
| 3530 | NOTHROW; |
| 3531 | GC_NOTRIGGER; |
| 3532 | PRECONDITION(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 3533 | } CONTRACTL_END; |
| 3534 | |
| 3535 | HeapList *pHp = GetCodeHeapList(); |
| 3536 | if (pHp == pHeapList) |
| 3537 | m_pCodeHeap = pHp->GetNext(); |
| 3538 | else |
| 3539 | { |
| 3540 | HeapList *pHpNext = pHp->GetNext(); |
| 3541 | |
| 3542 | while (pHpNext != pHeapList) |
| 3543 | { |
| 3544 | pHp = pHpNext; |
| 3545 | _ASSERTE(pHp != NULL); // should always find the HeapList |
| 3546 | pHpNext = pHp->GetNext(); |
| 3547 | } |
| 3548 | pHp->SetNext(pHeapList->GetNext()); |
| 3549 | } |
| 3550 | |
| 3551 | DeleteEEFunctionTable((PVOID)pHeapList); |
| 3552 | |
| 3553 | ExecutionManager::DeleteRange((TADDR)pHeapList); |
| 3554 | |
| 3555 | LOG((LF_JIT, LL_INFO100, "DeleteCodeHeap start" FMT_ADDR "end" FMT_ADDR "\n" , |
| 3556 | (const BYTE*)pHeapList->startAddress, |
| 3557 | (const BYTE*)pHeapList->endAddress )); |
| 3558 | |
| 3559 | // pHeapList is allocated in pHeap, so only need to delete the CodeHeap itself |
| 3560 | // !!! For SoC, compiler inserts code to write a special cookie at pHeapList->pHeap after delete operator, at least for debug code. |
| 3561 | // !!! Since pHeapList is deleted at the same time as pHeap, this causes AV. |
| 3562 | // delete pHeapList->pHeap; |
| 3563 | CodeHeap* pHeap = pHeapList->pHeap; |
| 3564 | delete pHeap; |
| 3565 | } |
| 3566 | |
| 3567 | #endif // #ifndef DACCESS_COMPILE |
| 3568 | |
| 3569 | static CodeHeader * (const DebugInfoRequest & request) |
| 3570 | { |
| 3571 | CONTRACTL { |
| 3572 | NOTHROW; |
| 3573 | GC_NOTRIGGER; |
| 3574 | SUPPORTS_DAC; |
| 3575 | } CONTRACTL_END; |
| 3576 | |
| 3577 | TADDR address = (TADDR) request.GetStartAddress(); |
| 3578 | _ASSERTE(address != NULL); |
| 3579 | |
| 3580 | CodeHeader * = dac_cast<PTR_CodeHeader>(address & ~3) - 1; |
| 3581 | _ASSERTE(pHeader != NULL); |
| 3582 | |
| 3583 | return pHeader; |
| 3584 | } |
| 3585 | |
| 3586 | //----------------------------------------------------------------------------- |
| 3587 | // Get vars from Jit Store |
| 3588 | //----------------------------------------------------------------------------- |
| 3589 | BOOL EEJitManager::GetBoundariesAndVars( |
| 3590 | const DebugInfoRequest & request, |
| 3591 | IN FP_IDS_NEW fpNew, IN void * pNewData, |
| 3592 | OUT ULONG32 * pcMap, |
| 3593 | OUT ICorDebugInfo::OffsetMapping **ppMap, |
| 3594 | OUT ULONG32 * pcVars, |
| 3595 | OUT ICorDebugInfo::NativeVarInfo **ppVars) |
| 3596 | { |
| 3597 | CONTRACTL { |
| 3598 | THROWS; // on OOM. |
| 3599 | GC_NOTRIGGER; // getting vars shouldn't trigger |
| 3600 | SUPPORTS_DAC; |
| 3601 | } CONTRACTL_END; |
| 3602 | |
| 3603 | CodeHeader * pHdr = GetCodeHeaderFromDebugInfoRequest(request); |
| 3604 | _ASSERTE(pHdr != NULL); |
| 3605 | |
| 3606 | PTR_BYTE pDebugInfo = pHdr->GetDebugInfo(); |
| 3607 | |
| 3608 | // No header created, which means no jit information is available. |
| 3609 | if (pDebugInfo == NULL) |
| 3610 | return FALSE; |
| 3611 | |
| 3612 | // Uncompress. This allocates memory and may throw. |
| 3613 | CompressDebugInfo::RestoreBoundariesAndVars( |
| 3614 | fpNew, pNewData, // allocators |
| 3615 | pDebugInfo, // input |
| 3616 | pcMap, ppMap, |
| 3617 | pcVars, ppVars); // output |
| 3618 | |
| 3619 | return TRUE; |
| 3620 | } |
| 3621 | |
| 3622 | #ifdef DACCESS_COMPILE |
| 3623 | void CodeHeader::EnumMemoryRegions(CLRDataEnumMemoryFlags flags, IJitManager* pJitMan) |
| 3624 | { |
| 3625 | CONTRACTL |
| 3626 | { |
| 3627 | NOTHROW; |
| 3628 | GC_NOTRIGGER; |
| 3629 | SUPPORTS_DAC; |
| 3630 | } |
| 3631 | CONTRACTL_END; |
| 3632 | |
| 3633 | DAC_ENUM_DTHIS(); |
| 3634 | |
| 3635 | #ifdef USE_INDIRECT_CODEHEADER |
| 3636 | this->pRealCodeHeader.EnumMem(); |
| 3637 | #endif // USE_INDIRECT_CODEHEADER |
| 3638 | |
| 3639 | if (this->GetDebugInfo() != NULL) |
| 3640 | { |
| 3641 | CompressDebugInfo::EnumMemoryRegions(flags, this->GetDebugInfo()); |
| 3642 | } |
| 3643 | } |
| 3644 | |
| 3645 | //----------------------------------------------------------------------------- |
| 3646 | // Enumerate for minidumps. |
| 3647 | //----------------------------------------------------------------------------- |
| 3648 | void EEJitManager::EnumMemoryRegionsForMethodDebugInfo(CLRDataEnumMemoryFlags flags, MethodDesc * pMD) |
| 3649 | { |
| 3650 | CONTRACTL |
| 3651 | { |
| 3652 | NOTHROW; |
| 3653 | GC_NOTRIGGER; |
| 3654 | SUPPORTS_DAC; |
| 3655 | } |
| 3656 | CONTRACTL_END; |
| 3657 | |
| 3658 | DebugInfoRequest request; |
| 3659 | PCODE addrCode = pMD->GetNativeCode(); |
| 3660 | request.InitFromStartingAddr(pMD, addrCode); |
| 3661 | |
| 3662 | CodeHeader * = GetCodeHeaderFromDebugInfoRequest(request); |
| 3663 | |
| 3664 | pHeader->EnumMemoryRegions(flags, NULL); |
| 3665 | } |
| 3666 | #endif // DACCESS_COMPILE |
| 3667 | |
| 3668 | PCODE EEJitManager::GetCodeAddressForRelOffset(const METHODTOKEN& MethodToken, DWORD relOffset) |
| 3669 | { |
| 3670 | WRAPPER_NO_CONTRACT; |
| 3671 | |
| 3672 | CodeHeader * = GetCodeHeader(MethodToken); |
| 3673 | return pHeader->GetCodeStartAddress() + relOffset; |
| 3674 | } |
| 3675 | |
| 3676 | BOOL EEJitManager::JitCodeToMethodInfo( |
| 3677 | RangeSection * pRangeSection, |
| 3678 | PCODE currentPC, |
| 3679 | MethodDesc ** ppMethodDesc, |
| 3680 | EECodeInfo * pCodeInfo) |
| 3681 | { |
| 3682 | CONTRACTL { |
| 3683 | NOTHROW; |
| 3684 | GC_NOTRIGGER; |
| 3685 | SO_TOLERANT; |
| 3686 | SUPPORTS_DAC; |
| 3687 | } CONTRACTL_END; |
| 3688 | |
| 3689 | _ASSERTE(pRangeSection != NULL); |
| 3690 | |
| 3691 | TADDR start = dac_cast<PTR_EEJitManager>(pRangeSection->pjit)->FindMethodCode(pRangeSection, currentPC); |
| 3692 | if (start == NULL) |
| 3693 | return FALSE; |
| 3694 | |
| 3695 | CodeHeader * pCHdr = PTR_CodeHeader(start - sizeof(CodeHeader)); |
| 3696 | if (pCHdr->IsStubCodeBlock()) |
| 3697 | return FALSE; |
| 3698 | |
| 3699 | _ASSERTE(pCHdr->GetMethodDesc()->SanityCheck()); |
| 3700 | |
| 3701 | if (pCodeInfo) |
| 3702 | { |
| 3703 | pCodeInfo->m_methodToken = METHODTOKEN(pRangeSection, dac_cast<TADDR>(pCHdr)); |
| 3704 | |
| 3705 | // This can be counted on for Jitted code. For NGEN code in the case |
| 3706 | // where we have hot/cold splitting this isn't valid and we need to |
| 3707 | // take into account cold code. |
| 3708 | pCodeInfo->m_relOffset = (DWORD)(PCODEToPINSTR(currentPC) - pCHdr->GetCodeStartAddress()); |
| 3709 | |
| 3710 | #ifdef WIN64EXCEPTIONS |
| 3711 | // Computed lazily by code:EEJitManager::LazyGetFunctionEntry |
| 3712 | pCodeInfo->m_pFunctionEntry = NULL; |
| 3713 | #endif |
| 3714 | } |
| 3715 | |
| 3716 | if (ppMethodDesc) |
| 3717 | { |
| 3718 | *ppMethodDesc = pCHdr->GetMethodDesc(); |
| 3719 | } |
| 3720 | return TRUE; |
| 3721 | } |
| 3722 | |
| 3723 | StubCodeBlockKind EEJitManager::GetStubCodeBlockKind(RangeSection * pRangeSection, PCODE currentPC) |
| 3724 | { |
| 3725 | CONTRACTL { |
| 3726 | NOTHROW; |
| 3727 | GC_NOTRIGGER; |
| 3728 | SO_TOLERANT; |
| 3729 | SUPPORTS_DAC; |
| 3730 | } CONTRACTL_END; |
| 3731 | |
| 3732 | TADDR start = dac_cast<PTR_EEJitManager>(pRangeSection->pjit)->FindMethodCode(pRangeSection, currentPC); |
| 3733 | if (start == NULL) |
| 3734 | return STUB_CODE_BLOCK_NOCODE; |
| 3735 | CodeHeader * pCHdr = PTR_CodeHeader(start - sizeof(CodeHeader)); |
| 3736 | return pCHdr->IsStubCodeBlock() ? pCHdr->GetStubCodeBlockKind() : STUB_CODE_BLOCK_MANAGED; |
| 3737 | } |
| 3738 | |
| 3739 | TADDR EEJitManager::FindMethodCode(PCODE currentPC) |
| 3740 | { |
| 3741 | CONTRACTL { |
| 3742 | NOTHROW; |
| 3743 | GC_NOTRIGGER; |
| 3744 | SO_TOLERANT; |
| 3745 | SUPPORTS_DAC; |
| 3746 | } CONTRACTL_END; |
| 3747 | |
| 3748 | RangeSection * pRS = ExecutionManager::FindCodeRange(currentPC, ExecutionManager::GetScanFlags()); |
| 3749 | if (pRS == NULL || (pRS->flags & RangeSection::RANGE_SECTION_CODEHEAP) == 0) |
| 3750 | return STUB_CODE_BLOCK_NOCODE; |
| 3751 | return dac_cast<PTR_EEJitManager>(pRS->pjit)->FindMethodCode(pRS, currentPC); |
| 3752 | } |
| 3753 | |
| 3754 | // Finds the header corresponding to the code at offset "delta". |
| 3755 | // Returns NULL if there is no header for the given "delta" |
| 3756 | |
| 3757 | TADDR EEJitManager::FindMethodCode(RangeSection * pRangeSection, PCODE currentPC) |
| 3758 | { |
| 3759 | LIMITED_METHOD_DAC_CONTRACT; |
| 3760 | |
| 3761 | _ASSERTE(pRangeSection != NULL); |
| 3762 | |
| 3763 | HeapList *pHp = dac_cast<PTR_HeapList>(pRangeSection->pHeapListOrZapModule); |
| 3764 | |
| 3765 | if ((currentPC < pHp->startAddress) || |
| 3766 | (currentPC > pHp->endAddress)) |
| 3767 | { |
| 3768 | return NULL; |
| 3769 | } |
| 3770 | |
| 3771 | TADDR base = pHp->mapBase; |
| 3772 | TADDR delta = currentPC - base; |
| 3773 | PTR_DWORD pMap = pHp->pHdrMap; |
| 3774 | PTR_DWORD pMapStart = pMap; |
| 3775 | |
| 3776 | DWORD tmp; |
| 3777 | |
| 3778 | size_t startPos = ADDR2POS(delta); // align to 32byte buckets |
| 3779 | // ( == index into the array of nibbles) |
| 3780 | DWORD offset = ADDR2OFFS(delta); // this is the offset inside the bucket + 1 |
| 3781 | |
| 3782 | _ASSERTE(offset == (offset & NIBBLE_MASK)); |
| 3783 | |
| 3784 | pMap += (startPos >> LOG2_NIBBLES_PER_DWORD); // points to the proper DWORD of the map |
| 3785 | |
| 3786 | // get DWORD and shift down our nibble |
| 3787 | |
| 3788 | PREFIX_ASSUME(pMap != NULL); |
| 3789 | tmp = VolatileLoadWithoutBarrier<DWORD>(pMap) >> POS2SHIFTCOUNT(startPos); |
| 3790 | |
| 3791 | if ((tmp & NIBBLE_MASK) && ((tmp & NIBBLE_MASK) <= offset) ) |
| 3792 | { |
| 3793 | return base + POSOFF2ADDR(startPos, tmp & NIBBLE_MASK); |
| 3794 | } |
| 3795 | |
| 3796 | // Is there a header in the remainder of the DWORD ? |
| 3797 | tmp = tmp >> NIBBLE_SIZE; |
| 3798 | |
| 3799 | if (tmp) |
| 3800 | { |
| 3801 | startPos--; |
| 3802 | while (!(tmp & NIBBLE_MASK)) |
| 3803 | { |
| 3804 | tmp = tmp >> NIBBLE_SIZE; |
| 3805 | startPos--; |
| 3806 | } |
| 3807 | return base + POSOFF2ADDR(startPos, tmp & NIBBLE_MASK); |
| 3808 | } |
| 3809 | |
| 3810 | // We skipped the remainder of the DWORD, |
| 3811 | // so we must set startPos to the highest position of |
| 3812 | // previous DWORD, unless we are already on the first DWORD |
| 3813 | |
| 3814 | if (startPos < NIBBLES_PER_DWORD) |
| 3815 | return NULL; |
| 3816 | |
| 3817 | startPos = ((startPos >> LOG2_NIBBLES_PER_DWORD) << LOG2_NIBBLES_PER_DWORD) - 1; |
| 3818 | |
| 3819 | // Skip "headerless" DWORDS |
| 3820 | |
| 3821 | while (pMapStart < pMap && 0 == (tmp = VolatileLoadWithoutBarrier<DWORD>(--pMap))) |
| 3822 | { |
| 3823 | startPos -= NIBBLES_PER_DWORD; |
| 3824 | } |
| 3825 | |
| 3826 | // This helps to catch degenerate error cases. This relies on the fact that |
| 3827 | // startPos cannot ever be bigger than MAX_UINT |
| 3828 | if (((INT_PTR)startPos) < 0) |
| 3829 | return NULL; |
| 3830 | |
| 3831 | // Find the nibble with the header in the DWORD |
| 3832 | |
| 3833 | while (startPos && !(tmp & NIBBLE_MASK)) |
| 3834 | { |
| 3835 | tmp = tmp >> NIBBLE_SIZE; |
| 3836 | startPos--; |
| 3837 | } |
| 3838 | |
| 3839 | if (startPos == 0 && tmp == 0) |
| 3840 | return NULL; |
| 3841 | |
| 3842 | return base + POSOFF2ADDR(startPos, tmp & NIBBLE_MASK); |
| 3843 | } |
| 3844 | |
| 3845 | #if !defined(DACCESS_COMPILE) |
| 3846 | void EEJitManager::NibbleMapSet(HeapList * pHp, TADDR pCode, BOOL bSet) |
| 3847 | { |
| 3848 | CONTRACTL { |
| 3849 | NOTHROW; |
| 3850 | GC_NOTRIGGER; |
| 3851 | } CONTRACTL_END; |
| 3852 | |
| 3853 | // Currently all callers to this method ensure EEJitManager::m_CodeHeapCritSec |
| 3854 | // is held. |
| 3855 | _ASSERTE(m_CodeHeapCritSec.OwnedByCurrentThread()); |
| 3856 | |
| 3857 | _ASSERTE(pCode >= pHp->mapBase); |
| 3858 | |
| 3859 | size_t delta = pCode - pHp->mapBase; |
| 3860 | |
| 3861 | size_t pos = ADDR2POS(delta); |
| 3862 | DWORD value = bSet?ADDR2OFFS(delta):0; |
| 3863 | |
| 3864 | DWORD index = (DWORD) (pos >> LOG2_NIBBLES_PER_DWORD); |
| 3865 | DWORD mask = ~((DWORD) HIGHEST_NIBBLE_MASK >> ((pos & NIBBLES_PER_DWORD_MASK) << LOG2_NIBBLE_SIZE)); |
| 3866 | |
| 3867 | value = value << POS2SHIFTCOUNT(pos); |
| 3868 | |
| 3869 | PTR_DWORD pMap = pHp->pHdrMap; |
| 3870 | |
| 3871 | // assert that we don't overwrite an existing offset |
| 3872 | // (it's a reset or it is empty) |
| 3873 | _ASSERTE(!value || !((*(pMap+index))& ~mask)); |
| 3874 | |
| 3875 | // It is important for this update to be atomic. Synchronization would be required with FindMethodCode otherwise. |
| 3876 | *(pMap+index) = ((*(pMap+index))&mask)|value; |
| 3877 | } |
| 3878 | #endif // !DACCESS_COMPILE |
| 3879 | |
| 3880 | #if defined(WIN64EXCEPTIONS) |
| 3881 | PTR_RUNTIME_FUNCTION EEJitManager::LazyGetFunctionEntry(EECodeInfo * pCodeInfo) |
| 3882 | { |
| 3883 | CONTRACTL { |
| 3884 | NOTHROW; |
| 3885 | GC_NOTRIGGER; |
| 3886 | SO_TOLERANT; |
| 3887 | SUPPORTS_DAC; |
| 3888 | } CONTRACTL_END; |
| 3889 | |
| 3890 | if (!pCodeInfo->IsValid()) |
| 3891 | { |
| 3892 | return NULL; |
| 3893 | } |
| 3894 | |
| 3895 | CodeHeader * = GetCodeHeader(pCodeInfo->GetMethodToken()); |
| 3896 | |
| 3897 | DWORD address = RUNTIME_FUNCTION__BeginAddress(pHeader->GetUnwindInfo(0)) + pCodeInfo->GetRelOffset(); |
| 3898 | |
| 3899 | // We need the module base address to calculate the end address of a function from the functionEntry. |
| 3900 | // Thus, save it off right now. |
| 3901 | TADDR baseAddress = pCodeInfo->GetModuleBase(); |
| 3902 | |
| 3903 | // NOTE: We could binary search here, if it would be helpful (e.g., large number of funclets) |
| 3904 | for (UINT iUnwindInfo = 0; iUnwindInfo < pHeader->GetNumberOfUnwindInfos(); iUnwindInfo++) |
| 3905 | { |
| 3906 | PTR_RUNTIME_FUNCTION pFunctionEntry = pHeader->GetUnwindInfo(iUnwindInfo); |
| 3907 | |
| 3908 | if (RUNTIME_FUNCTION__BeginAddress(pFunctionEntry) <= address && address < RUNTIME_FUNCTION__EndAddress(pFunctionEntry, baseAddress)) |
| 3909 | { |
| 3910 | return pFunctionEntry; |
| 3911 | } |
| 3912 | } |
| 3913 | |
| 3914 | return NULL; |
| 3915 | } |
| 3916 | |
| 3917 | DWORD EEJitManager::GetFuncletStartOffsets(const METHODTOKEN& MethodToken, DWORD* pStartFuncletOffsets, DWORD dwLength) |
| 3918 | { |
| 3919 | CONTRACTL |
| 3920 | { |
| 3921 | NOTHROW; |
| 3922 | GC_NOTRIGGER; |
| 3923 | } |
| 3924 | CONTRACTL_END; |
| 3925 | |
| 3926 | CodeHeader * pCH = GetCodeHeader(MethodToken); |
| 3927 | TADDR moduleBase = JitTokenToModuleBase(MethodToken); |
| 3928 | |
| 3929 | _ASSERTE(pCH->GetNumberOfUnwindInfos() >= 1); |
| 3930 | |
| 3931 | DWORD parentBeginRva = RUNTIME_FUNCTION__BeginAddress(pCH->GetUnwindInfo(0)); |
| 3932 | |
| 3933 | DWORD nFunclets = 0; |
| 3934 | for (COUNT_T iUnwindInfo = 1; iUnwindInfo < pCH->GetNumberOfUnwindInfos(); iUnwindInfo++) |
| 3935 | { |
| 3936 | PTR_RUNTIME_FUNCTION pFunctionEntry = pCH->GetUnwindInfo(iUnwindInfo); |
| 3937 | |
| 3938 | #if defined(EXCEPTION_DATA_SUPPORTS_FUNCTION_FRAGMENTS) |
| 3939 | if (IsFunctionFragment(moduleBase, pFunctionEntry)) |
| 3940 | { |
| 3941 | // This is a fragment (not the funclet beginning); skip it |
| 3942 | continue; |
| 3943 | } |
| 3944 | #endif // EXCEPTION_DATA_SUPPORTS_FUNCTION_FRAGMENTS |
| 3945 | |
| 3946 | DWORD funcletBeginRva = RUNTIME_FUNCTION__BeginAddress(pFunctionEntry); |
| 3947 | DWORD relParentOffsetToFunclet = funcletBeginRva - parentBeginRva; |
| 3948 | |
| 3949 | if (nFunclets < dwLength) |
| 3950 | pStartFuncletOffsets[nFunclets] = relParentOffsetToFunclet; |
| 3951 | nFunclets++; |
| 3952 | } |
| 3953 | |
| 3954 | return nFunclets; |
| 3955 | } |
| 3956 | |
| 3957 | #if defined(DACCESS_COMPILE) |
| 3958 | // This function is basically like RtlLookupFunctionEntry(), except that it works with DAC |
| 3959 | // to read the function entries out of process. Also, it can only look up function entries |
| 3960 | // inside mscorwks.dll, since DAC doesn't know anything about other unmanaged dll's. |
| 3961 | void GetUnmanagedStackWalkInfo(IN ULONG64 ControlPc, |
| 3962 | OUT UINT_PTR* pModuleBase, |
| 3963 | OUT UINT_PTR* pFuncEntry) |
| 3964 | { |
| 3965 | WRAPPER_NO_CONTRACT; |
| 3966 | |
| 3967 | if (pModuleBase) |
| 3968 | { |
| 3969 | *pModuleBase = NULL; |
| 3970 | } |
| 3971 | |
| 3972 | if (pFuncEntry) |
| 3973 | { |
| 3974 | *pFuncEntry = NULL; |
| 3975 | } |
| 3976 | |
| 3977 | PEDecoder peDecoder(DacGlobalBase()); |
| 3978 | |
| 3979 | SIZE_T baseAddr = dac_cast<TADDR>(peDecoder.GetBase()); |
| 3980 | SIZE_T cbSize = (SIZE_T)peDecoder.GetVirtualSize(); |
| 3981 | |
| 3982 | // Check if the control PC is inside mscorwks. |
| 3983 | if ( (baseAddr <= ControlPc) && |
| 3984 | (ControlPc < (baseAddr + cbSize)) |
| 3985 | ) |
| 3986 | { |
| 3987 | if (pModuleBase) |
| 3988 | { |
| 3989 | *pModuleBase = baseAddr; |
| 3990 | } |
| 3991 | |
| 3992 | if (pFuncEntry) |
| 3993 | { |
| 3994 | // Check if there is a static function table. |
| 3995 | COUNT_T cbSize = 0; |
| 3996 | TADDR pExceptionDir = peDecoder.GetDirectoryEntryData(IMAGE_DIRECTORY_ENTRY_EXCEPTION, &cbSize); |
| 3997 | |
| 3998 | if (pExceptionDir != NULL) |
| 3999 | { |
| 4000 | // Do a binary search on the static function table of mscorwks.dll. |
