| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX BasicBlock XX |
| 9 | XX XX |
| 10 | XX XX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 13 | */ |
| 14 | |
| 15 | /*****************************************************************************/ |
| 16 | #ifndef _BLOCK_H_ |
| 17 | #define _BLOCK_H_ |
| 18 | /*****************************************************************************/ |
| 19 | |
| 20 | #include "vartype.h" // For "var_types.h" |
| 21 | #include "_typeinfo.h" |
| 22 | /*****************************************************************************/ |
| 23 | |
| 24 | // Defines VARSET_TP |
| 25 | #include "varset.h" |
| 26 | |
| 27 | #include "blockset.h" |
| 28 | #include "jitstd.h" |
| 29 | #include "bitvec.h" |
| 30 | #include "jithashtable.h" |
| 31 | |
| 32 | /*****************************************************************************/ |
| 33 | typedef BitVec EXPSET_TP; |
| 34 | #if LARGE_EXPSET |
| 35 | #define EXPSET_SZ 64 |
| 36 | #else |
| 37 | #define EXPSET_SZ 32 |
| 38 | #endif |
| 39 | |
| 40 | typedef BitVec ASSERT_TP; |
| 41 | typedef BitVec_ValArg_T ASSERT_VALARG_TP; |
| 42 | typedef BitVec_ValRet_T ASSERT_VALRET_TP; |
| 43 | |
| 44 | // We use the following format when print the BasicBlock number: bbNum |
| 45 | // This define is used with string concatenation to put this in printf format strings (Note that %u means unsigned int) |
| 46 | #define FMT_BB "BB%02u" |
| 47 | |
| 48 | /***************************************************************************** |
| 49 | * |
| 50 | * Each basic block ends with a jump which is described as a value |
| 51 | * of the following enumeration. |
| 52 | */ |
| 53 | |
| 54 | // clang-format off |
| 55 | |
| 56 | enum BBjumpKinds : BYTE |
| 57 | { |
| 58 | BBJ_EHFINALLYRET,// block ends with 'endfinally' (for finally or fault) |
| 59 | BBJ_EHFILTERRET, // block ends with 'endfilter' |
| 60 | BBJ_EHCATCHRET, // block ends with a leave out of a catch (only #if FEATURE_EH_FUNCLETS) |
| 61 | BBJ_THROW, // block ends with 'throw' |
| 62 | BBJ_RETURN, // block ends with 'ret' |
| 63 | BBJ_NONE, // block flows into the next one (no jump) |
| 64 | BBJ_ALWAYS, // block always jumps to the target |
| 65 | BBJ_LEAVE, // block always jumps to the target, maybe out of guarded region. Only used until importing. |
| 66 | BBJ_CALLFINALLY, // block always calls the target finally |
| 67 | BBJ_COND, // block conditionally jumps to the target |
| 68 | BBJ_SWITCH, // block ends with a switch statement |
| 69 | |
| 70 | BBJ_COUNT |
| 71 | }; |
| 72 | |
| 73 | // clang-format on |
| 74 | |
| 75 | struct GenTree; |
| 76 | struct GenTreeStmt; |
| 77 | struct BasicBlock; |
| 78 | class Compiler; |
| 79 | class typeInfo; |
| 80 | struct BasicBlockList; |
| 81 | struct flowList; |
| 82 | struct EHblkDsc; |
| 83 | |
| 84 | /***************************************************************************** |
| 85 | * |
| 86 | * The following describes a switch block. |
| 87 | * |
| 88 | * Things to know: |
| 89 | * 1. If bbsHasDefault is true, the default case is the last one in the array of basic block addresses |
| 90 | * namely bbsDstTab[bbsCount - 1]. |
| 91 | * 2. bbsCount must be at least 1, for the default case. bbsCount cannot be zero. It appears that the ECMA spec |
| 92 | * allows for a degenerate switch with zero cases. Normally, the optimizer will optimize degenerate |
| 93 | * switches with just a default case to a BBJ_ALWAYS branch, and a switch with just two cases to a BBJ_COND. |
| 94 | * However, in debuggable code, we might not do that, so bbsCount might be 1. |
| 95 | */ |
| 96 | struct BBswtDesc |
| 97 | { |
| 98 | unsigned bbsCount; // count of cases (includes 'default' if bbsHasDefault) |
| 99 | BasicBlock** bbsDstTab; // case label table address |
| 100 | bool bbsHasDefault; |