| 4001 | HRESULT hr = E_FAIL; |
| 4002 | TADDR taFuncEntry; |
| 4003 | T_RUNTIME_FUNCTION functionEntry; |
| 4004 | |
| 4005 | DWORD dwLow = 0; |
| 4006 | DWORD dwHigh = cbSize / sizeof(T_RUNTIME_FUNCTION); |
| 4007 | DWORD dwMid = 0; |
| 4008 | |
| 4009 | while (dwLow <= dwHigh) |
| 4010 | { |
| 4011 | dwMid = (dwLow + dwHigh) >> 1; |
| 4012 | taFuncEntry = pExceptionDir + dwMid * sizeof(T_RUNTIME_FUNCTION); |
| 4013 | hr = DacReadAll(taFuncEntry, &functionEntry, sizeof(functionEntry), false); |
| 4014 | if (FAILED(hr)) |
| 4015 | { |
| 4016 | return; |
| 4017 | } |
| 4018 | |
| 4019 | if (ControlPc < baseAddr + functionEntry.BeginAddress) |
| 4020 | { |
| 4021 | dwHigh = dwMid - 1; |
| 4022 | } |
| 4023 | else if (ControlPc >= baseAddr + RUNTIME_FUNCTION__EndAddress(&functionEntry, baseAddr)) |
| 4024 | { |
| 4025 | dwLow = dwMid + 1; |
| 4026 | } |
| 4027 | else |
| 4028 | { |
| 4029 | _ASSERTE(pFuncEntry); |
| 4030 | *pFuncEntry = (UINT_PTR)(T_RUNTIME_FUNCTION*)PTR_RUNTIME_FUNCTION(taFuncEntry); |
| 4031 | break; |
| 4032 | } |
| 4033 | } |
| 4034 | |
| 4035 | if (dwLow > dwHigh) |
| 4036 | { |
| 4037 | _ASSERTE(*pFuncEntry == NULL); |
| 4038 | } |
| 4039 | } |
| 4040 | } |
| 4041 | } |
| 4042 | } |
| 4043 | #endif // DACCESS_COMPILE |
| 4044 | |
| 4045 | extern "C" void GetRuntimeStackWalkInfo(IN ULONG64 ControlPc, |
| 4046 | OUT UINT_PTR* pModuleBase, |
| 4047 | OUT UINT_PTR* pFuncEntry) |
| 4048 | { |
| 4049 | |
| 4050 | WRAPPER_NO_CONTRACT; |
| 4051 | |
| 4052 | BEGIN_PRESERVE_LAST_ERROR; |
| 4053 | |
| 4054 | BEGIN_ENTRYPOINT_VOIDRET; |
| 4055 | |
| 4056 | if (pModuleBase) |
| 4057 | *pModuleBase = NULL; |
| 4058 | if (pFuncEntry) |
| 4059 | *pFuncEntry = NULL; |
| 4060 | |
| 4061 | EECodeInfo codeInfo((PCODE)ControlPc); |
| 4062 | if (!codeInfo.IsValid()) |
| 4063 | { |
| 4064 | #if defined(DACCESS_COMPILE) |
| 4065 | GetUnmanagedStackWalkInfo(ControlPc, pModuleBase, pFuncEntry); |
| 4066 | #endif // DACCESS_COMPILE |
| 4067 | goto Exit; |
| 4068 | } |
| 4069 | |
| 4070 | if (pModuleBase) |
| 4071 | { |
| 4072 | *pModuleBase = (UINT_PTR)codeInfo.GetModuleBase(); |
| 4073 | } |
| 4074 | |
| 4075 | if (pFuncEntry) |
| 4076 | { |
| 4077 | *pFuncEntry = (UINT_PTR)(PT_RUNTIME_FUNCTION)codeInfo.GetFunctionEntry(); |
| 4078 | } |
| 4079 | |
| 4080 | Exit: |
| 4081 | END_ENTRYPOINT_VOIDRET; |
| 4082 | |
| 4083 | END_PRESERVE_LAST_ERROR; |
| 4084 | } |
| 4085 | #endif // WIN64EXCEPTIONS |
| 4086 | |
| 4087 | #ifdef DACCESS_COMPILE |
| 4088 | |
| 4089 | void EEJitManager::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 4090 | { |
| 4091 | IJitManager::EnumMemoryRegions(flags); |
| 4092 | |
| 4093 | // |
| 4094 | // Save all of the code heaps. |
| 4095 | // |
| 4096 | |
| 4097 | HeapList* heap; |
| 4098 | |
| 4099 | for (heap = m_pCodeHeap; heap; heap = heap->GetNext()) |
| 4100 | { |
| 4101 | DacEnumHostDPtrMem(heap); |
| 4102 | |
| 4103 | if (heap->pHeap.IsValid()) |
| 4104 | { |
| 4105 | heap->pHeap->EnumMemoryRegions(flags); |
| 4106 | } |
| 4107 | |
| 4108 | DacEnumMemoryRegion(heap->startAddress, (ULONG32) |
| 4109 | (heap->endAddress - heap->startAddress)); |
| 4110 | |
| 4111 | if (heap->pHdrMap.IsValid()) |
| 4112 | { |
| 4113 | ULONG32 nibbleMapSize = (ULONG32) |
| 4114 | HEAP2MAPSIZE(ROUND_UP_TO_PAGE(heap->maxCodeHeapSize)); |
| 4115 | DacEnumMemoryRegion(dac_cast<TADDR>(heap->pHdrMap), nibbleMapSize); |
| 4116 | } |
| 4117 | } |
| 4118 | } |
| 4119 | #endif // #ifdef DACCESS_COMPILE |
| 4120 | |
| 4121 | #else // CROSSGEN_COMPILE |
| 4122 | // stub for compilation |
| 4123 | BOOL EEJitManager::JitCodeToMethodInfo(RangeSection * pRangeSection, |
| 4124 | PCODE currentPC, |
| 4125 | MethodDesc ** ppMethodDesc, |
| 4126 | EECodeInfo * pCodeInfo) |
| 4127 | { |
| 4128 | _ASSERTE(FALSE); |
| 4129 | return FALSE; |
| 4130 | } |
| 4131 | #endif // !CROSSGEN_COMPILE |
| 4132 | |
| 4133 | |
| 4134 | #ifndef DACCESS_COMPILE |
| 4135 | |
| 4136 | //******************************************************* |
| 4137 | // Execution Manager |
| 4138 | //******************************************************* |
| 4139 | |
| 4140 | // Init statics |
| 4141 | void ExecutionManager::Init() |
| 4142 | { |
| 4143 | CONTRACTL { |
| 4144 | THROWS; |
| 4145 | GC_NOTRIGGER; |
| 4146 | } CONTRACTL_END; |
| 4147 | |
| 4148 | m_JumpStubCrst.Init(CrstJumpStubCache, CrstFlags(CRST_UNSAFE_ANYMODE|CRST_DEBUGGER_THREAD)); |
| 4149 | |
| 4150 | m_RangeCrst.Init(CrstExecuteManRangeLock, CRST_UNSAFE_ANYMODE); |
| 4151 | |
| 4152 | m_pDefaultCodeMan = new EECodeManager(); |
| 4153 | |
| 4154 | #ifndef CROSSGEN_COMPILE |
| 4155 | m_pEEJitManager = new EEJitManager(); |
| 4156 | #endif |
| 4157 | #ifdef FEATURE_PREJIT |
| 4158 | m_pNativeImageJitManager = new NativeImageJitManager(); |
| 4159 | #endif |
| 4160 | |
| 4161 | #ifdef FEATURE_READYTORUN |
| 4162 | m_pReadyToRunJitManager = new ReadyToRunJitManager(); |
| 4163 | #endif |
| 4164 | } |
| 4165 | |
| 4166 | #endif // #ifndef DACCESS_COMPILE |
| 4167 | |
| 4168 | //************************************************************************** |
| 4169 | RangeSection * |
| 4170 | ExecutionManager::FindCodeRange(PCODE currentPC, ScanFlag scanFlag) |
| 4171 | { |
| 4172 | CONTRACTL { |
| 4173 | NOTHROW; |
| 4174 | GC_NOTRIGGER; |
| 4175 | SO_TOLERANT; |
| 4176 | SUPPORTS_DAC; |
| 4177 | } CONTRACTL_END; |
| 4178 | |
| 4179 | if (currentPC == NULL) |
| 4180 | return NULL; |
| 4181 | |
| 4182 | if (scanFlag == ScanReaderLock) |
| 4183 | return FindCodeRangeWithLock(currentPC); |
| 4184 | |
| 4185 | return GetRangeSection(currentPC); |
| 4186 | } |
| 4187 | |
| 4188 | //************************************************************************** |
| 4189 | NOINLINE // Make sure that the slow path with lock won't affect the fast path |
| 4190 | RangeSection * |
| 4191 | ExecutionManager::FindCodeRangeWithLock(PCODE currentPC) |
| 4192 | { |
| 4193 | CONTRACTL { |
| 4194 | NOTHROW; |
| 4195 | GC_NOTRIGGER; |
| 4196 | SO_TOLERANT; |
| 4197 | SUPPORTS_DAC; |
| 4198 | } CONTRACTL_END; |
| 4199 | |
| 4200 | ReaderLockHolder rlh; |
| 4201 | return GetRangeSection(currentPC); |
| 4202 | } |
| 4203 | |
| 4204 | |
| 4205 | //************************************************************************** |
| 4206 | PCODE ExecutionManager::GetCodeStartAddress(PCODE currentPC) |
| 4207 | { |
| 4208 | WRAPPER_NO_CONTRACT; |
| 4209 | _ASSERTE(currentPC != NULL); |
| 4210 | |
| 4211 | EECodeInfo codeInfo(currentPC); |
| 4212 | if (!codeInfo.IsValid()) |
| 4213 | return NULL; |
| 4214 | return PINSTRToPCODE(codeInfo.GetStartAddress()); |
| 4215 | } |
| 4216 | |
| 4217 | //************************************************************************** |
| 4218 | MethodDesc * ExecutionManager::GetCodeMethodDesc(PCODE currentPC) |
| 4219 | { |
| 4220 | CONTRACTL |
| 4221 | { |
| 4222 | NOTHROW; |
| 4223 | GC_NOTRIGGER; |
| 4224 | FORBID_FAULT; |
| 4225 | SO_TOLERANT; |
| 4226 | } |
| 4227 | CONTRACTL_END |
| 4228 | |
| 4229 | EECodeInfo codeInfo(currentPC); |
| 4230 | if (!codeInfo.IsValid()) |
| 4231 | return NULL; |
| 4232 | return codeInfo.GetMethodDesc(); |
| 4233 | } |
| 4234 | |
| 4235 | //************************************************************************** |
| 4236 | BOOL ExecutionManager::IsManagedCode(PCODE currentPC) |
| 4237 | { |
| 4238 | CONTRACTL { |
| 4239 | NOTHROW; |
| 4240 | GC_NOTRIGGER; |
| 4241 | SO_TOLERANT; |
| 4242 | } CONTRACTL_END; |
| 4243 | |
| 4244 | if (currentPC == NULL) |
| 4245 | return FALSE; |
| 4246 | |
| 4247 | if (GetScanFlags() == ScanReaderLock) |
| 4248 | return IsManagedCodeWithLock(currentPC); |
| 4249 | |
| 4250 | return IsManagedCodeWorker(currentPC); |
| 4251 | } |
| 4252 | |
| 4253 | //************************************************************************** |
| 4254 | NOINLINE // Make sure that the slow path with lock won't affect the fast path |
| 4255 | BOOL ExecutionManager::IsManagedCodeWithLock(PCODE currentPC) |
| 4256 | { |
| 4257 | CONTRACTL { |
| 4258 | NOTHROW; |
| 4259 | GC_NOTRIGGER; |
| 4260 | SO_TOLERANT; |
| 4261 | } CONTRACTL_END; |
| 4262 | |
| 4263 | ReaderLockHolder rlh; |
| 4264 | return IsManagedCodeWorker(currentPC); |
| 4265 | } |
| 4266 | |
| 4267 | //************************************************************************** |
| 4268 | BOOL ExecutionManager::IsManagedCode(PCODE currentPC, HostCallPreference hostCallPreference /*=AllowHostCalls*/, BOOL *pfFailedReaderLock /*=NULL*/) |
| 4269 | { |
| 4270 | CONTRACTL { |
| 4271 | NOTHROW; |
| 4272 | GC_NOTRIGGER; |
| 4273 | SO_TOLERANT; |
| 4274 | } CONTRACTL_END; |
| 4275 | |
| 4276 | #ifdef DACCESS_COMPILE |
| 4277 | return IsManagedCode(currentPC); |
| 4278 | #else |
| 4279 | if (hostCallPreference == AllowHostCalls) |
| 4280 | { |
| 4281 | return IsManagedCode(currentPC); |
| 4282 | } |
| 4283 | |
| 4284 | ReaderLockHolder rlh(hostCallPreference); |
| 4285 | if (!rlh.Acquired()) |
| 4286 | { |
| 4287 | _ASSERTE(pfFailedReaderLock != NULL); |
| 4288 | *pfFailedReaderLock = TRUE; |
| 4289 | return FALSE; |
| 4290 | } |
| 4291 | |
| 4292 | return IsManagedCodeWorker(currentPC); |
| 4293 | #endif |
| 4294 | } |
| 4295 | |
| 4296 | //************************************************************************** |
| 4297 | // Assumes that the ExecutionManager reader/writer lock is taken or that |
| 4298 | // it is safe not to take it. |
| 4299 | BOOL ExecutionManager::IsManagedCodeWorker(PCODE currentPC) |
| 4300 | { |
| 4301 | CONTRACTL { |
| 4302 | NOTHROW; |
| 4303 | GC_NOTRIGGER; |
| 4304 | SO_TOLERANT; |
| 4305 | } CONTRACTL_END; |
| 4306 | |
| 4307 | // This may get called for arbitrary code addresses. Note that the lock is |
| 4308 | // taken over the call to JitCodeToMethodInfo too so that nobody pulls out |
| 4309 | // the range section from underneath us. |
| 4310 | |
| 4311 | RangeSection * pRS = GetRangeSection(currentPC); |
| 4312 | if (pRS == NULL) |
| 4313 | return FALSE; |
| 4314 | |
| 4315 | if (pRS->flags & RangeSection::RANGE_SECTION_CODEHEAP) |
| 4316 | { |
| 4317 | #ifndef CROSSGEN_COMPILE |
| 4318 | // Typically if we find a Jit Manager we are inside a managed method |
| 4319 | // but on we could also be in a stub, so we check for that |
| 4320 | // as well and we don't consider stub to be real managed code. |
| 4321 | TADDR start = dac_cast<PTR_EEJitManager>(pRS->pjit)->FindMethodCode(pRS, currentPC); |
| 4322 | if (start == NULL) |
| 4323 | return FALSE; |
| 4324 | CodeHeader * pCHdr = PTR_CodeHeader(start - sizeof(CodeHeader)); |
| 4325 | if (!pCHdr->IsStubCodeBlock()) |
| 4326 | return TRUE; |
| 4327 | #endif |
| 4328 | } |
| 4329 | #ifdef FEATURE_READYTORUN |
| 4330 | else |
| 4331 | if (pRS->flags & RangeSection::RANGE_SECTION_READYTORUN) |
| 4332 | { |
| 4333 | if (dac_cast<PTR_ReadyToRunJitManager>(pRS->pjit)->JitCodeToMethodInfo(pRS, currentPC, NULL, NULL)) |
| 4334 | return TRUE; |
| 4335 | } |
| 4336 | #endif |
| 4337 | else |
| 4338 | { |
| 4339 | #ifdef FEATURE_PREJIT |
| 4340 | // Check that we are in the range with true managed code. We don't |
| 4341 | // consider jump stubs or precodes to be real managed code. |
| 4342 | |
| 4343 | Module * pModule = dac_cast<PTR_Module>(pRS->pHeapListOrZapModule); |
| 4344 | |
| 4345 | NGenLayoutInfo * pLayoutInfo = pModule->GetNGenLayoutInfo(); |
| 4346 | |
| 4347 | if (pLayoutInfo->m_CodeSections[0].IsInRange(currentPC) || |
| 4348 | pLayoutInfo->m_CodeSections[1].IsInRange(currentPC) || |
| 4349 | pLayoutInfo->m_CodeSections[2].IsInRange(currentPC)) |
| 4350 | { |
| 4351 | return TRUE; |
| 4352 | } |
| 4353 | #endif |
| 4354 | } |
| 4355 | |
| 4356 | return FALSE; |
| 4357 | } |
| 4358 | |
| 4359 | #ifndef DACCESS_COMPILE |
| 4360 | |
| 4361 | //************************************************************************** |
| 4362 | // Clear the caches for all JITs loaded. |
| 4363 | // |
| 4364 | void ExecutionManager::ClearCaches( void ) |
| 4365 | { |
| 4366 | CONTRACTL { |
| 4367 | NOTHROW; |
| 4368 | GC_NOTRIGGER; |
| 4369 | } CONTRACTL_END; |
| 4370 | |
| 4371 | GetEEJitManager()->ClearCache(); |
| 4372 | } |
| 4373 | |
| 4374 | //************************************************************************** |
| 4375 | // Check if caches for any JITs loaded need to be cleaned |
| 4376 | // |
| 4377 | BOOL ExecutionManager::IsCacheCleanupRequired( void ) |
| 4378 | { |
| 4379 | CONTRACTL { |
| 4380 | NOTHROW; |
| 4381 | GC_NOTRIGGER; |
| 4382 | } CONTRACTL_END; |
| 4383 | |
| 4384 | return GetEEJitManager()->IsCacheCleanupRequired(); |
| 4385 | } |
| 4386 | |
| 4387 | #ifndef FEATURE_MERGE_JIT_AND_ENGINE |
| 4388 | /*********************************************************************/ |
| 4389 | // This static method returns the name of the jit dll |
| 4390 | // |
| 4391 | LPCWSTR ExecutionManager::GetJitName() |
| 4392 | { |
| 4393 | STANDARD_VM_CONTRACT; |
| 4394 | |
| 4395 | LPCWSTR pwzJitName = NULL; |
| 4396 | |
| 4397 | #if !defined(CROSSGEN_COMPILE) |
| 4398 | if (g_CLRJITPath != nullptr) |
| 4399 | { |
| 4400 | const wchar_t* p = wcsrchr(g_CLRJITPath, DIRECTORY_SEPARATOR_CHAR_W); |
| 4401 | if (p != nullptr) |
| 4402 | { |
| 4403 | pwzJitName = p + 1; // Return just the filename, not the directory name |
| 4404 | } |
| 4405 | else |
| 4406 | { |
| 4407 | pwzJitName = g_CLRJITPath; |
| 4408 | } |
| 4409 | } |
| 4410 | #endif // !defined(CROSSGEN_COMPILE) |
| 4411 | |
| 4412 | if (NULL == pwzJitName) |
| 4413 | { |
| 4414 | pwzJitName = MAKEDLLNAME_W(W("clrjit" )); |
| 4415 | } |
| 4416 | |
| 4417 | return pwzJitName; |
| 4418 | } |
| 4419 | #endif // !FEATURE_MERGE_JIT_AND_ENGINE |
| 4420 | |
| 4421 | #endif // #ifndef DACCESS_COMPILE |
| 4422 | |
| 4423 | RangeSection* ExecutionManager::GetRangeSection(TADDR addr) |
| 4424 | { |
| 4425 | CONTRACTL { |
| 4426 | NOTHROW; |
| 4427 | HOST_NOCALLS; |
| 4428 | GC_NOTRIGGER; |
| 4429 | SO_TOLERANT; |
| 4430 | SUPPORTS_DAC; |
| 4431 | } CONTRACTL_END; |
| 4432 | |
| 4433 | RangeSection * pHead = m_CodeRangeList; |
| 4434 | |
| 4435 | if (pHead == NULL) |
| 4436 | { |
| 4437 | return NULL; |
| 4438 | } |
| 4439 | |
| 4440 | RangeSection *pCurr = pHead; |
| 4441 | RangeSection *pLast = NULL; |
| 4442 | |
| 4443 | #ifndef DACCESS_COMPILE |
| 4444 | RangeSection *pLastUsedRS = (pCurr != NULL) ? pCurr->pLastUsed : NULL; |
| 4445 | |
| 4446 | if (pLastUsedRS != NULL) |
| 4447 | { |
| 4448 | // positive case |
| 4449 | if ((addr >= pLastUsedRS->LowAddress) && |
| 4450 | (addr < pLastUsedRS->HighAddress) ) |
| 4451 | { |
| 4452 | return pLastUsedRS; |
| 4453 | } |
| 4454 | |
| 4455 | RangeSection * pNextAfterLastUsedRS = pLastUsedRS->pnext; |
| 4456 | |
| 4457 | // negative case |
| 4458 | if ((addr < pLastUsedRS->LowAddress) && |
| 4459 | (pNextAfterLastUsedRS == NULL || addr >= pNextAfterLastUsedRS->HighAddress)) |
| 4460 | { |
| 4461 | return NULL; |
| 4462 | } |
| 4463 | } |
| 4464 | #endif |
| 4465 | |
| 4466 | while (pCurr != NULL) |
| 4467 | { |
| 4468 | // See if addr is in [pCurr->LowAddress .. pCurr->HighAddress) |
| 4469 | if (pCurr->LowAddress <= addr) |
| 4470 | { |
| 4471 | // Since we are sorted, once pCurr->HighAddress is less than addr |
| 4472 | // then all subsequence ones will also be lower, so we are done. |
| 4473 | if (addr >= pCurr->HighAddress) |
| 4474 | { |
| 4475 | // we'll return NULL and put pLast into pLastUsed |
| 4476 | pCurr = NULL; |
| 4477 | } |
| 4478 | else |
| 4479 | { |
| 4480 | // addr must be in [pCurr->LowAddress .. pCurr->HighAddress) |
| 4481 | _ASSERTE((pCurr->LowAddress <= addr) && (addr < pCurr->HighAddress)); |
| 4482 | |
| 4483 | // Found the matching RangeSection |
| 4484 | // we'll return pCurr and put it into pLastUsed |
| 4485 | pLast = pCurr; |
| 4486 | } |
| 4487 | |
| 4488 | break; |
| 4489 | } |
| 4490 | pLast = pCurr; |
| 4491 | pCurr = pCurr->pnext; |
| 4492 | } |
| 4493 | |
| 4494 | #ifndef DACCESS_COMPILE |
| 4495 | // Cache pCurr as pLastUsed in the head node |
| 4496 | // Unless we are on an MP system with many cpus |
| 4497 | // where this sort of caching actually diminishes scaling during server GC |
| 4498 | // due to many processors writing to a common location |
| 4499 | if (g_SystemInfo.dwNumberOfProcessors < 4 || !GCHeapUtilities::IsServerHeap() || !GCHeapUtilities::IsGCInProgress()) |
| 4500 | pHead->pLastUsed = pLast; |
| 4501 | #endif |
| 4502 | |
| 4503 | return pCurr; |
| 4504 | } |
| 4505 | |
| 4506 | RangeSection* ExecutionManager::GetRangeSectionAndPrev(RangeSection *pHead, TADDR addr, RangeSection** ppPrev) |
| 4507 | { |
| 4508 | WRAPPER_NO_CONTRACT; |
| 4509 | |
| 4510 | RangeSection *pCurr; |
| 4511 | RangeSection *pPrev; |
| 4512 | RangeSection *result = NULL; |
| 4513 | |
| 4514 | for (pPrev = NULL, pCurr = pHead; |
| 4515 | pCurr != NULL; |
| 4516 | pPrev = pCurr, pCurr = pCurr->pnext) |
| 4517 | { |
| 4518 | // See if addr is in [pCurr->LowAddress .. pCurr->HighAddress) |
| 4519 | if (pCurr->LowAddress > addr) |
| 4520 | continue; |
| 4521 | |
| 4522 | if (addr >= pCurr->HighAddress) |
| 4523 | break; |
| 4524 | |
| 4525 | // addr must be in [pCurr->LowAddress .. pCurr->HighAddress) |
| 4526 | _ASSERTE((pCurr->LowAddress <= addr) && (addr < pCurr->HighAddress)); |
| 4527 | |
| 4528 | // Found the matching RangeSection |
| 4529 | result = pCurr; |
| 4530 | |
| 4531 | // Write back pPrev to ppPrev if it is non-null |
| 4532 | if (ppPrev != NULL) |
| 4533 | *ppPrev = pPrev; |
| 4534 | |
| 4535 | break; |
| 4536 | } |
| 4537 | |
| 4538 | // If we failed to find a match write NULL to ppPrev if it is non-null |
| 4539 | if ((ppPrev != NULL) && (result == NULL)) |
| 4540 | { |
| 4541 | *ppPrev = NULL; |
| 4542 | } |
| 4543 | |
| 4544 | return result; |
| 4545 | } |
| 4546 | |
| 4547 | /* static */ |
| 4548 | PTR_Module ExecutionManager::FindZapModule(TADDR currentData) |
| 4549 | { |
| 4550 | CONTRACTL |
| 4551 | { |
| 4552 | NOTHROW; |
| 4553 | GC_NOTRIGGER; |
| 4554 | SO_TOLERANT; |
| 4555 | MODE_ANY; |
| 4556 | STATIC_CONTRACT_HOST_CALLS; |
| 4557 | SUPPORTS_DAC; |
| 4558 | } |
| 4559 | CONTRACTL_END; |
| 4560 | |
| 4561 | ReaderLockHolder rlh; |
| 4562 | |
| 4563 | RangeSection * pRS = GetRangeSection(currentData); |
| 4564 | if (pRS == NULL) |
| 4565 | return NULL; |
| 4566 | |
| 4567 | if (pRS->flags & RangeSection::RANGE_SECTION_CODEHEAP) |
| 4568 | return NULL; |
| 4569 | |
| 4570 | #ifdef FEATURE_READYTORUN |
| 4571 | if (pRS->flags & RangeSection::RANGE_SECTION_READYTORUN) |
| 4572 | return NULL; |
| 4573 | #endif |
| 4574 | |
| 4575 | return dac_cast<PTR_Module>(pRS->pHeapListOrZapModule); |
| 4576 | } |
| 4577 | |
| 4578 | /* static */ |
| 4579 | PTR_Module ExecutionManager::FindReadyToRunModule(TADDR currentData) |
| 4580 | { |
| 4581 | CONTRACTL |
| 4582 | { |
| 4583 | NOTHROW; |
| 4584 | GC_NOTRIGGER; |
| 4585 | SO_TOLERANT; |
| 4586 | MODE_ANY; |
| 4587 | STATIC_CONTRACT_HOST_CALLS; |
| 4588 | SUPPORTS_DAC; |
| 4589 | } |
| 4590 | CONTRACTL_END; |
| 4591 | |
| 4592 | #ifdef FEATURE_READYTORUN |
| 4593 | ReaderLockHolder rlh; |
| 4594 | |
| 4595 | RangeSection * pRS = GetRangeSection(currentData); |
| 4596 | if (pRS == NULL) |
| 4597 | return NULL; |
| 4598 | |
| 4599 | if (pRS->flags & RangeSection::RANGE_SECTION_CODEHEAP) |
| 4600 | return NULL; |
| 4601 | |
| 4602 | if (pRS->flags & RangeSection::RANGE_SECTION_READYTORUN) |
| 4603 | return dac_cast<PTR_Module>(pRS->pHeapListOrZapModule);; |
| 4604 | |
| 4605 | return NULL; |
| 4606 | #else |
| 4607 | return NULL; |
| 4608 | #endif |
| 4609 | } |
| 4610 | |
| 4611 | |
| 4612 | /* static */ |
| 4613 | PTR_Module ExecutionManager::FindModuleForGCRefMap(TADDR currentData) |
| 4614 | { |
| 4615 | CONTRACTL |
| 4616 | { |
| 4617 | NOTHROW; |
| 4618 | GC_NOTRIGGER; |
| 4619 | SO_TOLERANT; |
| 4620 | SUPPORTS_DAC; |
| 4621 | } |
| 4622 | CONTRACTL_END; |
| 4623 | |
| 4624 | RangeSection * pRS = FindCodeRange(currentData, ExecutionManager::GetScanFlags()); |
| 4625 | if (pRS == NULL) |
| 4626 | return NULL; |
| 4627 | |
| 4628 | if (pRS->flags & RangeSection::RANGE_SECTION_CODEHEAP) |
| 4629 | return NULL; |
| 4630 | |
| 4631 | #ifdef FEATURE_READYTORUN |
| 4632 | // RANGE_SECTION_READYTORUN is intentionally not filtered out here |
| 4633 | #endif |
| 4634 | |
| 4635 | return dac_cast<PTR_Module>(pRS->pHeapListOrZapModule); |
| 4636 | } |
| 4637 | |
| 4638 | #ifndef DACCESS_COMPILE |
| 4639 | |
| 4640 | /* NGenMem depends on this entrypoint */ |
| 4641 | NOINLINE |
| 4642 | void ExecutionManager::AddCodeRange(TADDR pStartRange, |
| 4643 | TADDR pEndRange, |
| 4644 | IJitManager * pJit, |
| 4645 | RangeSection::RangeSectionFlags flags, |
| 4646 | void * pHp) |
| 4647 | { |
| 4648 | CONTRACTL { |
| 4649 | THROWS; |
| 4650 | GC_NOTRIGGER; |
| 4651 | PRECONDITION(CheckPointer(pJit)); |
| 4652 | PRECONDITION(CheckPointer(pHp)); |
| 4653 | } CONTRACTL_END; |
| 4654 | |
| 4655 | AddRangeHelper(pStartRange, |
| 4656 | pEndRange, |
| 4657 | pJit, |
| 4658 | flags, |
| 4659 | dac_cast<TADDR>(pHp)); |
| 4660 | } |
| 4661 | |
| 4662 | #ifdef FEATURE_PREJIT |
| 4663 | |
| 4664 | void ExecutionManager::AddNativeImageRange(TADDR StartRange, |
| 4665 | SIZE_T Size, |
| 4666 | Module * pModule) |
| 4667 | { |
| 4668 | CONTRACTL { |
| 4669 | THROWS; |
| 4670 | GC_NOTRIGGER; |
| 4671 | PRECONDITION(CheckPointer(pModule)); |
| 4672 | } CONTRACTL_END; |
| 4673 | |
| 4674 | AddRangeHelper(StartRange, |
| 4675 | StartRange + Size, |
| 4676 | GetNativeImageJitManager(), |
| 4677 | RangeSection::RANGE_SECTION_NONE, |
| 4678 | dac_cast<TADDR>(pModule)); |
| 4679 | } |
| 4680 | #endif |
| 4681 | |
| 4682 | void ExecutionManager::AddRangeHelper(TADDR pStartRange, |
| 4683 | TADDR pEndRange, |
| 4684 | IJitManager * pJit, |
| 4685 | RangeSection::RangeSectionFlags flags, |
| 4686 | TADDR pHeapListOrZapModule) |
| 4687 | { |
| 4688 | CONTRACTL { |
| 4689 | THROWS; |
| 4690 | GC_NOTRIGGER; |
| 4691 | HOST_CALLS; |
| 4692 | PRECONDITION(pStartRange < pEndRange); |
| 4693 | PRECONDITION(pHeapListOrZapModule != NULL); |
| 4694 | } CONTRACTL_END; |
| 4695 | |
| 4696 | RangeSection *pnewrange = new RangeSection; |
| 4697 | |
| 4698 | _ASSERTE(pEndRange > pStartRange); |
| 4699 | |
| 4700 | pnewrange->LowAddress = pStartRange; |
| 4701 | pnewrange->HighAddress = pEndRange; |
| 4702 | pnewrange->pjit = pJit; |
| 4703 | pnewrange->pnext = NULL; |
| 4704 | pnewrange->flags = flags; |
| 4705 | pnewrange->pLastUsed = NULL; |
| 4706 | pnewrange->pHeapListOrZapModule = pHeapListOrZapModule; |
| 4707 | #if defined(_TARGET_AMD64_) |
| 4708 | pnewrange->pUnwindInfoTable = NULL; |
| 4709 | #endif // defined(_TARGET_AMD64_) |
| 4710 | { |
| 4711 | CrstHolder ch(&m_RangeCrst); // Acquire the Crst before linking in a new RangeList |
| 4712 | |
| 4713 | RangeSection * current = m_CodeRangeList; |
| 4714 | RangeSection * previous = NULL; |
| 4715 | |
| 4716 | if (current != NULL) |
| 4717 | { |
| 4718 | while (true) |
| 4719 | { |
| 4720 | // Sort addresses top down so that more recently created ranges |
| 4721 | // will populate the top of the list |
| 4722 | if (pnewrange->LowAddress > current->LowAddress) |
| 4723 | { |
| 4724 | // Asserts if ranges are overlapping |
| 4725 | _ASSERTE(pnewrange->LowAddress >= current->HighAddress); |
| 4726 | pnewrange->pnext = current; |
| 4727 | |
| 4728 | if (previous == NULL) // insert new head |
| 4729 | { |
| 4730 | m_CodeRangeList = pnewrange; |
| 4731 | } |
| 4732 | else |
| 4733 | { // insert in the middle |
| 4734 | previous->pnext = pnewrange; |
| 4735 | } |
| 4736 | break; |
| 4737 | } |
| 4738 | |
| 4739 | RangeSection * next = current->pnext; |
| 4740 | if (next == NULL) // insert at end of list |
| 4741 | { |
| 4742 | current->pnext = pnewrange; |
| 4743 | break; |
| 4744 | } |
| 4745 | |
| 4746 | // Continue walking the RangeSection list |
| 4747 | previous = current; |
| 4748 | current = next; |
| 4749 | } |
| 4750 | } |
| 4751 | else |
| 4752 | { |
| 4753 | m_CodeRangeList = pnewrange; |
| 4754 | } |
| 4755 | } |
| 4756 | } |
| 4757 | |
| 4758 | // Deletes a single range starting at pStartRange |
| 4759 | void ExecutionManager::DeleteRange(TADDR pStartRange) |
| 4760 | { |
| 4761 | CONTRACTL { |
| 4762 | NOTHROW; // If this becomes throwing, then revisit the queuing of deletes below. |
| 4763 | GC_NOTRIGGER; |
| 4764 | } CONTRACTL_END; |
| 4765 | |
| 4766 | RangeSection *pCurr = NULL; |
| 4767 | { |
| 4768 | // Acquire the Crst before unlinking a RangeList. |
| 4769 | // NOTE: The Crst must be acquired BEFORE we grab the writer lock, as the |
| 4770 | // writer lock forces us into a forbid suspend thread region, and it's illegal |
| 4771 | // to enter a Crst after the forbid suspend thread region is entered |
| 4772 | CrstHolder ch(&m_RangeCrst); |
| 4773 | |
| 4774 | // Acquire the WriterLock and prevent any readers from walking the RangeList. |
| 4775 | // This also forces us to enter a forbid suspend thread region, to prevent |
| 4776 | // hijacking profilers from grabbing this thread and walking it (the walk may |
| 4777 | // require the reader lock, which would cause a deadlock). |
| 4778 | WriterLockHolder wlh; |
| 4779 | |
| 4780 | RangeSection *pPrev = NULL; |
| 4781 | |
| 4782 | pCurr = GetRangeSectionAndPrev(m_CodeRangeList, pStartRange, &pPrev); |
| 4783 | |
| 4784 | // pCurr points at the Range that needs to be unlinked from the RangeList |
| 4785 | if (pCurr != NULL) |
| 4786 | { |
| 4787 | |
| 4788 | // If pPrev is NULL the the head of this list is to be deleted |
| 4789 | if (pPrev == NULL) |
| 4790 | { |
| 4791 | m_CodeRangeList = pCurr->pnext; |
| 4792 | } |
| 4793 | else |
| 4794 | { |
| 4795 | _ASSERT(pPrev->pnext == pCurr); |
| 4796 | |
| 4797 | pPrev->pnext = pCurr->pnext; |
| 4798 | } |
| 4799 | |
| 4800 | // Clear the cache pLastUsed in the head node (if any) |
| 4801 | RangeSection * head = m_CodeRangeList; |
| 4802 | if (head != NULL) |
| 4803 | { |
| 4804 | head->pLastUsed = NULL; |
| 4805 | } |
| 4806 | |
| 4807 | // |
| 4808 | // Cannot delete pCurr here because we own the WriterLock and if this is |
| 4809 | // a hosted scenario then the hosting api callback cannot occur in a forbid |
| 4810 | // suspend region, which the writer lock is. |
| 4811 | // |
| 4812 | } |
| 4813 | } |
| 4814 | |
| 4815 | // |
| 4816 | // Now delete the node |
| 4817 | // |
| 4818 | if (pCurr != NULL) |
| 4819 | { |
| 4820 | #if defined(_TARGET_AMD64_) |
| 4821 | if (pCurr->pUnwindInfoTable != 0) |
| 4822 | delete pCurr->pUnwindInfoTable; |
| 4823 | #endif // defined(_TARGET_AMD64_) |
| 4824 | delete pCurr; |
| 4825 | } |
| 4826 | } |
| 4827 | |
| 4828 | #endif // #ifndef DACCESS_COMPILE |
| 4829 | |
| 4830 | #ifdef DACCESS_COMPILE |
| 4831 | |
| 4832 | void ExecutionManager::EnumRangeList(RangeSection* list, |
| 4833 | CLRDataEnumMemoryFlags flags) |
| 4834 | { |
| 4835 | while (list != NULL) |
| 4836 | { |
| 4837 | // If we can't read the target memory, stop immediately so we don't work |
| 4838 | // with broken data. |
| 4839 | if (!DacEnumMemoryRegion(dac_cast<TADDR>(list), sizeof(*list))) |
| 4840 | break; |
| 4841 | |
| 4842 | if (list->pjit.IsValid()) |
| 4843 | { |
| 4844 | list->pjit->EnumMemoryRegions(flags); |
| 4845 | } |
| 4846 | |
| 4847 | if (!(list->flags & RangeSection::RANGE_SECTION_CODEHEAP)) |
| 4848 | { |
| 4849 | PTR_Module pModule = dac_cast<PTR_Module>(list->pHeapListOrZapModule); |
| 4850 | |
| 4851 | if (pModule.IsValid()) |
| 4852 | { |
| 4853 | pModule->EnumMemoryRegions(flags, true); |
| 4854 | } |
| 4855 | } |
| 4856 | |
| 4857 | list = list->pnext; |
| 4858 | #if defined (_DEBUG) |
| 4859 | // Test hook: when testing on debug builds, we want an easy way to test that the while |
| 4860 | // correctly terminates in the face of ridiculous stuff from the target. |
| 4861 | if (CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DumpGeneration_IntentionallyCorruptDataFromTarget) == 1) |
| 4862 | { |
| 4863 | // Force us to struggle on with something bad. |
| 4864 | if (list == NULL) |
| 4865 | { |
| 4866 | list = (RangeSection *)&flags; |
| 4867 | } |
| 4868 | } |
| 4869 | #endif // (_DEBUG) |
| 4870 | |
| 4871 | } |
| 4872 | } |
| 4873 | |
| 4874 | void ExecutionManager::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 4875 | { |
| 4876 | STATIC_CONTRACT_HOST_CALLS; |
| 4877 | |
| 4878 | ReaderLockHolder rlh; |
| 4879 | |
| 4880 | // |
| 4881 | // Report the global data portions. |
| 4882 | // |
| 4883 | |
| 4884 | m_CodeRangeList.EnumMem(); |
| 4885 | m_pDefaultCodeMan.EnumMem(); |
| 4886 | |
| 4887 | // |
| 4888 | // Walk structures and report. |
| 4889 | // |
| 4890 | |
| 4891 | if (m_CodeRangeList.IsValid()) |
| 4892 | { |
| 4893 | EnumRangeList(m_CodeRangeList, flags); |
| 4894 | } |
| 4895 | } |
| 4896 | #endif // #ifdef DACCESS_COMPILE |
| 4897 | |
| 4898 | #if !defined(DACCESS_COMPILE) && !defined(CROSSGEN_COMPILE) |
| 4899 | |
| 4900 | void ExecutionManager::Unload(LoaderAllocator *pLoaderAllocator) |
| 4901 | { |
| 4902 | CONTRACTL { |
| 4903 | NOTHROW; |
| 4904 | GC_NOTRIGGER; |
| 4905 | } CONTRACTL_END; |
| 4906 | |
| 4907 | // a size of 0 is a signal to Nirvana to flush the entire cache |
| 4908 | FlushInstructionCache(GetCurrentProcess(),0,0); |
| 4909 | |
| 4910 | /* StackwalkCacheEntry::EIP is an address into code. Since we are |
| 4911 | unloading the code, we need to invalidate the cache. Otherwise, |
| 4912 | its possible that another appdomain might generate code at the very |
| 4913 | same address, and we might incorrectly think that the old |
| 4914 | StackwalkCacheEntry corresponds to it. So flush the cache. |
| 4915 | */ |
| 4916 | StackwalkCache::Invalidate(pLoaderAllocator); |
| 4917 | |
| 4918 | JumpStubCache * pJumpStubCache = (JumpStubCache *) pLoaderAllocator->m_pJumpStubCache; |
| 4919 | if (pJumpStubCache != NULL) |
| 4920 | { |
| 4921 | delete pJumpStubCache; |
| 4922 | pLoaderAllocator->m_pJumpStubCache = NULL; |
| 4923 | } |
| 4924 | |
| 4925 | GetEEJitManager()->Unload(pLoaderAllocator); |
| 4926 | } |
| 4927 | |
| 4928 | // This method is used by the JIT and the runtime for PreStubs. It will return |
| 4929 | // the address of a short jump thunk that will jump to the 'target' address. |
| 4930 | // It is only needed when the target architecture has a perferred call instruction |
| 4931 | // that doesn't actually span the full address space. This is true for x64 where |
| 4932 | // the preferred call instruction is a 32-bit pc-rel call instruction. |
| 4933 | // (This is also true on ARM64, but it not true for x86) |
| 4934 | // |
| 4935 | // For these architectures, in JITed code and in the prestub, we encode direct calls |
| 4936 | // using the preferred call instruction and we also try to insure that the Jitted |
| 4937 | // code is within the 32-bit pc-rel range of clr.dll to allow direct JIT helper calls. |
| 4938 | // |
| 4939 | // When the call target is too far away to encode using the preferred call instruction. |
| 4940 | // We will create a short code thunk that uncoditionally jumps to the target address. |
| 4941 | // We call this jump thunk a "jumpStub" in the CLR code. |
| 4942 | // We have the requirement that the "jumpStub" that we create on demand be usable by |
| 4943 | // the preferred call instruction, this requires that on x64 the location in memory |
| 4944 | // where we create the "jumpStub" be within the 32-bit pc-rel range of the call that |
| 4945 | // needs it. |
| 4946 | // |
| 4947 | // The arguments to this method: |
| 4948 | // pMD - the MethodDesc for the currenty managed method in Jitted code |
| 4949 | // or for the target method for a PreStub |
| 4950 | // It is required if calling from or to a dynamic method (LCG method) |
| 4951 | // target - The call target address (this is the address that was too far to encode) |
| 4952 | // loAddr |
| 4953 | // hiAddr - The range of the address that we must place the jumpStub in, so that it |
| 4954 | // can be used to encode the preferred call instruction. |
| 4955 | // pLoaderAllocator |
| 4956 | // - The Loader allocator to use for allocations, this can be null. |
| 4957 | // When it is null, then the pMD must be valid and is used to obtain |
| 4958 | // the allocator. |
| 4959 | // |
| 4960 | // This method will either locate and return an existing jumpStub thunk that can be |
| 4961 | // reused for this request, because it meets all of the requirements necessary. |
| 4962 | // Or it will allocate memory in the required region and create a new jumpStub that |
| 4963 | // meets all of the requirements necessary. |
| 4964 | // |
| 4965 | // Note that for dynamic methods (LCG methods) we cannot share the jumpStubs between |
| 4966 | // different methods. This is because we allow for the unloading (reclaiming) of |
| 4967 | // individual dynamic methods. And we associate the jumpStub memory allocated with |
| 4968 | // the dynamic method that requested the jumpStub. |
| 4969 | // |
| 4970 | |
| 4971 | PCODE ExecutionManager::jumpStub(MethodDesc* pMD, PCODE target, |
| 4972 | BYTE * loAddr, BYTE * hiAddr, |
| 4973 | LoaderAllocator *pLoaderAllocator, |
| 4974 | bool throwOnOutOfMemoryWithinRange) |
| 4975 | { |
| 4976 | CONTRACT(PCODE) { |
| 4977 | THROWS; |
| 4978 | GC_NOTRIGGER; |
| 4979 | MODE_ANY; |
| 4980 | PRECONDITION(pLoaderAllocator != NULL || pMD != NULL); |
| 4981 | PRECONDITION(loAddr < hiAddr); |
| 4982 | POSTCONDITION((RETVAL != NULL) || !throwOnOutOfMemoryWithinRange); |
| 4983 | } CONTRACT_END; |
| 4984 | |
| 4985 | PCODE jumpStub = NULL; |
| 4986 | |
| 4987 | if (pLoaderAllocator == NULL) |
| 4988 | { |
| 4989 | pLoaderAllocator = pMD->GetLoaderAllocatorForCode(); |
| 4990 | } |
| 4991 | _ASSERTE(pLoaderAllocator != NULL); |
| 4992 | |
| 4993 | bool isLCG = pMD && pMD->IsLCGMethod(); |
| 4994 | LCGMethodResolver * pResolver = nullptr; |
| 4995 | JumpStubCache * pJumpStubCache = (JumpStubCache *) pLoaderAllocator->m_pJumpStubCache; |
| 4996 | |
| 4997 | if (isLCG) |
| 4998 | { |
| 4999 | pResolver = pMD->AsDynamicMethodDesc()->GetLCGMethodResolver(); |
| 5000 | pJumpStubCache = pResolver->m_pJumpStubCache; |
| 5001 | } |
| 5002 | |
| 5003 | CrstHolder ch(&m_JumpStubCrst); |
| 5004 | if (pJumpStubCache == NULL) |
| 5005 | { |
| 5006 | pJumpStubCache = new JumpStubCache(); |
| 5007 | if (isLCG) |
| 5008 | { |
| 5009 | pResolver->m_pJumpStubCache = pJumpStubCache; |
| 5010 | } |
| 5011 | else |
| 5012 | { |
| 5013 | pLoaderAllocator->m_pJumpStubCache = pJumpStubCache; |