| 101 | |
| 102 | BBswtDesc() : bbsHasDefault(true) |
| 103 | { |
| 104 | } |
| 105 | |
| 106 | void removeDefault() |
| 107 | { |
| 108 | assert(bbsHasDefault); |
| 109 | assert(bbsCount > 0); |
| 110 | bbsHasDefault = false; |
| 111 | bbsCount--; |
| 112 | } |
| 113 | |
| 114 | BasicBlock* getDefault() |
| 115 | { |
| 116 | assert(bbsHasDefault); |
| 117 | assert(bbsCount > 0); |
| 118 | return bbsDstTab[bbsCount - 1]; |
| 119 | } |
| 120 | }; |
| 121 | |
| 122 | struct StackEntry |
| 123 | { |
| 124 | GenTree* val; |
| 125 | typeInfo seTypeInfo; |
| 126 | }; |
| 127 | /*****************************************************************************/ |
| 128 | |
| 129 | enum ThisInitState |
| 130 | { |
| 131 | TIS_Bottom, // We don't know anything about the 'this' pointer. |
| 132 | TIS_Uninit, // The 'this' pointer for this constructor is known to be uninitialized. |
| 133 | TIS_Init, // The 'this' pointer for this constructor is known to be initialized. |
| 134 | TIS_Top, // This results from merging the state of two blocks one with TIS_Unint and the other with TIS_Init. |
| 135 | // We use this in fault blocks to prevent us from accessing the 'this' pointer, but otherwise |
| 136 | // allowing the fault block to generate code. |
| 137 | }; |
| 138 | |
| 139 | struct EntryState |
| 140 | { |
| 141 | ThisInitState thisInitialized; // used to track whether the this ptr is initialized. |
| 142 | unsigned esStackDepth; // size of esStack |
| 143 | StackEntry* esStack; // ptr to stack |
| 144 | }; |
| 145 | |
| 146 | // Enumeration of the kinds of memory whose state changes the compiler tracks |
| 147 | enum MemoryKind |
| 148 | { |
| 149 | ByrefExposed = 0, // Includes anything byrefs can read/write (everything in GcHeap, address-taken locals, |
| 150 | // unmanaged heap, callers' locals, etc.) |
| 151 | GcHeap, // Includes actual GC heap, and also static fields |
| 152 | MemoryKindCount, // Number of MemoryKinds |
| 153 | }; |
| 154 | #ifdef DEBUG |
| 155 | const char* const memoryKindNames[] = {"ByrefExposed" , "GcHeap" }; |
| 156 | #endif // DEBUG |
| 157 | |
| 158 | // Bitmask describing a set of memory kinds (usable in bitfields) |
| 159 | typedef unsigned int MemoryKindSet; |
| 160 | |
| 161 | // Bitmask for a MemoryKindSet containing just the specified MemoryKind |
| 162 | inline MemoryKindSet memoryKindSet(MemoryKind memoryKind) |
| 163 | { |
| 164 | return (1U << memoryKind); |
| 165 | } |
| 166 | |
| 167 | // Bitmask for a MemoryKindSet containing the specified MemoryKinds |
| 168 | template <typename... MemoryKinds> |
| 169 | inline MemoryKindSet memoryKindSet(MemoryKind memoryKind, MemoryKinds... memoryKinds) |
| 170 | { |
| 171 | return memoryKindSet(memoryKind) | memoryKindSet(memoryKinds...); |
| 172 | } |
| 173 | |
| 174 | // Bitmask containing all the MemoryKinds |
| 175 | const MemoryKindSet fullMemoryKindSet = (1 << MemoryKindCount) - 1; |
| 176 | |
| 177 | // Bitmask containing no MemoryKinds |
| 178 | const MemoryKindSet emptyMemoryKindSet = 0; |
| 179 | |
| 180 | // Standard iterator class for iterating through MemoryKinds |
| 181 | class MemoryKindIterator |
| 182 | { |
| 183 | int value; |
| 184 | |
| 185 | public: |
| 186 | explicit inline MemoryKindIterator(int val) : value(val) |
| 187 | { |
| 188 | } |
| 189 | inline MemoryKindIterator& operator++() |
| 190 | { |
| 191 | ++value; |
| 192 | return *this; |
| 193 | } |
| 194 | inline MemoryKindIterator operator++(int) |
| 195 | { |
| 196 | return MemoryKindIterator(value++); |
| 197 | } |
| 198 | inline MemoryKind operator*() |
| 199 | { |
| 200 | return static_cast<MemoryKind>(value); |
| 201 | } |
| 202 | friend bool operator==(const MemoryKindIterator& left, const MemoryKindIterator& right) |
| 203 | { |
| 204 | return left.value == right.value; |
| 205 | } |