| 5014 | } |
| 5015 | } |
| 5016 | |
| 5017 | if (isLCG) |
| 5018 | { |
| 5019 | // Increment counter of LCG jump stub lookup attempts |
| 5020 | m_LCG_JumpStubLookup++; |
| 5021 | } |
| 5022 | else |
| 5023 | { |
| 5024 | // Increment counter of normal jump stub lookup attempts |
| 5025 | m_normal_JumpStubLookup++; |
| 5026 | } |
| 5027 | |
| 5028 | // search for a matching jumpstub in the jumpStubCache |
| 5029 | // |
| 5030 | for (JumpStubTable::KeyIterator i = pJumpStubCache->m_Table.Begin(target), |
| 5031 | end = pJumpStubCache->m_Table.End(target); i != end; i++) |
| 5032 | { |
| 5033 | jumpStub = i->m_jumpStub; |
| 5034 | |
| 5035 | _ASSERTE(jumpStub != NULL); |
| 5036 | |
| 5037 | // Is the matching entry with the requested range? |
| 5038 | if (((TADDR)loAddr <= jumpStub) && (jumpStub <= (TADDR)hiAddr)) |
| 5039 | { |
| 5040 | RETURN(jumpStub); |
| 5041 | } |
| 5042 | } |
| 5043 | |
| 5044 | // If we get here we need to create a new jump stub |
| 5045 | // add or change the jump stub table to point at the new one |
| 5046 | jumpStub = getNextJumpStub(pMD, target, loAddr, hiAddr, pLoaderAllocator, throwOnOutOfMemoryWithinRange); // this statement can throw |
| 5047 | if (jumpStub == NULL) |
| 5048 | { |
| 5049 | _ASSERTE(!throwOnOutOfMemoryWithinRange); |
| 5050 | RETURN(NULL); |
| 5051 | } |
| 5052 | |
| 5053 | _ASSERTE(((TADDR)loAddr <= jumpStub) && (jumpStub <= (TADDR)hiAddr)); |
| 5054 | |
| 5055 | LOG((LF_JIT, LL_INFO10000, "Add JumpStub to" FMT_ADDR "at" FMT_ADDR "\n" , |
| 5056 | DBG_ADDR(target), DBG_ADDR(jumpStub) )); |
| 5057 | |
| 5058 | RETURN(jumpStub); |
| 5059 | } |
| 5060 | |
| 5061 | PCODE ExecutionManager::getNextJumpStub(MethodDesc* pMD, PCODE target, |
| 5062 | BYTE * loAddr, BYTE * hiAddr, |
| 5063 | LoaderAllocator *pLoaderAllocator, |
| 5064 | bool throwOnOutOfMemoryWithinRange) |
| 5065 | { |
| 5066 | CONTRACT(PCODE) { |
| 5067 | THROWS; |
| 5068 | GC_NOTRIGGER; |
| 5069 | PRECONDITION(pLoaderAllocator != NULL); |
| 5070 | PRECONDITION(m_JumpStubCrst.OwnedByCurrentThread()); |
| 5071 | POSTCONDITION((RETVAL != NULL) || !throwOnOutOfMemoryWithinRange); |
| 5072 | } CONTRACT_END; |
| 5073 | |
| 5074 | DWORD numJumpStubs = DEFAULT_JUMPSTUBS_PER_BLOCK; // a block of 32 JumpStubs |
| 5075 | BYTE * jumpStub = NULL; |
| 5076 | bool isLCG = pMD && pMD->IsLCGMethod(); |
| 5077 | JumpStubCache * pJumpStubCache = (JumpStubCache *) pLoaderAllocator->m_pJumpStubCache; |
| 5078 | |
| 5079 | if (isLCG) |
| 5080 | { |
| 5081 | LCGMethodResolver * pResolver; |
| 5082 | pResolver = pMD->AsDynamicMethodDesc()->GetLCGMethodResolver(); |
| 5083 | pJumpStubCache = pResolver->m_pJumpStubCache; |
| 5084 | } |
| 5085 | |
| 5086 | JumpStubBlockHeader ** ppHead = &(pJumpStubCache->m_pBlocks); |
| 5087 | JumpStubBlockHeader * curBlock = *ppHead; |
| 5088 | |
| 5089 | // allocate a new jumpstub from 'curBlock' if it is not fully allocated |
| 5090 | // |
| 5091 | while (curBlock) |
| 5092 | { |
| 5093 | _ASSERTE(pLoaderAllocator == (isLCG ? curBlock->GetHostCodeHeap()->GetAllocator() : curBlock->GetLoaderAllocator())); |
| 5094 | |
| 5095 | if (curBlock->m_used < curBlock->m_allocated) |
| 5096 | { |
| 5097 | jumpStub = (BYTE *) curBlock + sizeof(JumpStubBlockHeader) + ((size_t) curBlock->m_used * BACK_TO_BACK_JUMP_ALLOCATE_SIZE); |
| 5098 | |
| 5099 | if ((loAddr <= jumpStub) && (jumpStub <= hiAddr)) |
| 5100 | { |
| 5101 | // We will update curBlock->m_used at "DONE" |
| 5102 | goto DONE; |
| 5103 | } |
| 5104 | } |
| 5105 | curBlock = curBlock->m_next; |
| 5106 | } |
| 5107 | |
| 5108 | // If we get here then we need to allocate a new JumpStubBlock |
| 5109 | |
| 5110 | if (isLCG) |
| 5111 | { |
| 5112 | // For LCG we request a small block of 4 jumpstubs, because we can not share them |
| 5113 | // with any other methods and very frequently our method only needs one jump stub. |
| 5114 | // Using 4 gives a request size of (32 + 4*12) or 80 bytes. |
| 5115 | // Also note that request sizes are rounded up to a multiples of 16. |
| 5116 | // The request size is calculated into 'blockSize' in allocJumpStubBlock. |
| 5117 | // For x64 the value of BACK_TO_BACK_JUMP_ALLOCATE_SIZE is 12 bytes |
| 5118 | // and the sizeof(JumpStubBlockHeader) is 32. |
| 5119 | // |
| 5120 | |
| 5121 | numJumpStubs = 4; |
| 5122 | |
| 5123 | #ifdef _TARGET_AMD64_ |
| 5124 | // Note this these values are not requirements, instead we are |
| 5125 | // just confirming the values that are mentioned in the comments. |
| 5126 | _ASSERTE(BACK_TO_BACK_JUMP_ALLOCATE_SIZE == 12); |
| 5127 | _ASSERTE(sizeof(JumpStubBlockHeader) == 32); |
| 5128 | #endif |
| 5129 | |
| 5130 | // Increment counter of LCG jump stub block allocations |
| 5131 | m_LCG_JumpStubBlockAllocCount++; |
| 5132 | } |
| 5133 | else |
| 5134 | { |
| 5135 | // Increment counter of normal jump stub block allocations |
| 5136 | m_normal_JumpStubBlockAllocCount++; |
| 5137 | } |
| 5138 | |
| 5139 | // allocJumpStubBlock will allocate from the LoaderCodeHeap for normal methods |
| 5140 | // and will allocate from a HostCodeHeap for LCG methods. |
| 5141 | // |
| 5142 | // note that this can throw an OOM exception |
| 5143 | |
| 5144 | curBlock = ExecutionManager::GetEEJitManager()->allocJumpStubBlock(pMD, numJumpStubs, loAddr, hiAddr, pLoaderAllocator, throwOnOutOfMemoryWithinRange); |
| 5145 | if (curBlock == NULL) |
| 5146 | { |
| 5147 | _ASSERTE(!throwOnOutOfMemoryWithinRange); |
| 5148 | RETURN(NULL); |
| 5149 | } |
| 5150 | |
| 5151 | jumpStub = (BYTE *) curBlock + sizeof(JumpStubBlockHeader) + ((size_t) curBlock->m_used * BACK_TO_BACK_JUMP_ALLOCATE_SIZE); |
| 5152 | |
| 5153 | _ASSERTE((loAddr <= jumpStub) && (jumpStub <= hiAddr)); |
| 5154 | |
| 5155 | curBlock->m_next = *ppHead; |
| 5156 | *ppHead = curBlock; |
| 5157 | |
| 5158 | DONE: |
| 5159 | |
| 5160 | _ASSERTE((curBlock->m_used < curBlock->m_allocated)); |
| 5161 | |
| 5162 | #ifdef _TARGET_ARM64_ |
| 5163 | // 8-byte alignment is required on ARM64 |
| 5164 | _ASSERTE(((UINT_PTR)jumpStub & 7) == 0); |
| 5165 | #endif |
| 5166 | |
| 5167 | emitBackToBackJump(jumpStub, (void*) target); |
| 5168 | |
| 5169 | #ifdef FEATURE_PERFMAP |
| 5170 | PerfMap::LogStubs(__FUNCTION__, "emitBackToBackJump" , (PCODE)jumpStub, BACK_TO_BACK_JUMP_ALLOCATE_SIZE); |
| 5171 | #endif |
| 5172 | |
| 5173 | // We always add the new jumpstub to the jumpStubCache |
| 5174 | // |
| 5175 | _ASSERTE(pJumpStubCache != NULL); |
| 5176 | |
| 5177 | JumpStubEntry entry; |
| 5178 | |
| 5179 | entry.m_target = target; |
| 5180 | entry.m_jumpStub = (PCODE)jumpStub; |
| 5181 | |
| 5182 | pJumpStubCache->m_Table.Add(entry); |
| 5183 | |
| 5184 | curBlock->m_used++; // record that we have used up one more jumpStub in the block |
| 5185 | |
| 5186 | // Every time we create a new jumpStub thunk one of these counters is incremented |
| 5187 | if (isLCG) |
| 5188 | { |
| 5189 | // Increment counter of LCG unique jump stubs |
| 5190 | m_LCG_JumpStubUnique++; |
| 5191 | } |
| 5192 | else |
| 5193 | { |
| 5194 | // Increment counter of normal unique jump stubs |
| 5195 | m_normal_JumpStubUnique++; |
| 5196 | } |
| 5197 | |
| 5198 | // Is the 'curBlock' now completely full? |
| 5199 | if (curBlock->m_used == curBlock->m_allocated) |
| 5200 | { |
| 5201 | if (isLCG) |
| 5202 | { |
| 5203 | // Increment counter of LCG jump stub blocks that are full |
| 5204 | m_LCG_JumpStubBlockFullCount++; |
| 5205 | |
| 5206 | // Log this "LCG JumpStubBlock filled" along with the four counter values |
| 5207 | STRESS_LOG4(LF_JIT, LL_INFO1000, "LCG JumpStubBlock filled - (%u, %u, %u, %u)\n" , |
| 5208 | m_LCG_JumpStubLookup, m_LCG_JumpStubUnique, |
| 5209 | m_LCG_JumpStubBlockAllocCount, m_LCG_JumpStubBlockFullCount); |
| 5210 | } |
| 5211 | else |
| 5212 | { |
| 5213 | // Increment counter of normal jump stub blocks that are full |
| 5214 | m_normal_JumpStubBlockFullCount++; |
| 5215 | |
| 5216 | // Log this "normal JumpStubBlock filled" along with the four counter values |
| 5217 | STRESS_LOG4(LF_JIT, LL_INFO1000, "Normal JumpStubBlock filled - (%u, %u, %u, %u)\n" , |
| 5218 | m_normal_JumpStubLookup, m_normal_JumpStubUnique, |
| 5219 | m_normal_JumpStubBlockAllocCount, m_normal_JumpStubBlockFullCount); |
| 5220 | |
| 5221 | if ((m_LCG_JumpStubLookup > 0) && ((m_normal_JumpStubBlockFullCount % 5) == 1)) |
| 5222 | { |
| 5223 | // Every 5 occurance of the above we also |
| 5224 | // Log "LCG JumpStubBlock status" along with the four counter values |
| 5225 | STRESS_LOG4(LF_JIT, LL_INFO1000, "LCG JumpStubBlock status - (%u, %u, %u, %u)\n" , |
| 5226 | m_LCG_JumpStubLookup, m_LCG_JumpStubUnique, |
| 5227 | m_LCG_JumpStubBlockAllocCount, m_LCG_JumpStubBlockFullCount); |
| 5228 | } |
| 5229 | } |
| 5230 | } |
| 5231 | |
| 5232 | RETURN((PCODE)jumpStub); |
| 5233 | } |
| 5234 | #endif // !DACCESS_COMPILE && !CROSSGEN_COMPILE |
| 5235 | |
| 5236 | #ifdef FEATURE_PREJIT |
| 5237 | //*************************************************************************************** |
| 5238 | //*************************************************************************************** |
| 5239 | |
| 5240 | #ifndef DACCESS_COMPILE |
| 5241 | |
| 5242 | NativeImageJitManager::NativeImageJitManager() |
| 5243 | { |
| 5244 | WRAPPER_NO_CONTRACT; |
| 5245 | } |
| 5246 | |
| 5247 | #endif // #ifndef DACCESS_COMPILE |
| 5248 | |
| 5249 | GCInfoToken NativeImageJitManager::GetGCInfoToken(const METHODTOKEN& MethodToken) |
| 5250 | { |
| 5251 | CONTRACTL { |
| 5252 | NOTHROW; |
| 5253 | GC_NOTRIGGER; |
| 5254 | HOST_NOCALLS; |
| 5255 | SUPPORTS_DAC; |
| 5256 | } CONTRACTL_END; |
| 5257 | |
| 5258 | PTR_RUNTIME_FUNCTION pRuntimeFunction = dac_cast<PTR_RUNTIME_FUNCTION>(MethodToken.m_pCodeHeader); |
| 5259 | TADDR baseAddress = JitTokenToModuleBase(MethodToken); |
| 5260 | |
| 5261 | #ifndef DACCESS_COMPILE |
| 5262 | if (g_IBCLogger.InstrEnabled()) |
| 5263 | { |
| 5264 | PTR_NGenLayoutInfo pNgenLayout = JitTokenToZapModule(MethodToken)->GetNGenLayoutInfo(); |
| 5265 | PTR_MethodDesc pMD = NativeUnwindInfoLookupTable::GetMethodDesc(pNgenLayout, pRuntimeFunction, baseAddress); |
| 5266 | g_IBCLogger.LogMethodGCInfoAccess(pMD); |
| 5267 | } |
| 5268 | #endif |
| 5269 | |
| 5270 | SIZE_T nUnwindDataSize; |
| 5271 | PTR_VOID pUnwindData = GetUnwindDataBlob(baseAddress, pRuntimeFunction, &nUnwindDataSize); |
| 5272 | |
| 5273 | // GCInfo immediatelly follows unwind data |
| 5274 | // GCInfo from an NGEN-ed image is always the current version |
| 5275 | return{ dac_cast<PTR_BYTE>(pUnwindData) + nUnwindDataSize, GCINFO_VERSION }; |
| 5276 | } |
| 5277 | |
| 5278 | unsigned NativeImageJitManager::InitializeEHEnumeration(const METHODTOKEN& MethodToken, EH_CLAUSE_ENUMERATOR* pEnumState) |
| 5279 | { |
| 5280 | CONTRACTL { |
| 5281 | NOTHROW; |
| 5282 | GC_NOTRIGGER; |
| 5283 | } CONTRACTL_END; |
| 5284 | |
| 5285 | NGenLayoutInfo * pNgenLayout = JitTokenToZapModule(MethodToken)->GetNGenLayoutInfo(); |
| 5286 | |
| 5287 | //early out if the method doesn't have EH info bit set. |
| 5288 | if (!NativeUnwindInfoLookupTable::HasExceptionInfo(pNgenLayout, PTR_RUNTIME_FUNCTION(MethodToken.m_pCodeHeader))) |
| 5289 | return 0; |
| 5290 | |
| 5291 | PTR_CORCOMPILE_EXCEPTION_LOOKUP_TABLE pExceptionLookupTable = dac_cast<PTR_CORCOMPILE_EXCEPTION_LOOKUP_TABLE>(pNgenLayout->m_ExceptionInfoLookupTable.StartAddress()); |
| 5292 | _ASSERTE(pExceptionLookupTable != NULL); |
| 5293 | |
| 5294 | SIZE_T size = pNgenLayout->m_ExceptionInfoLookupTable.Size(); |
| 5295 | COUNT_T numLookupTableEntries = (COUNT_T)(size / sizeof(CORCOMPILE_EXCEPTION_LOOKUP_TABLE_ENTRY)); |
| 5296 | // at least 2 entries (1 valid entry + 1 sentinal entry) |
| 5297 | _ASSERTE(numLookupTableEntries >= 2); |
| 5298 | |
| 5299 | DWORD methodStartRVA = (DWORD)(JitTokenToStartAddress(MethodToken) - JitTokenToModuleBase(MethodToken)); |
| 5300 | |
| 5301 | COUNT_T ehInfoSize = 0; |
| 5302 | DWORD exceptionInfoRVA = NativeExceptionInfoLookupTable::LookupExceptionInfoRVAForMethod(pExceptionLookupTable, |
| 5303 | numLookupTableEntries, |
| 5304 | methodStartRVA, |
| 5305 | &ehInfoSize); |
| 5306 | if (exceptionInfoRVA == 0) |
| 5307 | return 0; |
| 5308 | |
| 5309 | pEnumState->iCurrentPos = 0; |
| 5310 | pEnumState->pExceptionClauseArray = JitTokenToModuleBase(MethodToken) + exceptionInfoRVA; |
| 5311 | |
| 5312 | return ehInfoSize / sizeof(CORCOMPILE_EXCEPTION_CLAUSE); |
| 5313 | } |
| 5314 | |
| 5315 | PTR_EXCEPTION_CLAUSE_TOKEN NativeImageJitManager::GetNextEHClause(EH_CLAUSE_ENUMERATOR* pEnumState, |
| 5316 | EE_ILEXCEPTION_CLAUSE* pEHClauseOut) |
| 5317 | { |
| 5318 | CONTRACTL { |
| 5319 | NOTHROW; |
| 5320 | GC_NOTRIGGER; |
| 5321 | } CONTRACTL_END; |
| 5322 | |
| 5323 | unsigned iCurrentPos = pEnumState->iCurrentPos; |
| 5324 | pEnumState->iCurrentPos++; |
| 5325 | |
| 5326 | CORCOMPILE_EXCEPTION_CLAUSE* pClause = &(dac_cast<PTR_CORCOMPILE_EXCEPTION_CLAUSE>(pEnumState->pExceptionClauseArray)[iCurrentPos]); |
| 5327 | |
| 5328 | // copy to the input parmeter, this is a nice abstraction for the future |
| 5329 | // if we want to compress the Clause encoding, we can do without affecting the call sites |
| 5330 | pEHClauseOut->TryStartPC = pClause->TryStartPC; |
| 5331 | pEHClauseOut->TryEndPC = pClause->TryEndPC; |
| 5332 | pEHClauseOut->HandlerStartPC = pClause->HandlerStartPC; |
| 5333 | pEHClauseOut->HandlerEndPC = pClause->HandlerEndPC; |
| 5334 | pEHClauseOut->Flags = pClause->Flags; |
| 5335 | pEHClauseOut->FilterOffset = pClause->FilterOffset; |
| 5336 | |
| 5337 | return dac_cast<PTR_EXCEPTION_CLAUSE_TOKEN>(pClause); |
| 5338 | } |
| 5339 | |
| 5340 | #ifndef DACCESS_COMPILE |
| 5341 | |
| 5342 | TypeHandle NativeImageJitManager::ResolveEHClause(EE_ILEXCEPTION_CLAUSE* pEHClause, |
| 5343 | CrawlFrame* pCf) |
| 5344 | { |
| 5345 | CONTRACTL { |
| 5346 | THROWS; |
| 5347 | GC_TRIGGERS; |
| 5348 | } CONTRACTL_END; |
| 5349 | |
| 5350 | _ASSERTE(NULL != pCf); |
| 5351 | _ASSERTE(NULL != pEHClause); |
| 5352 | _ASSERTE(IsTypedHandler(pEHClause)); |
| 5353 | |
| 5354 | MethodDesc *pMD = PTR_MethodDesc(pCf->GetFunction()); |
| 5355 | |
| 5356 | _ASSERTE(pMD != NULL); |
| 5357 | |
| 5358 | Module* pModule = pMD->GetModule(); |
| 5359 | PREFIX_ASSUME(pModule != NULL); |
| 5360 | |
| 5361 | SigTypeContext typeContext(pMD); |
| 5362 | VarKind k = hasNoVars; |
| 5363 | |
| 5364 | mdToken typeTok = pEHClause->ClassToken; |
| 5365 | |
| 5366 | // In the vast majority of cases the code under the "if" below |
| 5367 | // will not be executed. |
| 5368 | // |
| 5369 | // First grab the representative instantiations. For code |
| 5370 | // shared by multiple generic instantiations these are the |
| 5371 | // canonical (representative) instantiation. |
| 5372 | if (TypeFromToken(typeTok) == mdtTypeSpec) |
| 5373 | { |
| 5374 | PCCOR_SIGNATURE pSig; |
| 5375 | ULONG cSig; |
| 5376 | IfFailThrow(pModule->GetMDImport()->GetTypeSpecFromToken(typeTok, &pSig, &cSig)); |
| 5377 | |
| 5378 | SigPointer psig(pSig, cSig); |
| 5379 | k = psig.IsPolyType(&typeContext); |
| 5380 | |
| 5381 | // Grab the active class and method instantiation. This exact instantiation is only |
| 5382 | // needed in the corner case of "generic" exception catching in shared |
| 5383 | // generic code. We don't need the exact instantiation if the token |
| 5384 | // doesn't contain E_T_VAR or E_T_MVAR. |
| 5385 | if ((k & hasSharableVarsMask) != 0) |
| 5386 | { |
| 5387 | Instantiation classInst; |
| 5388 | Instantiation methodInst; |
| 5389 | pCf->GetExactGenericInstantiations(&classInst,&methodInst); |
| 5390 | SigTypeContext::InitTypeContext(pMD,classInst, methodInst,&typeContext); |
| 5391 | } |
| 5392 | } |
| 5393 | |
| 5394 | return ClassLoader::LoadTypeDefOrRefOrSpecThrowing(pModule, typeTok, &typeContext, |
| 5395 | ClassLoader::ReturnNullIfNotFound); |
| 5396 | } |
| 5397 | |
| 5398 | #endif // #ifndef DACCESS_COMPILE |
| 5399 | |
| 5400 | //----------------------------------------------------------------------------- |
| 5401 | // Ngen info manager |
| 5402 | //----------------------------------------------------------------------------- |
| 5403 | BOOL NativeImageJitManager::GetBoundariesAndVars( |
| 5404 | const DebugInfoRequest & request, |
| 5405 | IN FP_IDS_NEW fpNew, IN void * pNewData, |
| 5406 | OUT ULONG32 * pcMap, |
| 5407 | OUT ICorDebugInfo::OffsetMapping **ppMap, |
| 5408 | OUT ULONG32 * pcVars, |
| 5409 | OUT ICorDebugInfo::NativeVarInfo **ppVars) |
| 5410 | { |
| 5411 | CONTRACTL { |
| 5412 | THROWS; // on OOM. |
| 5413 | GC_NOTRIGGER; // getting vars shouldn't trigger |
| 5414 | SUPPORTS_DAC; |
| 5415 | } CONTRACTL_END; |
| 5416 | |
| 5417 | // We want the module that the code is instantiated in, not necessarily the one |
| 5418 | // that it was declared in. This only matters for ngen-generics. |
| 5419 | MethodDesc * pMD = request.GetMD(); |
| 5420 | Module * pModule = pMD->GetZapModule(); |
| 5421 | PREFIX_ASSUME(pModule != NULL); |
| 5422 | |
| 5423 | PTR_BYTE pDebugInfo = pModule->GetNativeDebugInfo(pMD); |
| 5424 | |
| 5425 | // No header created, which means no jit information is available. |
| 5426 | if (pDebugInfo == NULL) |
| 5427 | return FALSE; |
| 5428 | |
| 5429 | // Uncompress. This allocates memory and may throw. |
| 5430 | CompressDebugInfo::RestoreBoundariesAndVars( |
| 5431 | fpNew, pNewData, // allocators |
| 5432 | pDebugInfo, // input |
| 5433 | pcMap, ppMap, |
| 5434 | pcVars, ppVars); // output |
| 5435 | |
| 5436 | return TRUE; |
| 5437 | } |
| 5438 | |
| 5439 | #ifdef DACCESS_COMPILE |
| 5440 | // |
| 5441 | // Need to write out debug info |
| 5442 | // |
| 5443 | void NativeImageJitManager::EnumMemoryRegionsForMethodDebugInfo(CLRDataEnumMemoryFlags flags, MethodDesc * pMD) |
| 5444 | { |
| 5445 | SUPPORTS_DAC; |
| 5446 | |
| 5447 | Module * pModule = pMD->GetZapModule(); |
| 5448 | PREFIX_ASSUME(pModule != NULL); |
| 5449 | PTR_BYTE pDebugInfo = pModule->GetNativeDebugInfo(pMD); |
| 5450 | |
| 5451 | if (pDebugInfo != NULL) |
| 5452 | { |
| 5453 | CompressDebugInfo::EnumMemoryRegions(flags, pDebugInfo); |
| 5454 | } |
| 5455 | } |
| 5456 | #endif |
| 5457 | |
| 5458 | PCODE NativeImageJitManager::GetCodeAddressForRelOffset(const METHODTOKEN& MethodToken, DWORD relOffset) |
| 5459 | { |
| 5460 | WRAPPER_NO_CONTRACT; |
| 5461 | |
| 5462 | MethodRegionInfo methodRegionInfo; |
| 5463 | JitTokenToMethodRegionInfo(MethodToken, &methodRegionInfo); |
| 5464 | |
| 5465 | if (relOffset < methodRegionInfo.hotSize) |
| 5466 | return methodRegionInfo.hotStartAddress + relOffset; |
| 5467 | |
| 5468 | SIZE_T coldOffset = relOffset - methodRegionInfo.hotSize; |
| 5469 | _ASSERTE(coldOffset < methodRegionInfo.coldSize); |
| 5470 | return methodRegionInfo.coldStartAddress + coldOffset; |
| 5471 | } |
| 5472 | |
| 5473 | BOOL NativeImageJitManager::JitCodeToMethodInfo(RangeSection * pRangeSection, |
| 5474 | PCODE currentPC, |
| 5475 | MethodDesc** ppMethodDesc, |
| 5476 | EECodeInfo * pCodeInfo) |
| 5477 | { |
| 5478 | CONTRACTL { |
| 5479 | SO_TOLERANT; |
| 5480 | NOTHROW; |
| 5481 | GC_NOTRIGGER; |
| 5482 | SUPPORTS_DAC; |
| 5483 | } CONTRACTL_END; |
| 5484 | |
| 5485 | TADDR currentInstr = PCODEToPINSTR(currentPC); |
| 5486 | |
| 5487 | Module * pModule = dac_cast<PTR_Module>(pRangeSection->pHeapListOrZapModule); |
| 5488 | |
| 5489 | NGenLayoutInfo * pLayoutInfo = pModule->GetNGenLayoutInfo(); |
| 5490 | DWORD iRange = 0; |
| 5491 | |
| 5492 | if (pLayoutInfo->m_CodeSections[0].IsInRange(currentInstr)) |
| 5493 | { |
| 5494 | iRange = 0; |
| 5495 | } |
| 5496 | else |
| 5497 | if (pLayoutInfo->m_CodeSections[1].IsInRange(currentInstr)) |
| 5498 | { |
| 5499 | iRange = 1; |
| 5500 | } |
| 5501 | else |
| 5502 | if (pLayoutInfo->m_CodeSections[2].IsInRange(currentInstr)) |
| 5503 | { |
| 5504 | iRange = 2; |
| 5505 | } |
| 5506 | else |
| 5507 | { |
| 5508 | return FALSE; |
| 5509 | } |
| 5510 | |
| 5511 | TADDR ImageBase = pRangeSection->LowAddress; |
| 5512 | |
| 5513 | DWORD RelativePc = (DWORD)(currentInstr - ImageBase); |
| 5514 | |
| 5515 | PTR_RUNTIME_FUNCTION FunctionEntry; |
| 5516 | |
| 5517 | if (iRange == 2) |
| 5518 | { |
| 5519 | int ColdMethodIndex = NativeUnwindInfoLookupTable::LookupUnwindInfoForMethod(RelativePc, |
| 5520 | pLayoutInfo->m_pRuntimeFunctions[2], |
| 5521 | 0, |
| 5522 | pLayoutInfo->m_nRuntimeFunctions[2] - 1); |
| 5523 | |
| 5524 | if (ColdMethodIndex < 0) |
| 5525 | return FALSE; |
| 5526 | |
| 5527 | #ifdef WIN64EXCEPTIONS |
| 5528 | // Save the raw entry |
| 5529 | int RawColdMethodIndex = ColdMethodIndex; |
| 5530 | |
| 5531 | PTR_CORCOMPILE_COLD_METHOD_ENTRY pColdCodeMap = pLayoutInfo->m_ColdCodeMap; |
| 5532 | |
| 5533 | while (pColdCodeMap[ColdMethodIndex].mainFunctionEntryRVA == 0) |
| 5534 | ColdMethodIndex--; |
| 5535 | |
| 5536 | FunctionEntry = dac_cast<PTR_RUNTIME_FUNCTION>(ImageBase + pColdCodeMap[ColdMethodIndex].mainFunctionEntryRVA); |
| 5537 | #else |
| 5538 | DWORD ColdUnwindData = pLayoutInfo->m_pRuntimeFunctions[2][ColdMethodIndex].UnwindData; |
| 5539 | _ASSERTE((ColdUnwindData & RUNTIME_FUNCTION_INDIRECT) != 0); |
| 5540 | FunctionEntry = dac_cast<PTR_RUNTIME_FUNCTION>(ImageBase + (ColdUnwindData & ~RUNTIME_FUNCTION_INDIRECT)); |
| 5541 | #endif |
| 5542 | |
| 5543 | if (ppMethodDesc) |
| 5544 | { |
| 5545 | DWORD methodDescRVA; |
| 5546 | |
| 5547 | COUNT_T iIndex = (COUNT_T)(FunctionEntry - pLayoutInfo->m_pRuntimeFunctions[0]); |
| 5548 | if (iIndex >= pLayoutInfo->m_nRuntimeFunctions[0]) |
| 5549 | { |
| 5550 | iIndex = (COUNT_T)(FunctionEntry - pLayoutInfo->m_pRuntimeFunctions[1]); |
| 5551 | _ASSERTE(iIndex < pLayoutInfo->m_nRuntimeFunctions[1]); |
| 5552 | methodDescRVA = pLayoutInfo->m_MethodDescs[1][iIndex]; |
| 5553 | } |
| 5554 | else |
| 5555 | { |
| 5556 | methodDescRVA = pLayoutInfo->m_MethodDescs[0][iIndex]; |
| 5557 | } |
| 5558 | _ASSERTE(methodDescRVA != NULL); |
| 5559 | |
| 5560 | // Note that the MethodDesc does not have to be restored. (It happens when we are called |
| 5561 | // from SetupGcCoverageForNativeMethod.) |
| 5562 | *ppMethodDesc = PTR_MethodDesc((methodDescRVA & ~HAS_EXCEPTION_INFO_MASK) + ImageBase); |
| 5563 | } |
| 5564 | |
| 5565 | if (pCodeInfo) |
| 5566 | { |
| 5567 | PTR_RUNTIME_FUNCTION ColdFunctionTable = pLayoutInfo->m_pRuntimeFunctions[2]; |
| 5568 | |
| 5569 | PTR_RUNTIME_FUNCTION ColdFunctionEntry = ColdFunctionTable + ColdMethodIndex; |
| 5570 | DWORD coldCodeOffset = (DWORD)(RelativePc - RUNTIME_FUNCTION__BeginAddress(ColdFunctionEntry)); |
| 5571 | pCodeInfo->m_relOffset = pLayoutInfo->m_ColdCodeMap[ColdMethodIndex].hotCodeSize + coldCodeOffset; |
| 5572 | |
| 5573 | // We are using RUNTIME_FUNCTION as METHODTOKEN |
| 5574 | pCodeInfo->m_methodToken = METHODTOKEN(pRangeSection, dac_cast<TADDR>(FunctionEntry)); |
| 5575 | |
| 5576 | #ifdef WIN64EXCEPTIONS |
| 5577 | PTR_RUNTIME_FUNCTION RawColdFunctionEntry = ColdFunctionTable + RawColdMethodIndex; |
| 5578 | #ifdef _TARGET_AMD64_ |
| 5579 | if ((RawColdFunctionEntry->UnwindData & RUNTIME_FUNCTION_INDIRECT) != 0) |
| 5580 | { |
| 5581 | RawColdFunctionEntry = PTR_RUNTIME_FUNCTION(ImageBase + (RawColdFunctionEntry->UnwindData & ~RUNTIME_FUNCTION_INDIRECT)); |
| 5582 | } |
| 5583 | #endif // _TARGET_AMD64_ |
| 5584 | pCodeInfo->m_pFunctionEntry = RawColdFunctionEntry; |
| 5585 | #endif |
| 5586 | } |
| 5587 | } |
| 5588 | else |
| 5589 | { |
| 5590 | PTR_DWORD pRuntimeFunctionLookupTable = dac_cast<PTR_DWORD>(pLayoutInfo->m_UnwindInfoLookupTable[iRange]); |
| 5591 | |
| 5592 | _ASSERTE(pRuntimeFunctionLookupTable != NULL); |
| 5593 | |
| 5594 | DWORD RelativeToCodeStart = (DWORD)(currentInstr - dac_cast<TADDR>(pLayoutInfo->m_CodeSections[iRange].StartAddress())); |
| 5595 | COUNT_T iStrideIndex = RelativeToCodeStart / RUNTIME_FUNCTION_LOOKUP_STRIDE; |
| 5596 | |
| 5597 | // The lookup table may not be big enough to cover the entire code range if there was padding inserted during NGen image layout. |
| 5598 | // The last entry is lookup table entry covers the rest of the code range in this case. |
| 5599 | if (iStrideIndex >= pLayoutInfo->m_UnwindInfoLookupTableEntryCount[iRange]) |
| 5600 | iStrideIndex = pLayoutInfo->m_UnwindInfoLookupTableEntryCount[iRange] - 1; |
| 5601 | |
| 5602 | int Low = pRuntimeFunctionLookupTable[iStrideIndex]; |
| 5603 | int High = pRuntimeFunctionLookupTable[iStrideIndex+1]; |
| 5604 | |
| 5605 | PTR_RUNTIME_FUNCTION FunctionTable = pLayoutInfo->m_pRuntimeFunctions[iRange]; |
| 5606 | PTR_DWORD pMethodDescs = pLayoutInfo->m_MethodDescs[iRange]; |
| 5607 | |
| 5608 | int MethodIndex = NativeUnwindInfoLookupTable::LookupUnwindInfoForMethod(RelativePc, |
| 5609 | FunctionTable, |
| 5610 | Low, |
| 5611 | High); |
| 5612 | |
| 5613 | if (MethodIndex < 0) |
| 5614 | return FALSE; |
| 5615 | |
| 5616 | #ifdef WIN64EXCEPTIONS |
| 5617 | // Save the raw entry |
| 5618 | PTR_RUNTIME_FUNCTION RawFunctionEntry = FunctionTable + MethodIndex;; |
| 5619 | |
| 5620 | // Skip funclets to get the method desc |
| 5621 | while (pMethodDescs[MethodIndex] == 0) |
| 5622 | MethodIndex--; |
| 5623 | #endif |
| 5624 | |
| 5625 | FunctionEntry = FunctionTable + MethodIndex; |
| 5626 | |
| 5627 | if (ppMethodDesc) |
| 5628 | { |
| 5629 | DWORD methodDescRVA = pMethodDescs[MethodIndex]; |
| 5630 | _ASSERTE(methodDescRVA != NULL); |
| 5631 | |
| 5632 | // Note that the MethodDesc does not have to be restored. (It happens when we are called |
| 5633 | // from SetupGcCoverageForNativeMethod.) |
| 5634 | *ppMethodDesc = PTR_MethodDesc((methodDescRVA & ~HAS_EXCEPTION_INFO_MASK) + ImageBase); |
| 5635 | |
| 5636 | // We are likely executing the code already or going to execute it soon. However, there are a few cases like |
| 5637 | // code:MethodTable::GetMethodDescForSlot where it is not the case. Log the code access here to avoid these |
| 5638 | // cases from touching cold code maps. |
| 5639 | g_IBCLogger.LogMethodCodeAccess(*ppMethodDesc); |
| 5640 | } |
| 5641 | |
| 5642 | // Get the function entry that corresponds to the real method desc. |
| 5643 | _ASSERTE((RelativePc >= RUNTIME_FUNCTION__BeginAddress(FunctionEntry))); |
| 5644 | |
| 5645 | if (pCodeInfo) |
| 5646 | { |
| 5647 | pCodeInfo->m_relOffset = (DWORD) |
| 5648 | (RelativePc - RUNTIME_FUNCTION__BeginAddress(FunctionEntry)); |
| 5649 | |
| 5650 | // We are using RUNTIME_FUNCTION as METHODTOKEN |
| 5651 | pCodeInfo->m_methodToken = METHODTOKEN(pRangeSection, dac_cast<TADDR>(FunctionEntry)); |
| 5652 | |
| 5653 | #ifdef WIN64EXCEPTIONS |
| 5654 | AMD64_ONLY(_ASSERTE((RawFunctionEntry->UnwindData & RUNTIME_FUNCTION_INDIRECT) == 0)); |
| 5655 | pCodeInfo->m_pFunctionEntry = RawFunctionEntry; |
| 5656 | #endif |
| 5657 | } |
| 5658 | } |
| 5659 | |
| 5660 | return TRUE; |
| 5661 | } |
| 5662 | |
| 5663 | #if defined(WIN64EXCEPTIONS) |
| 5664 | PTR_RUNTIME_FUNCTION NativeImageJitManager::LazyGetFunctionEntry(EECodeInfo * pCodeInfo) |
| 5665 | { |
| 5666 | CONTRACTL { |
| 5667 | NOTHROW; |
| 5668 | GC_NOTRIGGER; |
| 5669 | } CONTRACTL_END; |
| 5670 | |
| 5671 | if (!pCodeInfo->IsValid()) |
| 5672 | { |
| 5673 | return NULL; |
| 5674 | } |
| 5675 | |
| 5676 | // code:NativeImageJitManager::JitCodeToMethodInfo computes PTR_RUNTIME_FUNCTION eagerly. This path is only |
| 5677 | // reachable via EECodeInfo::GetMainFunctionInfo, and so we can just return the main entry. |
| 5678 | _ASSERTE(pCodeInfo->GetRelOffset() == 0); |
| 5679 | |
| 5680 | return dac_cast<PTR_RUNTIME_FUNCTION>(pCodeInfo->GetMethodToken().m_pCodeHeader); |
| 5681 | } |
| 5682 | |
| 5683 | TADDR NativeImageJitManager::GetFuncletStartAddress(EECodeInfo * pCodeInfo) |
| 5684 | { |
| 5685 | LIMITED_METHOD_DAC_CONTRACT; |
| 5686 | |
| 5687 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 5688 | NGenLayoutInfo * pLayoutInfo = JitTokenToZapModule(pCodeInfo->GetMethodToken())->GetNGenLayoutInfo(); |
| 5689 | |
| 5690 | if (pLayoutInfo->m_CodeSections[2].IsInRange(pCodeInfo->GetCodeAddress())) |
| 5691 | { |
| 5692 | // If the address is in the cold section, then we assume it is cold main function |
| 5693 | // code, NOT a funclet. So, don't do the backward walk: just return the start address |
| 5694 | // of the main function. |
| 5695 | // @ARMTODO: Handle hot/cold splitting with EH funclets |
| 5696 | return pCodeInfo->GetStartAddress(); |
| 5697 | } |
| 5698 | #endif |
| 5699 | |
| 5700 | return IJitManager::GetFuncletStartAddress(pCodeInfo); |
| 5701 | } |
| 5702 | |
| 5703 | static void GetFuncletStartOffsetsHelper(PCODE pCodeStart, SIZE_T size, SIZE_T ofsAdj, |
| 5704 | PTR_RUNTIME_FUNCTION pFunctionEntry, TADDR moduleBase, |
| 5705 | DWORD * pnFunclets, DWORD* pStartFuncletOffsets, DWORD dwLength) |
| 5706 | { |
| 5707 | _ASSERTE(FitsInU4((pCodeStart + size) - moduleBase)); |
| 5708 | DWORD endAddress = (DWORD)((pCodeStart + size) - moduleBase); |
| 5709 | |
| 5710 | // Entries are sorted and terminated by sentinel value (DWORD)-1 |
| 5711 | for ( ; RUNTIME_FUNCTION__BeginAddress(pFunctionEntry) < endAddress; pFunctionEntry++) |
| 5712 | { |
| 5713 | #ifdef _TARGET_AMD64_ |
| 5714 | _ASSERTE((pFunctionEntry->UnwindData & RUNTIME_FUNCTION_INDIRECT) == 0); |
| 5715 | #endif |
| 5716 | |
| 5717 | #if defined(EXCEPTION_DATA_SUPPORTS_FUNCTION_FRAGMENTS) |
| 5718 | if (IsFunctionFragment(moduleBase, pFunctionEntry)) |
| 5719 | { |
| 5720 | // This is a fragment (not the funclet beginning); skip it |
| 5721 | continue; |
| 5722 | } |
| 5723 | #endif // EXCEPTION_DATA_SUPPORTS_FUNCTION_FRAGMENTS |
| 5724 | |
| 5725 | if (*pnFunclets < dwLength) |
| 5726 | { |
| 5727 | TADDR funcletStartAddress = (moduleBase + RUNTIME_FUNCTION__BeginAddress(pFunctionEntry)) + ofsAdj; |
| 5728 | _ASSERTE(FitsInU4(funcletStartAddress - pCodeStart)); |
| 5729 | pStartFuncletOffsets[*pnFunclets] = (DWORD)(funcletStartAddress - pCodeStart); |
| 5730 | } |
| 5731 | (*pnFunclets)++; |
| 5732 | } |
| 5733 | } |
| 5734 | |
| 5735 | DWORD NativeImageJitManager::GetFuncletStartOffsets(const METHODTOKEN& MethodToken, DWORD* pStartFuncletOffsets, DWORD dwLength) |
| 5736 | { |
| 5737 | CONTRACTL |
| 5738 | { |
| 5739 | NOTHROW; |
| 5740 | GC_NOTRIGGER; |
| 5741 | } |
| 5742 | CONTRACTL_END; |
| 5743 | |
| 5744 | PTR_RUNTIME_FUNCTION pFirstFuncletFunctionEntry = dac_cast<PTR_RUNTIME_FUNCTION>(MethodToken.m_pCodeHeader) + 1; |
| 5745 | |
| 5746 | TADDR moduleBase = JitTokenToModuleBase(MethodToken); |
| 5747 | DWORD nFunclets = 0; |
| 5748 | MethodRegionInfo regionInfo; |
| 5749 | JitTokenToMethodRegionInfo(MethodToken, ®ionInfo); |
| 5750 | |
| 5751 | // pFirstFuncletFunctionEntry will work for ARM when passed to GetFuncletStartOffsetsHelper() |
| 5752 | // even if it is a fragment of the main body and not a RUNTIME_FUNCTION for the beginning |
| 5753 | // of the first hot funclet, because GetFuncletStartOffsetsHelper() will skip all the function |
| 5754 | // fragments until the first funclet, if any, is found. |
| 5755 | |
| 5756 | GetFuncletStartOffsetsHelper(regionInfo.hotStartAddress, regionInfo.hotSize, 0, |
| 5757 | pFirstFuncletFunctionEntry, moduleBase, |
| 5758 | &nFunclets, pStartFuncletOffsets, dwLength); |
| 5759 | |
| 5760 | // There are no funclets in cold section on ARM yet |
| 5761 | // @ARMTODO: support hot/cold splitting in functions with EH |
| 5762 | #if !defined(_TARGET_ARM_) && !defined(_TARGET_ARM64_) |
| 5763 | if (regionInfo.coldSize != NULL) |
| 5764 | { |
| 5765 | NGenLayoutInfo * pLayoutInfo = JitTokenToZapModule(MethodToken)->GetNGenLayoutInfo(); |
| 5766 | |
| 5767 | int iColdMethodIndex = NativeUnwindInfoLookupTable::LookupUnwindInfoForMethod( |
| 5768 | (DWORD)(regionInfo.coldStartAddress - moduleBase), |
| 5769 | pLayoutInfo->m_pRuntimeFunctions[2], |
| 5770 | 0, |
| 5771 | pLayoutInfo->m_nRuntimeFunctions[2] - 1); |
| 5772 | |
| 5773 | PTR_RUNTIME_FUNCTION pFunctionEntry = pLayoutInfo->m_pRuntimeFunctions[2] + iColdMethodIndex; |
| 5774 | |
| 5775 | _ASSERTE(regionInfo.coldStartAddress == moduleBase + RUNTIME_FUNCTION__BeginAddress(pFunctionEntry)); |
| 5776 | |
| 5777 | #ifdef _TARGET_AMD64_ |
| 5778 | // Skip cold part of the method body |
| 5779 | if ((pFunctionEntry->UnwindData & RUNTIME_FUNCTION_INDIRECT) != 0) |
| 5780 | pFunctionEntry++; |
| 5781 | #endif |
| 5782 | |
| 5783 | GetFuncletStartOffsetsHelper(regionInfo.coldStartAddress, regionInfo.coldSize, regionInfo.hotSize, |
| 5784 | pFunctionEntry, moduleBase, |
| 5785 | &nFunclets, pStartFuncletOffsets, dwLength); |
| 5786 | } |
| 5787 | #endif // !_TARGET_ARM_ && !_TARGET_ARM64 |
| 5788 | |
| 5789 | return nFunclets; |
| 5790 | } |
| 5791 | |
| 5792 | BOOL NativeImageJitManager::IsFilterFunclet(EECodeInfo * pCodeInfo) |
| 5793 | { |
| 5794 | CONTRACTL { |
| 5795 | NOTHROW; |
| 5796 | GC_NOTRIGGER; |
| 5797 | MODE_ANY; |
| 5798 | } |
| 5799 | CONTRACTL_END; |
| 5800 | |
| 5801 | if (!pCodeInfo->IsFunclet()) |
| 5802 | return FALSE; |
| 5803 | |
| 5804 | // |
| 5805 | // The generic IsFilterFunclet implementation is touching exception handling tables. |
| 5806 | // It is bad for working set because of it is sometimes called during GC stackwalks. |
| 5807 | // The optimized version for native images does not touch exception handling tables. |
| 5808 | // |
| 5809 | |
| 5810 | NGenLayoutInfo * pLayoutInfo = JitTokenToZapModule(pCodeInfo->GetMethodToken())->GetNGenLayoutInfo(); |
| 5811 | |
| 5812 | SIZE_T size; |
| 5813 | PTR_VOID pUnwindData = GetUnwindDataBlob(pCodeInfo->GetModuleBase(), pCodeInfo->GetFunctionEntry(), &size); |
| 5814 | _ASSERTE(pUnwindData != NULL); |
| 5815 | |
| 5816 | // Personality routine is always the last element of the unwind data |
| 5817 | DWORD rvaPersonalityRoutine = *(dac_cast<PTR_DWORD>(dac_cast<TADDR>(pUnwindData) + size) - 1); |
| 5818 | |
| 5819 | BOOL fRet = (pLayoutInfo->m_rvaFilterPersonalityRoutine == rvaPersonalityRoutine); |
| 5820 | |
| 5821 | // Verify that the optimized implementation is in sync with the slow implementation |
| 5822 | _ASSERTE(fRet == IJitManager::IsFilterFunclet(pCodeInfo)); |
| 5823 | |
| 5824 | return fRet; |
| 5825 | } |
| 5826 | |
| 5827 | #endif // WIN64EXCEPTIONS |
| 5828 | |
| 5829 | StubCodeBlockKind NativeImageJitManager::GetStubCodeBlockKind(RangeSection * pRangeSection, PCODE currentPC) |
| 5830 | { |
| 5831 | CONTRACTL |
| 5832 | { |
| 5833 | NOTHROW; |
| 5834 | GC_NOTRIGGER; |
| 5835 | SO_TOLERANT; |
| 5836 | MODE_ANY; |
| 5837 | } |
| 5838 | CONTRACTL_END; |
| 5839 | |
| 5840 | Module * pZapModule = dac_cast<PTR_Module>(pRangeSection->pHeapListOrZapModule); |
| 5841 | |
| 5842 | if (pZapModule->IsZappedPrecode(currentPC)) |
| 5843 | { |
| 5844 | return STUB_CODE_BLOCK_PRECODE; |
| 5845 | } |
| 5846 | |
| 5847 | NGenLayoutInfo * pLayoutInfo = pZapModule->GetNGenLayoutInfo(); |
| 5848 | _ASSERTE(pLayoutInfo != NULL); |
| 5849 | |
| 5850 | if (pLayoutInfo->m_JumpStubs.IsInRange(currentPC)) |
| 5851 | { |
| 5852 | return STUB_CODE_BLOCK_JUMPSTUB; |
| 5853 | } |
| 5854 | |
| 5855 | if (pLayoutInfo->m_StubLinkStubs.IsInRange(currentPC)) |
| 5856 | { |
| 5857 | return STUB_CODE_BLOCK_STUBLINK; |
| 5858 | } |
| 5859 | |
| 5860 | if (pLayoutInfo->m_VirtualMethodThunks.IsInRange(currentPC)) |
| 5861 | { |
| 5862 | return STUB_CODE_BLOCK_VIRTUAL_METHOD_THUNK; |
| 5863 | } |
| 5864 | |
| 5865 | if (pLayoutInfo->m_ExternalMethodThunks.IsInRange(currentPC)) |
| 5866 | { |
| 5867 | return STUB_CODE_BLOCK_EXTERNAL_METHOD_THUNK; |
| 5868 | } |
| 5869 | |
| 5870 | return STUB_CODE_BLOCK_UNKNOWN; |
| 5871 | } |
| 5872 | |
| 5873 | PTR_Module NativeImageJitManager::JitTokenToZapModule(const METHODTOKEN& MethodToken) |
| 5874 | { |
| 5875 | LIMITED_METHOD_DAC_CONTRACT; |
| 5876 | return dac_cast<PTR_Module>(MethodToken.m_pRangeSection->pHeapListOrZapModule); |
| 5877 | } |
| 5878 | void NativeImageJitManager::JitTokenToMethodRegionInfo(const METHODTOKEN& MethodToken, |
| 5879 | MethodRegionInfo * methodRegionInfo) |
| 5880 | { |
| 5881 | CONTRACTL { |
| 5882 | NOTHROW; |
| 5883 | GC_NOTRIGGER; |
| 5884 | SUPPORTS_DAC; |
| 5885 | } CONTRACTL_END; |
| 5886 | |
| 5887 | _ASSERTE(methodRegionInfo != NULL); |
| 5888 | |
| 5889 | // |
| 5890 | // Initialize methodRegionInfo assuming that the method is entirely hot. This is the common |
| 5891 | // case (either binary is not procedure split or the current method is all hot). We can |
| 5892 | // adjust these values later if necessary. |
| 5893 | // |
| 5894 | |
| 5895 | methodRegionInfo->hotStartAddress = JitTokenToStartAddress(MethodToken); |
| 5896 | methodRegionInfo->hotSize = GetCodeManager()->GetFunctionSize(GetGCInfoToken(MethodToken)); |
| 5897 | methodRegionInfo->coldStartAddress = 0; |
| 5898 | methodRegionInfo->coldSize = 0; |
| 5899 | |
| 5900 | RangeSection *rangeSection = MethodToken.m_pRangeSection; |
| 5901 | PREFIX_ASSUME(rangeSection != NULL); |
| 5902 | |
| 5903 | Module * pModule = dac_cast<PTR_Module>(rangeSection->pHeapListOrZapModule); |
| 5904 | |
| 5905 | NGenLayoutInfo * pLayoutInfo = pModule->GetNGenLayoutInfo(); |
| 5906 | |
| 5907 | // |
| 5908 | // If this module is not procedure split, then we're done. |
| 5909 | // |
| 5910 | if (pLayoutInfo->m_CodeSections[2].Size() == 0) |
| 5911 | return; |
| 5912 | |
| 5913 | // |
| 5914 | // Perform a binary search in the cold range section until we find our method |
| 5915 | // |
| 5916 | |
| 5917 | TADDR ImageBase = rangeSection->LowAddress; |
| 5918 | |
| 5919 | int Low = 0; |
| 5920 | int High = pLayoutInfo->m_nRuntimeFunctions[2] - 1; |
| 5921 | |
| 5922 | PTR_RUNTIME_FUNCTION pRuntimeFunctionTable = pLayoutInfo->m_pRuntimeFunctions[2]; |
| 5923 | PTR_CORCOMPILE_COLD_METHOD_ENTRY pColdCodeMap = pLayoutInfo->m_ColdCodeMap; |
| 5924 | |
| 5925 | while (Low <= High) |
| 5926 | { |
| 5927 | int Middle = Low + (High - Low) / 2; |
| 5928 | |
| 5929 | int ColdMethodIndex = Middle; |
| 5930 | |
| 5931 | PTR_RUNTIME_FUNCTION FunctionEntry; |
| 5932 | |
| 5933 | #ifdef WIN64EXCEPTIONS |
| 5934 | while (pColdCodeMap[ColdMethodIndex].mainFunctionEntryRVA == 0) |
| 5935 | ColdMethodIndex--; |
| 5936 | |
| 5937 | FunctionEntry = dac_cast<PTR_RUNTIME_FUNCTION>(ImageBase + pColdCodeMap[ColdMethodIndex].mainFunctionEntryRVA); |
| 5938 | #else |
| 5939 | DWORD ColdUnwindData = pRuntimeFunctionTable[ColdMethodIndex].UnwindData; |
| 5940 | _ASSERTE((ColdUnwindData & RUNTIME_FUNCTION_INDIRECT) != 0); |
| 5941 | FunctionEntry = dac_cast<PTR_RUNTIME_FUNCTION>(ImageBase + (ColdUnwindData & ~RUNTIME_FUNCTION_INDIRECT)); |
| 5942 | #endif |
| 5943 | |
| 5944 | if (FunctionEntry == dac_cast<PTR_RUNTIME_FUNCTION>(MethodToken.m_pCodeHeader)) |
| 5945 | { |
| 5946 | PTR_RUNTIME_FUNCTION ColdFunctionEntry = pRuntimeFunctionTable + ColdMethodIndex; |
| 5947 | |
| 5948 | methodRegionInfo->coldStartAddress = ImageBase + RUNTIME_FUNCTION__BeginAddress(ColdFunctionEntry); |
| 5949 | |
| 5950 | // |
| 5951 | // At this point methodRegionInfo->hotSize is set to the total size of |
| 5952 | // the method obtained from the GC info (we set that in the init code above). |
| 5953 | // Use that and coldHeader->hotCodeSize to compute the hot and cold code sizes. |
| 5954 | // |
| 5955 | |
| 5956 | ULONG hotCodeSize = pColdCodeMap[ColdMethodIndex].hotCodeSize; |
| 5957 | |
| 5958 | methodRegionInfo->coldSize = methodRegionInfo->hotSize - hotCodeSize; |
| 5959 | methodRegionInfo->hotSize = hotCodeSize; |
| 5960 | |
| 5961 | return; |
| 5962 | } |
| 5963 | else if (FunctionEntry < dac_cast<PTR_RUNTIME_FUNCTION>(MethodToken.m_pCodeHeader)) |
| 5964 | { |
| 5965 | Low = Middle + 1; |
| 5966 | } |
| 5967 | else |
| 5968 | { |
| 5969 | // Use ColdMethodIndex to take advantage of entries skipped while looking for method start |
| 5970 | High = ColdMethodIndex - 1; |
| 5971 | } |
| 5972 | } |
| 5973 | |
| 5974 | // |
| 5975 | // We didn't find it. Therefore this method doesn't have a cold section. |
| 5976 | // |
| 5977 | |
| 5978 | return; |
| 5979 | } |
| 5980 | |
| 5981 | #ifdef DACCESS_COMPILE |
| 5982 | |
| 5983 | void NativeImageJitManager::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 5984 | { |
| 5985 | IJitManager::EnumMemoryRegions(flags); |
| 5986 | } |
| 5987 | |
| 5988 | #if defined(WIN64EXCEPTIONS) |
| 5989 | |
| 5990 | // |
| 5991 | // To locate an entry in the function entry table (the program exceptions data directory), the debugger |
| 5992 | // performs a binary search over the table. This function reports the entries that are encountered in the |
| 5993 | // binary search. |
| 5994 | // |
| 5995 | // Parameters: |
| 5996 | // pRtf: The target function table entry to be located |
| 5997 | // pNativeLayout: A pointer to the loaded native layout for the module containing pRtf |
| 5998 | // |
| 5999 | static void EnumRuntimeFunctionEntriesToFindEntry(PTR_RUNTIME_FUNCTION pRtf, PTR_PEImageLayout pNativeLayout) |
| 6000 | { |
| 6001 | pRtf.EnumMem(); |
| 6002 | |
| 6003 | if (pNativeLayout == NULL) |
| 6004 | { |
| 6005 | return; |
| 6006 | } |
| 6007 | |
| 6008 | IMAGE_DATA_DIRECTORY * pProgramExceptionsDirectory = pNativeLayout->GetDirectoryEntry(IMAGE_DIRECTORY_ENTRY_EXCEPTION); |
| 6009 | if (!pProgramExceptionsDirectory || |
| 6010 | (pProgramExceptionsDirectory->Size == 0) || |
| 6011 | (pProgramExceptionsDirectory->Size % sizeof(T_RUNTIME_FUNCTION) != 0)) |
| 6012 | { |
| 6013 | // Program exceptions directory malformatted |
| 6014 | return; |
| 6015 | } |
| 6016 | |
| 6017 | PTR_BYTE moduleBase(pNativeLayout->GetBase()); |
| 6018 | PTR_RUNTIME_FUNCTION firstFunctionEntry(moduleBase + pProgramExceptionsDirectory->VirtualAddress); |
| 6019 | |
| 6020 | if (pRtf < firstFunctionEntry || |
| 6021 | ((dac_cast<TADDR>(pRtf) - dac_cast<TADDR>(firstFunctionEntry)) % sizeof(T_RUNTIME_FUNCTION) != 0)) |
| 6022 | { |
| 6023 | // Program exceptions directory malformatted |
| 6024 | return; |
| 6025 | } |
| 6026 | |
| 6027 | // Review conversion of size_t to ULONG. |
| 6028 | #if defined(_MSC_VER) |
| 6029 | #pragma warning(push) |
| 6030 | #pragma warning(disable:4267) |
| 6031 | #endif // defined(_MSC_VER) |
| 6032 | |
| 6033 | ULONG indexToLocate = pRtf - firstFunctionEntry; |
| 6034 | |
| 6035 | #if defined(_MSC_VER) |
| 6036 | #pragma warning(pop) |
| 6037 | #endif // defined(_MSC_VER) |
| 6038 | |
| 6039 | ULONG low = 0; // index in the function entry table of low end of search range |
| 6040 | ULONG high = (pProgramExceptionsDirectory->Size)/sizeof(T_RUNTIME_FUNCTION) - 1; // index of high end of search range |
| 6041 | ULONG mid = (low + high) /2; // index of entry to be compared |
| 6042 | |
| 6043 | if (indexToLocate > high) |
| 6044 | { |
| 6045 | return; |
| 6046 | } |
| 6047 | |
| 6048 | while (indexToLocate != mid) |
| 6049 | { |
| 6050 | PTR_RUNTIME_FUNCTION functionEntry = firstFunctionEntry + mid; |
| 6051 | functionEntry.EnumMem(); |
| 6052 | if (indexToLocate > mid) |
| 6053 | { |
| 6054 | low = mid + 1; |
| 6055 | } |
| 6056 | else |
| 6057 | { |
| 6058 | high = mid - 1; |
| 6059 | } |
| 6060 | mid = (low + high) /2; |
| 6061 | _ASSERTE( low <= mid && mid <= high ); |
| 6062 | } |
| 6063 | } |
| 6064 | |
| 6065 | // |
| 6066 | // EnumMemoryRegionsForMethodUnwindInfo - enumerate the memory necessary to read the unwind info for the |
| 6067 | // specified method. |
| 6068 | // |
| 6069 | // Note that in theory, a dump generation library could save the unwind information itself without help |
| 6070 | // from us, since it's stored in the image in the standard function table layout for Win64. However, |
| 6071 | // dump-generation libraries assume that the image will be available at debug time, and if the image |
| 6072 | // isn't available then it is acceptable for stackwalking to break. For ngen images (which are created |
| 6073 | // on the client), it usually isn't possible to have the image available at debug time, and so for minidumps |
| 6074 | // we must explicitly ensure the unwind information is saved into the dump. |
| 6075 | // |
| 6076 | // Arguments: |
| 6077 | // flags - EnumMem flags |
| 6078 | // pMD - MethodDesc for the method in question |
| 6079 | // |
| 6080 | void NativeImageJitManager::EnumMemoryRegionsForMethodUnwindInfo(CLRDataEnumMemoryFlags flags, EECodeInfo * pCodeInfo) |
| 6081 | { |
| 6082 | // Get the RUNTIME_FUNCTION entry for this method |
| 6083 | PTR_RUNTIME_FUNCTION pRtf = pCodeInfo->GetFunctionEntry(); |
| 6084 | |
| 6085 | if (pRtf==NULL) |
| 6086 | { |
| 6087 | return; |
| 6088 | } |
| 6089 | |
| 6090 | // Enumerate the function entry and other entries needed to locate it in the program exceptions directory |
| 6091 | Module * pModule = JitTokenToZapModule(pCodeInfo->GetMethodToken()); |
| 6092 | EnumRuntimeFunctionEntriesToFindEntry(pRtf, pModule->GetFile()->GetLoadedNative()); |
| 6093 | |
| 6094 | SIZE_T size; |
| 6095 | PTR_VOID pUnwindData = GetUnwindDataBlob(pCodeInfo->GetModuleBase(), pRtf, &size); |
| 6096 | if (pUnwindData != NULL) |
| 6097 | DacEnumMemoryRegion(PTR_TO_TADDR(pUnwindData), size); |
| 6098 | } |
| 6099 | |
| 6100 | #endif //WIN64EXCEPTIONS |
| 6101 | #endif // #ifdef DACCESS_COMPILE |
| 6102 | |
| 6103 | // Return start of exception info for a method, or 0 if the method has no EH info |
| 6104 | DWORD NativeExceptionInfoLookupTable::LookupExceptionInfoRVAForMethod(PTR_CORCOMPILE_EXCEPTION_LOOKUP_TABLE pExceptionLookupTable, |
| 6105 | COUNT_T numLookupEntries, |
| 6106 | DWORD methodStartRVA, |
| 6107 | COUNT_T* pSize) |
| 6108 | { |
| 6109 | CONTRACTL { |
| 6110 | NOTHROW; |
| 6111 | GC_NOTRIGGER; |
| 6112 | SUPPORTS_DAC; |
| 6113 | } CONTRACTL_END; |
| 6114 | |
| 6115 | _ASSERTE(pExceptionLookupTable != NULL); |
| 6116 | |
| 6117 | COUNT_T start = 0; |
| 6118 | COUNT_T end = numLookupEntries - 2; |
| 6119 | |
| 6120 | // The last entry in the lookup table (end-1) points to a sentinal entry. |
| 6121 | // The sentinal entry helps to determine the number of EH clauses for the last table entry. |
| 6122 | _ASSERTE(pExceptionLookupTable->ExceptionLookupEntry(numLookupEntries-1)->MethodStartRVA == (DWORD)-1); |
| 6123 | |
| 6124 | // Binary search the lookup table |
| 6125 | // Using linear search is faster once we get down to small number of entries. |
| 6126 | while (end - start > 10) |
| 6127 | { |
| 6128 | COUNT_T middle = start + (end - start) / 2; |
| 6129 | |
| 6130 | _ASSERTE(start < middle && middle < end); |
| 6131 | |
| 6132 | DWORD rva = pExceptionLookupTable->ExceptionLookupEntry(middle)->MethodStartRVA; |
| 6133 | |
| 6134 | if (methodStartRVA < rva) |
| 6135 | { |
| 6136 | end = middle - 1; |
| 6137 | } |
| 6138 | else |
| 6139 | { |
| 6140 | start = middle; |
| 6141 | } |
| 6142 | } |
| 6143 | |
| 6144 | for (COUNT_T i = start; i <= end; ++i) |
| 6145 | { |
| 6146 | DWORD rva = pExceptionLookupTable->ExceptionLookupEntry(i)->MethodStartRVA; |
| 6147 | if (methodStartRVA == rva) |
| 6148 | { |
| 6149 | CORCOMPILE_EXCEPTION_LOOKUP_TABLE_ENTRY *pEntry = pExceptionLookupTable->ExceptionLookupEntry(i); |
| 6150 | |
| 6151 | //Get the count of EH Clause entries |
| 6152 | CORCOMPILE_EXCEPTION_LOOKUP_TABLE_ENTRY * pNextEntry = pExceptionLookupTable->ExceptionLookupEntry(i + 1); |
| 6153 | *pSize = pNextEntry->ExceptionInfoRVA - pEntry->ExceptionInfoRVA; |
| 6154 | |
| 6155 | return pEntry->ExceptionInfoRVA; |
| 6156 | } |
| 6157 | } |
| 6158 | |
| 6159 | // Not found |
| 6160 | return 0; |
| 6161 | } |
| 6162 | |
| 6163 | int NativeUnwindInfoLookupTable::LookupUnwindInfoForMethod(DWORD RelativePc, |
| 6164 | PTR_RUNTIME_FUNCTION pRuntimeFunctionTable, |
| 6165 | int Low, |
| 6166 | int High) |
| 6167 | { |
| 6168 | CONTRACTL { |
| 6169 | SO_TOLERANT; |
| 6170 | NOTHROW; |
| 6171 | GC_NOTRIGGER; |
| 6172 | SUPPORTS_DAC; |
| 6173 | } CONTRACTL_END; |
| 6174 | |
| 6175 | |
| 6176 | #ifdef _TARGET_ARM_ |
| 6177 | RelativePc |= THUMB_CODE; |
| 6178 | #endif |
| 6179 | |
| 6180 | // Entries are sorted and terminated by sentinel value (DWORD)-1 |
| 6181 | |
| 6182 | // Binary search the RUNTIME_FUNCTION table |
| 6183 | // Use linear search once we get down to a small number of elements |
| 6184 | // to avoid Binary search overhead. |
| 6185 | while (High - Low > 10) |
| 6186 | { |
| 6187 | int Middle = Low + (High - Low) / 2; |
| 6188 | |
| 6189 | PTR_RUNTIME_FUNCTION pFunctionEntry = pRuntimeFunctionTable + Middle; |
| 6190 | if (RelativePc < pFunctionEntry->BeginAddress) |
| 6191 | { |
| 6192 | High = Middle - 1; |
| 6193 | } |
| 6194 | else |
| 6195 | { |
| 6196 | Low = Middle; |
| 6197 | } |
| 6198 | } |
| 6199 | |
| 6200 | for (int i = Low; i <= High; ++i) |
| 6201 | { |
| 6202 | // This is safe because of entries are terminated by sentinel value (DWORD)-1 |
| 6203 | PTR_RUNTIME_FUNCTION pNextFunctionEntry = pRuntimeFunctionTable + (i + 1); |
| 6204 | |
| 6205 | if (RelativePc < pNextFunctionEntry->BeginAddress) |
| 6206 | { |
| 6207 | PTR_RUNTIME_FUNCTION pFunctionEntry = pRuntimeFunctionTable + i; |
| 6208 | if (RelativePc >= pFunctionEntry->BeginAddress) |
| 6209 | { |
| 6210 | return i; |
| 6211 | } |
| 6212 | break; |
| 6213 | } |
| 6214 | } |
| 6215 | |
| 6216 | return -1; |
| 6217 | } |
| 6218 | |
| 6219 | BOOL NativeUnwindInfoLookupTable::HasExceptionInfo(NGenLayoutInfo * pNgenLayout, PTR_RUNTIME_FUNCTION pMainRuntimeFunction) |
| 6220 | { |
| 6221 | LIMITED_METHOD_DAC_CONTRACT; |
| 6222 | DWORD methodDescRVA = NativeUnwindInfoLookupTable::GetMethodDescRVA(pNgenLayout, pMainRuntimeFunction); |
| 6223 | return (methodDescRVA & HAS_EXCEPTION_INFO_MASK); |
| 6224 | } |
| 6225 | |
| 6226 | PTR_MethodDesc NativeUnwindInfoLookupTable::GetMethodDesc(NGenLayoutInfo * pNgenLayout, PTR_RUNTIME_FUNCTION pMainRuntimeFunction, TADDR moduleBase) |
| 6227 | { |
| 6228 | LIMITED_METHOD_DAC_CONTRACT; |
| 6229 | DWORD methodDescRVA = NativeUnwindInfoLookupTable::GetMethodDescRVA(pNgenLayout, pMainRuntimeFunction); |
| 6230 | return PTR_MethodDesc((methodDescRVA & ~HAS_EXCEPTION_INFO_MASK) + moduleBase); |
| 6231 | } |
| 6232 | |
| 6233 | DWORD NativeUnwindInfoLookupTable::GetMethodDescRVA(NGenLayoutInfo * pNgenLayout, PTR_RUNTIME_FUNCTION pMainRuntimeFunction) |
| 6234 | { |
| 6235 | LIMITED_METHOD_DAC_CONTRACT; |
| 6236 | |
| 6237 | COUNT_T iIndex = (COUNT_T)(pMainRuntimeFunction - pNgenLayout->m_pRuntimeFunctions[0]); |
| 6238 | DWORD rva = 0; |
| 6239 | if (iIndex >= pNgenLayout->m_nRuntimeFunctions[0]) |
| 6240 | { |
| 6241 | iIndex = (COUNT_T)(pMainRuntimeFunction - pNgenLayout->m_pRuntimeFunctions[1]); |
| 6242 | _ASSERTE(iIndex < pNgenLayout->m_nRuntimeFunctions[1]); |
| 6243 | rva = pNgenLayout->m_MethodDescs[1][iIndex]; |
| 6244 | } |
| 6245 | else |
| 6246 | { |
| 6247 | rva = pNgenLayout->m_MethodDescs[0][iIndex]; |
| 6248 | } |
| 6249 | _ASSERTE(rva != 0); |
| 6250 | |
| 6251 | return rva; |
| 6252 | } |
| 6253 | |
| 6254 | #endif // FEATURE_PREJIT |
| 6255 | |
| 6256 | #ifndef DACCESS_COMPILE |
| 6257 | |
| 6258 | //----------------------------------------------------------------------------- |
| 6259 | |
| 6260 | |
| 6261 | // Nirvana Support |
| 6262 | |
| 6263 | MethodDesc* __stdcall Nirvana_FindMethodDesc(PCODE ptr, BYTE*& hotStartAddress, size_t& hotSize, BYTE*& coldStartAddress, size_t & coldSize) |
| 6264 | { |
| 6265 | EECodeInfo codeInfo(ptr); |
| 6266 | if (!codeInfo.IsValid()) |
| 6267 | return NULL; |
| 6268 | |
| 6269 | IJitManager::MethodRegionInfo methodRegionInfo; |
| 6270 | codeInfo.GetMethodRegionInfo(&methodRegionInfo); |
| 6271 | |
| 6272 | hotStartAddress = (BYTE*)methodRegionInfo.hotStartAddress; |
| 6273 | hotSize = methodRegionInfo.hotSize; |
| 6274 | coldStartAddress = (BYTE*)methodRegionInfo.coldStartAddress; |
| 6275 | coldSize = methodRegionInfo.coldSize; |
| 6276 | |
| 6277 | return codeInfo.GetMethodDesc(); |
| 6278 | } |
| 6279 | |
| 6280 | |
| 6281 | bool Nirvana_GetMethodInfo(MethodDesc * pMD, BYTE*& hotStartAddress, size_t& hotSize, BYTE*& coldStartAddress, size_t & coldSize) |
| 6282 | { |
| 6283 | EECodeInfo codeInfo(pMD->GetNativeCode()); |
| 6284 | if (!codeInfo.IsValid()) |
| 6285 | return false; |
| 6286 | |
| 6287 | IJitManager::MethodRegionInfo methodRegionInfo; |
| 6288 | codeInfo.GetMethodRegionInfo(&methodRegionInfo); |
| 6289 | |
| 6290 | hotStartAddress = (BYTE*)methodRegionInfo.hotStartAddress; |
| 6291 | hotSize = methodRegionInfo.hotSize; |
| 6292 | coldStartAddress = (BYTE*)methodRegionInfo.coldStartAddress; |
| 6293 | coldSize = methodRegionInfo.coldSize; |
| 6294 | |
| 6295 | return true; |
| 6296 | } |
| 6297 | |
| 6298 | |
| 6299 | #include "sigformat.h" |
| 6300 | |
| 6301 | __forceinline bool Nirvana_PrintMethodDescWorker(__in_ecount(iBuffer) char * szBuffer, size_t iBuffer, MethodDesc * pMD, const char * pSigString) |
| 6302 | { |
| 6303 | if (iBuffer == 0) |
| 6304 | return false; |
| 6305 | |
| 6306 | szBuffer[0] = '\0'; |
| 6307 | pSigString = strchr(pSigString, ' '); |
| 6308 | |
| 6309 | if (pSigString == NULL) |
| 6310 | return false; |
| 6311 | |
| 6312 | ++pSigString; |
| 6313 | |
| 6314 | LPCUTF8 pNamespace; |
| 6315 | LPCUTF8 pClassName = pMD->GetMethodTable()->GetFullyQualifiedNameInfo(&pNamespace); |
| 6316 | |
| 6317 | if (pClassName == NULL) |
| 6318 | return false; |
| 6319 | |
| 6320 | if (*pNamespace != 0) |
| 6321 | { |
| 6322 | if (_snprintf_s(szBuffer, iBuffer, _TRUNCATE, "%s.%s.%s" , pNamespace, pClassName, pSigString) == -1) |
| 6323 | return false; |
| 6324 | } |
| 6325 | else |
| 6326 | { |
| 6327 | if (_snprintf_s(szBuffer, iBuffer, _TRUNCATE, "%s.%s" , pClassName, pSigString) == -1) |
| 6328 | return false; |
| 6329 | } |
| 6330 | |
| 6331 | _ASSERTE(szBuffer[0] != '\0'); |
| 6332 | |
| 6333 | return true; |
| 6334 | } |
| 6335 | |
| 6336 | bool __stdcall Nirvana_PrintMethodDesc(__in_ecount(iBuffer) char * szBuffer, size_t iBuffer, MethodDesc * pMD) |
| 6337 | { |
| 6338 | bool fResult = false; |
| 6339 | |
| 6340 | EX_TRY |
| 6341 | { |
| 6342 | NewHolder<SigFormat> pSig = new SigFormat(pMD, NULL, false); |
| 6343 | fResult = Nirvana_PrintMethodDescWorker(szBuffer, iBuffer, pMD, pSig->GetCString()); |
| 6344 | } |
| 6345 | EX_CATCH |
| 6346 | { |
| 6347 | fResult = false; |
| 6348 | } |
| 6349 | EX_END_CATCH(SwallowAllExceptions) |
| 6350 | |
| 6351 | return fResult; |
| 6352 | }; |
| 6353 | |
| 6354 | |
| 6355 | // Nirvana_Dummy() is a dummy function that is exported privately by ordinal only. |
| 6356 | // The sole purpose of this function is to reference Nirvana_FindMethodDesc(), |
| 6357 | // Nirvana_GetMethodInfo(), and Nirvana_PrintMethodDesc() so that they are not |
| 6358 | // inlined or removed by the compiler or the linker. |
| 6359 | |
| 6360 | DWORD __stdcall Nirvana_Dummy() |
| 6361 | { |
| 6362 | LIMITED_METHOD_CONTRACT; |
| 6363 | void * funcs[] = { |
| 6364 | (void*)Nirvana_FindMethodDesc, |
| 6365 | (void*)Nirvana_GetMethodInfo, |
| 6366 | (void*)Nirvana_PrintMethodDesc |
| 6367 | }; |
| 6368 | |
| 6369 | size_t n = sizeof(funcs) / sizeof(funcs[0]); |
| 6370 | |
| 6371 | size_t sum = 0; |
| 6372 | for (size_t i = 0; i < n; ++i) |
| 6373 | sum += (size_t)funcs[i]; |
| 6374 | |
| 6375 | return (DWORD)sum; |
| 6376 | } |
| 6377 | |
| 6378 | |
| 6379 | #endif // #ifndef DACCESS_COMPILE |
| 6380 | |
| 6381 | |
| 6382 | #ifdef FEATURE_PREJIT |
| 6383 | |
| 6384 | MethodIterator::MethodIterator(PTR_Module pModule, MethodIteratorOptions mio) |
| 6385 | { |
| 6386 | CONTRACTL |
| 6387 | { |
| 6388 | THROWS; |
| 6389 | GC_NOTRIGGER; |
| 6390 | } CONTRACTL_END; |
| 6391 | |
| 6392 | Init(pModule, pModule->GetNativeImage(), mio); |
| 6393 | } |
| 6394 | |
| 6395 | MethodIterator::MethodIterator(PTR_Module pModule, PEDecoder * pPEDecoder, MethodIteratorOptions mio) |
| 6396 | { |
| 6397 | CONTRACTL |
| 6398 | { |
| 6399 | THROWS; |
| 6400 | GC_NOTRIGGER; |
| 6401 | } CONTRACTL_END; |
| 6402 | |
| 6403 | Init(pModule, pPEDecoder, mio); |
| 6404 | } |
| 6405 | |
| 6406 | void MethodIterator::Init(PTR_Module pModule, PEDecoder * pPEDecoder, MethodIteratorOptions mio) |
| 6407 | { |
| 6408 | CONTRACTL |
| 6409 | { |
| 6410 | THROWS; |
| 6411 | GC_NOTRIGGER; |
| 6412 | } CONTRACTL_END; |
| 6413 | |
| 6414 | m_ModuleBase = dac_cast<TADDR>(pPEDecoder->GetBase()); |
| 6415 | |
| 6416 | methodIteratorOptions = mio; |
| 6417 | |
| 6418 | m_pNgenLayout = pModule->GetNGenLayoutInfo(); |
| 6419 | |
| 6420 | m_fHotMethodsDone = FALSE; |
| 6421 | m_CurrentRuntimeFunctionIndex = -1; |
| 6422 | m_CurrentColdRuntimeFunctionIndex = 0; |
| 6423 | } |
| 6424 | |
| 6425 | BOOL MethodIterator::Next() |
| 6426 | { |
| 6427 | CONTRACTL { |
| 6428 | NOTHROW; |
| 6429 | GC_NOTRIGGER; |
| 6430 | } CONTRACTL_END; |
| 6431 | |
| 6432 | m_CurrentRuntimeFunctionIndex ++; |
| 6433 | |
| 6434 | if (!m_fHotMethodsDone) |
| 6435 | { |
| 6436 | //iterate the hot methods |
| 6437 | if (methodIteratorOptions & Hot) |
| 6438 | { |
| 6439 | #ifdef WIN64EXCEPTIONS |
| 6440 | //Skip to the next method. |
| 6441 | // skip over method fragments and funclets. |
| 6442 | while (m_CurrentRuntimeFunctionIndex < m_pNgenLayout->m_nRuntimeFunctions[0]) |
| 6443 | { |
| 6444 | if (m_pNgenLayout->m_MethodDescs[0][m_CurrentRuntimeFunctionIndex] != 0) |
| 6445 | return TRUE; |
| 6446 | m_CurrentRuntimeFunctionIndex++; |
| 6447 | } |
| 6448 | #else |
| 6449 | if (m_CurrentRuntimeFunctionIndex < m_pNgenLayout->m_nRuntimeFunctions[0]) |
| 6450 | return TRUE; |
| 6451 | #endif |
| 6452 | } |
| 6453 | m_CurrentRuntimeFunctionIndex = 0; |
| 6454 | m_fHotMethodsDone = TRUE; |
| 6455 | } |
| 6456 | |
| 6457 | if (methodIteratorOptions & Unprofiled) |
| 6458 | { |
| 6459 | #ifdef WIN64EXCEPTIONS |
| 6460 | //Skip to the next method. |
| 6461 | // skip over method fragments and funclets. |
| 6462 | while (m_CurrentRuntimeFunctionIndex < m_pNgenLayout->m_nRuntimeFunctions[1]) |
| 6463 | { |
| 6464 | if (m_pNgenLayout->m_MethodDescs[1][m_CurrentRuntimeFunctionIndex] != 0) |
| 6465 | return TRUE; |
| 6466 | m_CurrentRuntimeFunctionIndex++; |
| 6467 | } |
| 6468 | #else |
| 6469 | if (m_CurrentRuntimeFunctionIndex < m_pNgenLayout->m_nRuntimeFunctions[1]) |
| 6470 | return TRUE; |
| 6471 | #endif |
| 6472 | } |
| 6473 | |
| 6474 | return FALSE; |
| 6475 | } |
| 6476 | |
| 6477 | PTR_MethodDesc MethodIterator::GetMethodDesc() |
| 6478 | { |
| 6479 | CONTRACTL |
| 6480 | { |
| 6481 | NOTHROW; |
| 6482 | GC_NOTRIGGER; |
| 6483 | } |
| 6484 | CONTRACTL_END; |
| 6485 | |
| 6486 | return NativeUnwindInfoLookupTable::GetMethodDesc(m_pNgenLayout, GetRuntimeFunction(), m_ModuleBase); |
| 6487 | } |
| 6488 | |
| 6489 | GCInfoToken MethodIterator::GetGCInfoToken() |
| 6490 | { |
| 6491 | LIMITED_METHOD_CONTRACT; |
| 6492 | |
| 6493 | // get the gc info from the RT function |
| 6494 | SIZE_T size; |
| 6495 | PTR_VOID pUnwindData = GetUnwindDataBlob(m_ModuleBase, GetRuntimeFunction(), &size); |
| 6496 | PTR_VOID gcInfo = (PTR_VOID)((PTR_BYTE)pUnwindData + size); |
| 6497 | // MethodIterator is used to iterate over methods of an NgenImage. |
| 6498 | // So, GcInfo version is always current |
| 6499 | return{ gcInfo, GCINFO_VERSION }; |
| 6500 | } |
| 6501 | |
| 6502 | TADDR MethodIterator::GetMethodStartAddress() |
| 6503 | { |
| 6504 | LIMITED_METHOD_CONTRACT; |
| 6505 | |
| 6506 | return m_ModuleBase + RUNTIME_FUNCTION__BeginAddress(GetRuntimeFunction()); |
| 6507 | } |
| 6508 | |
| 6509 | TADDR MethodIterator::GetMethodColdStartAddress() |
| 6510 | { |
| 6511 | LIMITED_METHOD_CONTRACT; |
| 6512 | |
| 6513 | PTR_RUNTIME_FUNCTION CurrentFunctionEntry = GetRuntimeFunction(); |
| 6514 | |
| 6515 | // |
| 6516 | // Catch up with hot code |
| 6517 | // |
| 6518 | for ( ; m_CurrentColdRuntimeFunctionIndex < m_pNgenLayout->m_nRuntimeFunctions[2]; m_CurrentColdRuntimeFunctionIndex++) |
| 6519 | { |
| 6520 | PTR_RUNTIME_FUNCTION ColdFunctionEntry = m_pNgenLayout->m_pRuntimeFunctions[2] + m_CurrentColdRuntimeFunctionIndex; |
| 6521 | |
| 6522 | PTR_RUNTIME_FUNCTION FunctionEntry; |
| 6523 | |
| 6524 | #ifdef WIN64EXCEPTIONS |
| 6525 | DWORD MainFunctionEntryRVA = m_pNgenLayout->m_ColdCodeMap[m_CurrentColdRuntimeFunctionIndex].mainFunctionEntryRVA; |
| 6526 | |
| 6527 | if (MainFunctionEntryRVA == 0) |
| 6528 | continue; |
| 6529 | |
| 6530 | FunctionEntry = dac_cast<PTR_RUNTIME_FUNCTION>(m_ModuleBase + MainFunctionEntryRVA); |
| 6531 | #else |
| 6532 | DWORD ColdUnwindData = ColdFunctionEntry->UnwindData; |
| 6533 | _ASSERTE((ColdUnwindData & RUNTIME_FUNCTION_INDIRECT) != 0); |
| 6534 | FunctionEntry = dac_cast<PTR_RUNTIME_FUNCTION>(m_ModuleBase + (ColdUnwindData & ~RUNTIME_FUNCTION_INDIRECT)); |
| 6535 | #endif |
| 6536 | |
| 6537 | if (CurrentFunctionEntry == FunctionEntry) |
| 6538 | { |
| 6539 | // we found a match |
| 6540 | return m_ModuleBase + RUNTIME_FUNCTION__BeginAddress(ColdFunctionEntry); |
| 6541 | } |
| 6542 | else |
| 6543 | if (CurrentFunctionEntry < FunctionEntry) |
| 6544 | { |
| 6545 | // method does not have cold code |
| 6546 | return NULL; |
| 6547 | } |
| 6548 | } |
| 6549 | |
| 6550 | return NULL; |
| 6551 | } |
| 6552 | |
| 6553 | PTR_RUNTIME_FUNCTION MethodIterator::GetRuntimeFunction() |
| 6554 | { |
| 6555 | LIMITED_METHOD_DAC_CONTRACT; |
| 6556 | _ASSERTE(m_CurrentRuntimeFunctionIndex >= 0); |
| 6557 | _ASSERTE(m_CurrentRuntimeFunctionIndex < (m_fHotMethodsDone ? m_pNgenLayout->m_nRuntimeFunctions[1] : m_pNgenLayout->m_nRuntimeFunctions[0])); |
| 6558 | return (m_fHotMethodsDone ? m_pNgenLayout->m_pRuntimeFunctions[1] : m_pNgenLayout->m_pRuntimeFunctions[0]) + m_CurrentRuntimeFunctionIndex; |
| 6559 | } |
| 6560 | |
| 6561 | ULONG MethodIterator::GetHotCodeSize() |
| 6562 | { |
| 6563 | LIMITED_METHOD_CONTRACT; |
| 6564 | _ASSERTE(GetMethodColdStartAddress() != NULL); |
| 6565 | return m_pNgenLayout->m_ColdCodeMap[m_CurrentColdRuntimeFunctionIndex].hotCodeSize; |
| 6566 | } |
| 6567 | |
| 6568 | void MethodIterator::GetMethodRegionInfo(IJitManager::MethodRegionInfo *methodRegionInfo) |
| 6569 | { |
| 6570 | CONTRACTL { |
| 6571 | NOTHROW; |
| 6572 | GC_NOTRIGGER; |
| 6573 | } CONTRACTL_END; |
| 6574 | |
| 6575 | methodRegionInfo->hotStartAddress = GetMethodStartAddress(); |
| 6576 | methodRegionInfo->coldStartAddress = GetMethodColdStartAddress(); |
| 6577 | GCInfoToken gcInfoToken = GetGCInfoToken(); |
| 6578 | methodRegionInfo->hotSize = ExecutionManager::GetNativeImageJitManager()->GetCodeManager()->GetFunctionSize(gcInfoToken); |
| 6579 | methodRegionInfo->coldSize = 0; |
| 6580 | |
| 6581 | if (methodRegionInfo->coldStartAddress != NULL) |
| 6582 | { |
| 6583 | // |
| 6584 | // At this point methodRegionInfo->hotSize is set to the total size of |
| 6585 | // the method obtained from the GC info (we set that in the init code above). |
| 6586 | // Use that and pCMH->hotCodeSize to compute the hot and cold code sizes. |
| 6587 | // |
| 6588 | |
| 6589 | ULONG hotCodeSize = GetHotCodeSize(); |
| 6590 | |
| 6591 | methodRegionInfo->coldSize = methodRegionInfo->hotSize - hotCodeSize; |
| 6592 | methodRegionInfo->hotSize = hotCodeSize; |
| 6593 | } |
| 6594 | } |
| 6595 | |
| 6596 | #endif // FEATURE_PREJIT |
| 6597 | |
| 6598 | |
| 6599 | |
| 6600 | #ifdef FEATURE_READYTORUN |
| 6601 | |
| 6602 | //*************************************************************************************** |
| 6603 | //*************************************************************************************** |
| 6604 | |
| 6605 | #ifndef DACCESS_COMPILE |
| 6606 | |
| 6607 | ReadyToRunJitManager::ReadyToRunJitManager() |
| 6608 | { |
| 6609 | WRAPPER_NO_CONTRACT; |
| 6610 | } |
| 6611 | |
| 6612 | #endif // #ifndef DACCESS_COMPILE |
| 6613 | |
| 6614 | ReadyToRunInfo * ReadyToRunJitManager::JitTokenToReadyToRunInfo(const METHODTOKEN& MethodToken) |
| 6615 | { |
| 6616 | CONTRACTL { |
| 6617 | NOTHROW; |
| 6618 | GC_NOTRIGGER; |
| 6619 | HOST_NOCALLS; |
| 6620 | SUPPORTS_DAC; |
| 6621 | } CONTRACTL_END; |
| 6622 | |
| 6623 | return dac_cast<PTR_Module>(MethodToken.m_pRangeSection->pHeapListOrZapModule)->GetReadyToRunInfo(); |
| 6624 | } |
| 6625 | |
| 6626 | UINT32 ReadyToRunJitManager::JitTokenToGCInfoVersion(const METHODTOKEN& MethodToken) |
| 6627 | { |
| 6628 | CONTRACTL{ |
| 6629 | NOTHROW; |
| 6630 | GC_NOTRIGGER; |
| 6631 | HOST_NOCALLS; |
| 6632 | SUPPORTS_DAC; |
| 6633 | } CONTRACTL_END; |
| 6634 | |
| 6635 | READYTORUN_HEADER * = JitTokenToReadyToRunInfo(MethodToken)->GetImage()->GetReadyToRunHeader(); |
| 6636 | |
| 6637 | return GCInfoToken::ReadyToRunVersionToGcInfoVersion(header->MajorVersion); |
| 6638 | } |
| 6639 | |
| 6640 | PTR_RUNTIME_FUNCTION ReadyToRunJitManager::JitTokenToRuntimeFunction(const METHODTOKEN& MethodToken) |
| 6641 | { |
| 6642 | CONTRACTL { |
| 6643 | NOTHROW; |
| 6644 | GC_NOTRIGGER; |
| 6645 | HOST_NOCALLS; |
| 6646 | SUPPORTS_DAC; |
| 6647 | } CONTRACTL_END; |
| 6648 | |
| 6649 | return dac_cast<PTR_RUNTIME_FUNCTION>(MethodToken.m_pCodeHeader); |
| 6650 | } |
| 6651 | |
| 6652 | TADDR ReadyToRunJitManager::JitTokenToStartAddress(const METHODTOKEN& MethodToken) |
| 6653 | { |
| 6654 | CONTRACTL { |
| 6655 | NOTHROW; |
| 6656 | GC_NOTRIGGER; |
| 6657 | HOST_NOCALLS; |
| 6658 | SUPPORTS_DAC; |
| 6659 | } CONTRACTL_END; |
| 6660 | |
| 6661 | return JitTokenToModuleBase(MethodToken) + |
| 6662 | RUNTIME_FUNCTION__BeginAddress(dac_cast<PTR_RUNTIME_FUNCTION>(MethodToken.m_pCodeHeader)); |
| 6663 | } |
| 6664 | |
| 6665 | GCInfoToken ReadyToRunJitManager::GetGCInfoToken(const METHODTOKEN& MethodToken) |
| 6666 | { |
| 6667 | CONTRACTL { |
| 6668 | NOTHROW; |
| 6669 | GC_NOTRIGGER; |
| 6670 | HOST_NOCALLS; |
| 6671 | SUPPORTS_DAC; |
| 6672 | } CONTRACTL_END; |
| 6673 | |
| 6674 | PTR_RUNTIME_FUNCTION pRuntimeFunction = JitTokenToRuntimeFunction(MethodToken); |
| 6675 | TADDR baseAddress = JitTokenToModuleBase(MethodToken); |
| 6676 | |
| 6677 | #ifndef DACCESS_COMPILE |
| 6678 | if (g_IBCLogger.InstrEnabled()) |
| 6679 | { |
| 6680 | ReadyToRunInfo * pInfo = JitTokenToReadyToRunInfo(MethodToken); |
| 6681 | MethodDesc * pMD = pInfo->GetMethodDescForEntryPoint(JitTokenToStartAddress(MethodToken)); |
| 6682 | g_IBCLogger.LogMethodGCInfoAccess(pMD); |
| 6683 | } |
| 6684 | #endif |
| 6685 | |
| 6686 | SIZE_T nUnwindDataSize; |
| 6687 | PTR_VOID pUnwindData = GetUnwindDataBlob(baseAddress, pRuntimeFunction, &nUnwindDataSize); |
| 6688 | |
| 6689 | // GCInfo immediatelly follows unwind data |
| 6690 | PTR_BYTE gcInfo = dac_cast<PTR_BYTE>(pUnwindData) + nUnwindDataSize; |
| 6691 | UINT32 gcInfoVersion = JitTokenToGCInfoVersion(MethodToken); |
| 6692 | |
| 6693 | return{ gcInfo, gcInfoVersion }; |
| 6694 | } |
| 6695 | |
| 6696 | unsigned ReadyToRunJitManager::InitializeEHEnumeration(const METHODTOKEN& MethodToken, EH_CLAUSE_ENUMERATOR* pEnumState) |
| 6697 | { |
| 6698 | CONTRACTL { |
| 6699 | NOTHROW; |
| 6700 | GC_NOTRIGGER; |
| 6701 | } CONTRACTL_END; |
| 6702 | |
| 6703 | ReadyToRunInfo * pReadyToRunInfo = JitTokenToReadyToRunInfo(MethodToken); |
| 6704 | |
| 6705 | IMAGE_DATA_DIRECTORY * pExceptionInfoDir = pReadyToRunInfo->FindSection(READYTORUN_SECTION_EXCEPTION_INFO); |
| 6706 | if (pExceptionInfoDir == NULL) |
| 6707 | return 0; |
| 6708 | |
| 6709 | PEImageLayout * pLayout = pReadyToRunInfo->GetImage(); |
| 6710 | |
| 6711 | PTR_CORCOMPILE_EXCEPTION_LOOKUP_TABLE pExceptionLookupTable = dac_cast<PTR_CORCOMPILE_EXCEPTION_LOOKUP_TABLE>(pLayout->GetRvaData(pExceptionInfoDir->VirtualAddress)); |
| 6712 | |
| 6713 | COUNT_T numLookupTableEntries = (COUNT_T)(pExceptionInfoDir->Size / sizeof(CORCOMPILE_EXCEPTION_LOOKUP_TABLE_ENTRY)); |
| 6714 | // at least 2 entries (1 valid entry + 1 sentinal entry) |
| 6715 | _ASSERTE(numLookupTableEntries >= 2); |
| 6716 | |
| 6717 | DWORD methodStartRVA = (DWORD)(JitTokenToStartAddress(MethodToken) - JitTokenToModuleBase(MethodToken)); |
| 6718 | |
| 6719 | COUNT_T ehInfoSize = 0; |
| 6720 | DWORD exceptionInfoRVA = NativeExceptionInfoLookupTable::LookupExceptionInfoRVAForMethod(pExceptionLookupTable, |
| 6721 | numLookupTableEntries, |
| 6722 | methodStartRVA, |
| 6723 | &ehInfoSize); |
| 6724 | if (exceptionInfoRVA == 0) |
| 6725 | return 0; |
| 6726 | |
| 6727 | pEnumState->iCurrentPos = 0; |
| 6728 | pEnumState->pExceptionClauseArray = JitTokenToModuleBase(MethodToken) + exceptionInfoRVA; |
| 6729 | |
| 6730 | return ehInfoSize / sizeof(CORCOMPILE_EXCEPTION_CLAUSE); |
| 6731 | } |
| 6732 | |
| 6733 | PTR_EXCEPTION_CLAUSE_TOKEN ReadyToRunJitManager::GetNextEHClause(EH_CLAUSE_ENUMERATOR* pEnumState, |
| 6734 | EE_ILEXCEPTION_CLAUSE* pEHClauseOut) |
| 6735 | { |
| 6736 | CONTRACTL { |
| 6737 | NOTHROW; |
| 6738 | GC_NOTRIGGER; |
| 6739 | } CONTRACTL_END; |
| 6740 | |
| 6741 | unsigned iCurrentPos = pEnumState->iCurrentPos; |
| 6742 | pEnumState->iCurrentPos++; |
| 6743 | |
| 6744 | CORCOMPILE_EXCEPTION_CLAUSE* pClause = &(dac_cast<PTR_CORCOMPILE_EXCEPTION_CLAUSE>(pEnumState->pExceptionClauseArray)[iCurrentPos]); |
| 6745 | |
| 6746 | // copy to the input parmeter, this is a nice abstraction for the future |
| 6747 | // if we want to compress the Clause encoding, we can do without affecting the call sites |
| 6748 | pEHClauseOut->TryStartPC = pClause->TryStartPC; |
| 6749 | pEHClauseOut->TryEndPC = pClause->TryEndPC; |
| 6750 | pEHClauseOut->HandlerStartPC = pClause->HandlerStartPC; |
| 6751 | pEHClauseOut->HandlerEndPC = pClause->HandlerEndPC; |
| 6752 | pEHClauseOut->Flags = pClause->Flags; |
| 6753 | pEHClauseOut->FilterOffset = pClause->FilterOffset; |
| 6754 | |
| 6755 | return dac_cast<PTR_EXCEPTION_CLAUSE_TOKEN>(pClause); |
| 6756 | } |
| 6757 | |
| 6758 | StubCodeBlockKind ReadyToRunJitManager::GetStubCodeBlockKind(RangeSection * pRangeSection, PCODE currentPC) |
| 6759 | { |
| 6760 | CONTRACTL |
| 6761 | { |
| 6762 | NOTHROW; |
| 6763 | GC_NOTRIGGER; |
| 6764 | SO_TOLERANT; |
| 6765 | MODE_ANY; |
| 6766 | } |
| 6767 | CONTRACTL_END; |
| 6768 | |
| 6769 | DWORD rva = (DWORD)(currentPC - pRangeSection->LowAddress); |
| 6770 | |
| 6771 | ReadyToRunInfo * pReadyToRunInfo = dac_cast<PTR_Module>(pRangeSection->pHeapListOrZapModule)->GetReadyToRunInfo(); |
| 6772 | |
| 6773 | IMAGE_DATA_DIRECTORY * pDelayLoadMethodCallThunksDir = pReadyToRunInfo->FindSection(READYTORUN_SECTION_DELAYLOAD_METHODCALL_THUNKS); |
| 6774 | if (pDelayLoadMethodCallThunksDir != NULL) |
| 6775 | { |
| 6776 | if (pDelayLoadMethodCallThunksDir->VirtualAddress <= rva |
| 6777 | && rva < pDelayLoadMethodCallThunksDir->VirtualAddress + pDelayLoadMethodCallThunksDir->Size) |
| 6778 | return STUB_CODE_BLOCK_METHOD_CALL_THUNK; |
| 6779 | } |
| 6780 | |
| 6781 | return STUB_CODE_BLOCK_UNKNOWN; |
| 6782 | } |
| 6783 | |
| 6784 | #ifndef DACCESS_COMPILE |
| 6785 | |
| 6786 | TypeHandle ReadyToRunJitManager::ResolveEHClause(EE_ILEXCEPTION_CLAUSE* pEHClause, |
| 6787 | CrawlFrame* pCf) |
| 6788 | { |
| 6789 | CONTRACTL { |
| 6790 | THROWS; |
| 6791 | GC_TRIGGERS; |
| 6792 | } CONTRACTL_END; |
| 6793 | |
| 6794 | _ASSERTE(NULL != pCf); |
| 6795 | _ASSERTE(NULL != pEHClause); |
| 6796 | _ASSERTE(IsTypedHandler(pEHClause)); |
| 6797 | |
| 6798 | MethodDesc *pMD = PTR_MethodDesc(pCf->GetFunction()); |
| 6799 | |
| 6800 | _ASSERTE(pMD != NULL); |
| 6801 | |
| 6802 | Module* pModule = pMD->GetModule(); |
| 6803 | PREFIX_ASSUME(pModule != NULL); |
| 6804 | |
| 6805 | SigTypeContext typeContext(pMD); |
| 6806 | VarKind k = hasNoVars; |
| 6807 | |
| 6808 | mdToken typeTok = pEHClause->ClassToken; |
| 6809 | |
| 6810 | // In the vast majority of cases the code un der the "if" below |
| 6811 | // will not be executed. |
| 6812 | // |
| 6813 | // First grab the representative instantiations. For code |
| 6814 | // shared by multiple generic instantiations these are the |
| 6815 | // canonical (representative) instantiation. |
| 6816 | if (TypeFromToken(typeTok) == mdtTypeSpec) |
| 6817 | { |
| 6818 | PCCOR_SIGNATURE pSig; |
| 6819 | ULONG cSig; |
| 6820 | IfFailThrow(pModule->GetMDImport()->GetTypeSpecFromToken(typeTok, &pSig, &cSig)); |
| 6821 | |
| 6822 | SigPointer psig(pSig, cSig); |
| 6823 | k = psig.IsPolyType(&typeContext); |
| 6824 | |
| 6825 | // Grab the active class and method instantiation. This exact instantiation is only |
| 6826 | // needed in the corner case of "generic" exception catching in shared |
| 6827 | // generic code. We don't need the exact instantiation if the token |
| 6828 | // doesn't contain E_T_VAR or E_T_MVAR. |
| 6829 | if ((k & hasSharableVarsMask) != 0) |
| 6830 | { |
| 6831 | Instantiation classInst; |
| 6832 | Instantiation methodInst; |
| 6833 | pCf->GetExactGenericInstantiations(&classInst,&methodInst); |
| 6834 | SigTypeContext::InitTypeContext(pMD,classInst, methodInst,&typeContext); |
| 6835 | } |
| 6836 | } |
| 6837 | |
| 6838 | return ClassLoader::LoadTypeDefOrRefOrSpecThrowing(pModule, typeTok, &typeContext, |
| 6839 | ClassLoader::ReturnNullIfNotFound); |
| 6840 | } |
| 6841 | |
| 6842 | #endif // #ifndef DACCESS_COMPILE |
| 6843 | |
| 6844 | //----------------------------------------------------------------------------- |
| 6845 | // Ngen info manager |
| 6846 | //----------------------------------------------------------------------------- |
| 6847 | BOOL ReadyToRunJitManager::GetBoundariesAndVars( |
| 6848 | const DebugInfoRequest & request, |
| 6849 | IN FP_IDS_NEW fpNew, IN void * pNewData, |
| 6850 | OUT ULONG32 * pcMap, |
| 6851 | OUT ICorDebugInfo::OffsetMapping **ppMap, |
| 6852 | OUT ULONG32 * pcVars, |
| 6853 | OUT ICorDebugInfo::NativeVarInfo **ppVars) |
| 6854 | { |
| 6855 | CONTRACTL { |
| 6856 | THROWS; // on OOM. |
| 6857 | GC_NOTRIGGER; // getting vars shouldn't trigger |
| 6858 | SUPPORTS_DAC; |
| 6859 | } CONTRACTL_END; |
| 6860 | |
| 6861 | EECodeInfo codeInfo(request.GetStartAddress()); |
| 6862 | if (!codeInfo.IsValid()) |
| 6863 | return FALSE; |
| 6864 | |
| 6865 | ReadyToRunInfo * pReadyToRunInfo = JitTokenToReadyToRunInfo(codeInfo.GetMethodToken()); |
| 6866 | PTR_RUNTIME_FUNCTION pRuntimeFunction = JitTokenToRuntimeFunction(codeInfo.GetMethodToken()); |
| 6867 | |
| 6868 | PTR_BYTE pDebugInfo = pReadyToRunInfo->GetDebugInfo(pRuntimeFunction); |
| 6869 | if (pDebugInfo == NULL) |
| 6870 | return FALSE; |
| 6871 | |
| 6872 | // Uncompress. This allocates memory and may throw. |
| 6873 | CompressDebugInfo::RestoreBoundariesAndVars( |
| 6874 | fpNew, pNewData, // allocators |
| 6875 | pDebugInfo, // input |
| 6876 | pcMap, ppMap, |
| 6877 | pcVars, ppVars); // output |
| 6878 | |
| 6879 | return TRUE; |
| 6880 | } |
| 6881 | |
| 6882 | #ifdef DACCESS_COMPILE |
| 6883 | // |
| 6884 | // Need to write out debug info |
| 6885 | // |
| 6886 | void ReadyToRunJitManager::EnumMemoryRegionsForMethodDebugInfo(CLRDataEnumMemoryFlags flags, MethodDesc * pMD) |
| 6887 | { |
| 6888 | SUPPORTS_DAC; |
| 6889 | |
| 6890 | EECodeInfo codeInfo(pMD->GetNativeCode()); |
| 6891 | if (!codeInfo.IsValid()) |
| 6892 | return; |
| 6893 | |
| 6894 | ReadyToRunInfo * pReadyToRunInfo = JitTokenToReadyToRunInfo(codeInfo.GetMethodToken()); |
| 6895 | PTR_RUNTIME_FUNCTION pRuntimeFunction = JitTokenToRuntimeFunction(codeInfo.GetMethodToken()); |
| 6896 | |
| 6897 | PTR_BYTE pDebugInfo = pReadyToRunInfo->GetDebugInfo(pRuntimeFunction); |
| 6898 | if (pDebugInfo == NULL) |
| 6899 | return; |
| 6900 | |
| 6901 | CompressDebugInfo::EnumMemoryRegions(flags, pDebugInfo); |
| 6902 | } |
| 6903 | #endif |
| 6904 | |
| 6905 | PCODE ReadyToRunJitManager::GetCodeAddressForRelOffset(const METHODTOKEN& MethodToken, DWORD relOffset) |
| 6906 | { |
| 6907 | WRAPPER_NO_CONTRACT; |
| 6908 | |
| 6909 | MethodRegionInfo methodRegionInfo; |
| 6910 | JitTokenToMethodRegionInfo(MethodToken, &methodRegionInfo); |
| 6911 | |
| 6912 | if (relOffset < methodRegionInfo.hotSize) |
| 6913 | return methodRegionInfo.hotStartAddress + relOffset; |
| 6914 | |
| 6915 | SIZE_T coldOffset = relOffset - methodRegionInfo.hotSize; |
| 6916 | _ASSERTE(coldOffset < methodRegionInfo.coldSize); |
| 6917 | return methodRegionInfo.coldStartAddress + coldOffset; |
| 6918 | } |
| 6919 | |
| 6920 | BOOL ReadyToRunJitManager::JitCodeToMethodInfo(RangeSection * pRangeSection, |
| 6921 | PCODE currentPC, |
| 6922 | MethodDesc** ppMethodDesc, |
| 6923 | OUT EECodeInfo * pCodeInfo) |
| 6924 | { |
| 6925 | CONTRACTL { |
| 6926 | NOTHROW; |
| 6927 | GC_NOTRIGGER; |
| 6928 | SO_TOLERANT; |
| 6929 | SUPPORTS_DAC; |
| 6930 | } CONTRACTL_END; |
| 6931 | |
| 6932 | // READYTORUN: FUTURE: Hot-cold spliting |
| 6933 | |
| 6934 | TADDR currentInstr = PCODEToPINSTR(currentPC); |
| 6935 | |
| 6936 | TADDR ImageBase = pRangeSection->LowAddress; |
| 6937 | |
| 6938 | DWORD RelativePc = (DWORD)(currentInstr - ImageBase); |
| 6939 | |
| 6940 | Module * pModule = dac_cast<PTR_Module>(pRangeSection->pHeapListOrZapModule); |
| 6941 | ReadyToRunInfo * pInfo = pModule->GetReadyToRunInfo(); |
| 6942 | |
| 6943 | COUNT_T nRuntimeFunctions = pInfo->m_nRuntimeFunctions; |
| 6944 | PTR_RUNTIME_FUNCTION pRuntimeFunctions = pInfo->m_pRuntimeFunctions; |
| 6945 | |
| 6946 | int MethodIndex = NativeUnwindInfoLookupTable::LookupUnwindInfoForMethod(RelativePc, |
| 6947 | pRuntimeFunctions, |
| 6948 | 0, |
| 6949 | nRuntimeFunctions - 1); |
| 6950 | |
| 6951 | if (MethodIndex < 0) |
| 6952 | return FALSE; |
| 6953 | |
| 6954 | if (ppMethodDesc == NULL && pCodeInfo == NULL) |
| 6955 | { |
| 6956 | // Bail early if caller doesn't care about the MethodDesc or EECodeInfo. |
| 6957 | // Avoiding the method desc lookups below also prevents deadlocks when this |
| 6958 | // is called from IsManagedCode. |
| 6959 | return TRUE; |
| 6960 | } |
| 6961 | |
| 6962 | #ifdef WIN64EXCEPTIONS |
| 6963 | // Save the raw entry |
| 6964 | PTR_RUNTIME_FUNCTION RawFunctionEntry = pRuntimeFunctions + MethodIndex; |
| 6965 | |
| 6966 | MethodDesc *pMethodDesc; |
| 6967 | while ((pMethodDesc = pInfo->GetMethodDescForEntryPoint(ImageBase + RUNTIME_FUNCTION__BeginAddress(pRuntimeFunctions + MethodIndex))) == NULL) |
| 6968 | MethodIndex--; |
| 6969 | #endif |
| 6970 | |
| 6971 | PTR_RUNTIME_FUNCTION FunctionEntry = pRuntimeFunctions + MethodIndex; |
| 6972 | |
| 6973 | if (ppMethodDesc) |
| 6974 | { |
| 6975 | #ifdef WIN64EXCEPTIONS |
| 6976 | *ppMethodDesc = pMethodDesc; |
| 6977 | #else |
| 6978 | *ppMethodDesc = pInfo->GetMethodDescForEntryPoint(ImageBase + RUNTIME_FUNCTION__BeginAddress(FunctionEntry)); |
| 6979 | #endif |
| 6980 | _ASSERTE(*ppMethodDesc != NULL); |
| 6981 | } |
| 6982 | |
| 6983 | if (pCodeInfo) |
| 6984 | { |
| 6985 | pCodeInfo->m_relOffset = (DWORD) |
| 6986 | (RelativePc - RUNTIME_FUNCTION__BeginAddress(FunctionEntry)); |
| 6987 | |
| 6988 | // We are using RUNTIME_FUNCTION as METHODTOKEN |
| 6989 | pCodeInfo->m_methodToken = METHODTOKEN(pRangeSection, dac_cast<TADDR>(FunctionEntry)); |
| 6990 | |
| 6991 | #ifdef WIN64EXCEPTIONS |
| 6992 | AMD64_ONLY(_ASSERTE((RawFunctionEntry->UnwindData & RUNTIME_FUNCTION_INDIRECT) == 0)); |
| 6993 | pCodeInfo->m_pFunctionEntry = RawFunctionEntry; |
| 6994 | #endif |
| 6995 | } |
| 6996 | |
| 6997 | return TRUE; |
| 6998 | } |
| 6999 | |
| 7000 | #if defined(WIN64EXCEPTIONS) |
| 7001 | PTR_RUNTIME_FUNCTION ReadyToRunJitManager::LazyGetFunctionEntry(EECodeInfo * pCodeInfo) |
| 7002 | { |
| 7003 | CONTRACTL { |
| 7004 | NOTHROW; |
| 7005 | GC_NOTRIGGER; |
| 7006 | } CONTRACTL_END; |
| 7007 | |
| 7008 | if (!pCodeInfo->IsValid()) |
| 7009 | { |
| 7010 | return NULL; |
| 7011 | } |
| 7012 | |
| 7013 | // code:ReadyToRunJitManager::JitCodeToMethodInfo computes PTR_RUNTIME_FUNCTION eagerly. This path is only |
| 7014 | // reachable via EECodeInfo::GetMainFunctionInfo, and so we can just return the main entry. |
| 7015 | _ASSERTE(pCodeInfo->GetRelOffset() == 0); |
| 7016 | |
| 7017 | return dac_cast<PTR_RUNTIME_FUNCTION>(pCodeInfo->GetMethodToken().m_pCodeHeader); |
| 7018 | } |
| 7019 | |
| 7020 | TADDR ReadyToRunJitManager::GetFuncletStartAddress(EECodeInfo * pCodeInfo) |
| 7021 | { |
| 7022 | LIMITED_METHOD_DAC_CONTRACT; |
| 7023 | |
| 7024 | // READYTORUN: FUTURE: Hot-cold spliting |
| 7025 | |
| 7026 | return IJitManager::GetFuncletStartAddress(pCodeInfo); |
| 7027 | } |
| 7028 | |
| 7029 | DWORD ReadyToRunJitManager::GetFuncletStartOffsets(const METHODTOKEN& MethodToken, DWORD* pStartFuncletOffsets, DWORD dwLength) |
| 7030 | { |
| 7031 | PTR_RUNTIME_FUNCTION pFirstFuncletFunctionEntry = dac_cast<PTR_RUNTIME_FUNCTION>(MethodToken.m_pCodeHeader) + 1; |
| 7032 | |
| 7033 | TADDR moduleBase = JitTokenToModuleBase(MethodToken); |
| 7034 | DWORD nFunclets = 0; |
| 7035 | MethodRegionInfo regionInfo; |
| 7036 | JitTokenToMethodRegionInfo(MethodToken, ®ionInfo); |
| 7037 | |
| 7038 | // pFirstFuncletFunctionEntry will work for ARM when passed to GetFuncletStartOffsetsHelper() |
| 7039 | // even if it is a fragment of the main body and not a RUNTIME_FUNCTION for the beginning |
| 7040 | // of the first hot funclet, because GetFuncletStartOffsetsHelper() will skip all the function |
| 7041 | // fragments until the first funclet, if any, is found. |
| 7042 | |
| 7043 | GetFuncletStartOffsetsHelper(regionInfo.hotStartAddress, regionInfo.hotSize, 0, |
| 7044 | pFirstFuncletFunctionEntry, moduleBase, |
| 7045 | &nFunclets, pStartFuncletOffsets, dwLength); |
| 7046 | |
| 7047 | // READYTORUN: FUTURE: Hot/cold splitting |
| 7048 | |
| 7049 | return nFunclets; |
| 7050 | } |
| 7051 | |
| 7052 | BOOL ReadyToRunJitManager::IsFilterFunclet(EECodeInfo * pCodeInfo) |
| 7053 | { |
| 7054 | CONTRACTL { |
| 7055 | NOTHROW; |
| 7056 | GC_NOTRIGGER; |
| 7057 | MODE_ANY; |
| 7058 | } |
| 7059 | CONTRACTL_END; |
| 7060 | |
| 7061 | if (!pCodeInfo->IsFunclet()) |
| 7062 | return FALSE; |
| 7063 | |
| 7064 | // Get address of the personality routine for the function being queried. |
| 7065 | SIZE_T size; |
| 7066 | PTR_VOID pUnwindData = GetUnwindDataBlob(pCodeInfo->GetModuleBase(), pCodeInfo->GetFunctionEntry(), &size); |
| 7067 | _ASSERTE(pUnwindData != NULL); |
| 7068 | |
| 7069 | // Personality routine is always the last element of the unwind data |
| 7070 | DWORD rvaPersonalityRoutine = *(dac_cast<PTR_DWORD>(dac_cast<TADDR>(pUnwindData) + size) - 1); |
| 7071 | |
| 7072 | // Get the personality routine for the first function in the module, which is guaranteed to be not a funclet. |
| 7073 | ReadyToRunInfo * pInfo = JitTokenToReadyToRunInfo(pCodeInfo->GetMethodToken()); |
| 7074 | if (pInfo->m_nRuntimeFunctions == 0) |
| 7075 | return FALSE; |
| 7076 | |
| 7077 | PTR_VOID pFirstUnwindData = GetUnwindDataBlob(pCodeInfo->GetModuleBase(), pInfo->m_pRuntimeFunctions, &size); |
| 7078 | _ASSERTE(pFirstUnwindData != NULL); |
| 7079 | DWORD rvaFirstPersonalityRoutine = *(dac_cast<PTR_DWORD>(dac_cast<TADDR>(pFirstUnwindData) + size) - 1); |
| 7080 | |
| 7081 | // Compare the two personality routines. If they are different, then the current function is a filter funclet. |
| 7082 | BOOL fRet = (rvaPersonalityRoutine != rvaFirstPersonalityRoutine); |
| 7083 | |
| 7084 | // Verify that the optimized implementation is in sync with the slow implementation |
| 7085 | _ASSERTE(fRet == IJitManager::IsFilterFunclet(pCodeInfo)); |
| 7086 | |
| 7087 | return fRet; |
| 7088 | } |
| 7089 | |
| 7090 | #endif // WIN64EXCEPTIONS |
| 7091 | |
| 7092 | void ReadyToRunJitManager::JitTokenToMethodRegionInfo(const METHODTOKEN& MethodToken, |
| 7093 | MethodRegionInfo * methodRegionInfo) |
| 7094 | { |
| 7095 | CONTRACTL { |
| 7096 | NOTHROW; |
| 7097 | GC_NOTRIGGER; |
| 7098 | HOST_NOCALLS; |
| 7099 | SUPPORTS_DAC; |
| 7100 | PRECONDITION(methodRegionInfo != NULL); |
| 7101 | } CONTRACTL_END; |
| 7102 | |
| 7103 | // READYTORUN: FUTURE: Hot-cold spliting |
| 7104 | |
| 7105 | methodRegionInfo->hotStartAddress = JitTokenToStartAddress(MethodToken); |
| 7106 | methodRegionInfo->hotSize = GetCodeManager()->GetFunctionSize(GetGCInfoToken(MethodToken)); |
| 7107 | methodRegionInfo->coldStartAddress = 0; |
| 7108 | methodRegionInfo->coldSize = 0; |
| 7109 | } |
| 7110 | |
| 7111 | #ifdef DACCESS_COMPILE |
| 7112 | |
| 7113 | void ReadyToRunJitManager::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 7114 | { |
| 7115 | IJitManager::EnumMemoryRegions(flags); |
| 7116 | } |
| 7117 | |
| 7118 | #if defined(WIN64EXCEPTIONS) |
| 7119 | |
| 7120 | // |
| 7121 | // EnumMemoryRegionsForMethodUnwindInfo - enumerate the memory necessary to read the unwind info for the |
| 7122 | // specified method. |
| 7123 | // |
| 7124 | // Note that in theory, a dump generation library could save the unwind information itself without help |
| 7125 | // from us, since it's stored in the image in the standard function table layout for Win64. However, |
| 7126 | // dump-generation libraries assume that the image will be available at debug time, and if the image |
| 7127 | // isn't available then it is acceptable for stackwalking to break. For ngen images (which are created |
| 7128 | // on the client), it usually isn't possible to have the image available at debug time, and so for minidumps |
| 7129 | // we must explicitly ensure the unwind information is saved into the dump. |
| 7130 | // |
| 7131 | // Arguments: |
| 7132 | // flags - EnumMem flags |
| 7133 | // pMD - MethodDesc for the method in question |
| 7134 | // |
| 7135 | void ReadyToRunJitManager::EnumMemoryRegionsForMethodUnwindInfo(CLRDataEnumMemoryFlags flags, EECodeInfo * pCodeInfo) |
| 7136 | { |
| 7137 | // Get the RUNTIME_FUNCTION entry for this method |
| 7138 | PTR_RUNTIME_FUNCTION pRtf = pCodeInfo->GetFunctionEntry(); |
| 7139 | |
| 7140 | if (pRtf==NULL) |
| 7141 | { |
| 7142 | return; |
| 7143 | } |
| 7144 | |
| 7145 | // Enumerate the function entry and other entries needed to locate it in the program exceptions directory |
| 7146 | ReadyToRunInfo * pReadyToRunInfo = JitTokenToReadyToRunInfo(pCodeInfo->GetMethodToken()); |
| 7147 | EnumRuntimeFunctionEntriesToFindEntry(pRtf, pReadyToRunInfo->GetImage()); |
| 7148 | |
| 7149 | SIZE_T size; |
| 7150 | PTR_VOID pUnwindData = GetUnwindDataBlob(pCodeInfo->GetModuleBase(), pRtf, &size); |
| 7151 | if (pUnwindData != NULL) |
| 7152 | DacEnumMemoryRegion(PTR_TO_TADDR(pUnwindData), size); |
| 7153 | } |
| 7154 | |
| 7155 | #endif //WIN64EXCEPTIONS |
| 7156 | #endif // #ifdef DACCESS_COMPILE |
| 7157 | |
| 7158 | #endif |
| 7159 | |