| 206 | friend bool operator!=(const MemoryKindIterator& left, const MemoryKindIterator& right) |
| 207 | { |
| 208 | return left.value != right.value; |
| 209 | } |
| 210 | }; |
| 211 | |
| 212 | // Empty struct that allows enumerating memory kinds via `for(MemoryKind kind : allMemoryKinds())` |
| 213 | struct allMemoryKinds |
| 214 | { |
| 215 | inline allMemoryKinds() |
| 216 | { |
| 217 | } |
| 218 | inline MemoryKindIterator begin() |
| 219 | { |
| 220 | return MemoryKindIterator(0); |
| 221 | } |
| 222 | inline MemoryKindIterator end() |
| 223 | { |
| 224 | return MemoryKindIterator(MemoryKindCount); |
| 225 | } |
| 226 | }; |
| 227 | |
| 228 | // This encapsulates the "exception handling" successors of a block. That is, |
| 229 | // if a basic block BB1 occurs in a try block, we consider the first basic block |
| 230 | // BB2 of the corresponding handler to be an "EH successor" of BB1. Because we |
| 231 | // make the conservative assumption that control flow can jump from a try block |
| 232 | // to its handler at any time, the immediate (regular control flow) |
| 233 | // predecessor(s) of the the first block of a try block are also considered to |
| 234 | // have the first block of the handler as an EH successor. This makes variables that |
| 235 | // are "live-in" to the handler become "live-out" for these try-predecessor block, |
| 236 | // so that they become live-in to the try -- which we require. |
| 237 | // |
| 238 | // This class maintains the minimum amount of state necessary to implement |
| 239 | // successor iteration. The basic block whose successors are enumerated and |
| 240 | // the compiler need to be provided by Advance/Current's callers. In addition |
| 241 | // to iterators, this allows the use of other approaches that are more space |
| 242 | // efficient. |
| 243 | class EHSuccessorIterPosition |
| 244 | { |
| 245 | // The number of "regular" (i.e., non-exceptional) successors that remain to |
| 246 | // be considered. If BB1 has successor BB2, and BB2 is the first block of a |
| 247 | // try block, then we consider the catch block of BB2's try to be an EH |
| 248 | // successor of BB1. This captures the iteration over the successors of BB1 |
| 249 | // for this purpose. (In reverse order; we're done when this field is 0). |
| 250 | unsigned m_remainingRegSuccs; |
| 251 | |
| 252 | // The current "regular" successor of "m_block" that we're considering. |
| 253 | BasicBlock* m_curRegSucc; |
| 254 | |
| 255 | // The current try block. If non-null, then the current successor "m_curRegSucc" |
| 256 | // is the first block of the handler of this block. While this try block has |
| 257 | // enclosing try's that also start with "m_curRegSucc", the corresponding handlers will be |
| 258 | // further EH successors. |
| 259 | EHblkDsc* m_curTry; |
| 260 | |
| 261 | // Requires that "m_curTry" is NULL. Determines whether there is, as |
| 262 | // discussed just above, a regular successor that's the first block of a |
| 263 | // try; if so, sets "m_curTry" to that try block. (As noted above, selecting |
| 264 | // the try containing the current regular successor as the "current try" may cause |
| 265 | // multiple first-blocks of catches to be yielded as EH successors: trys enclosing |
| 266 | // the current try are also included if they also start with the current EH successor.) |
| 267 | void FindNextRegSuccTry(Compiler* comp, BasicBlock* block); |
| 268 | |
| 269 | public: |
| 270 | // Constructs a position that "points" to the first EH successor of `block`. |
| 271 | EHSuccessorIterPosition(Compiler* comp, BasicBlock* block); |
| 272 | |
| 273 | // Constructs a position that "points" past the last EH successor of `block` ("end" position). |
| 274 | EHSuccessorIterPosition() : m_remainingRegSuccs(0), m_curTry(nullptr) |
| 275 | { |
| 276 | } |
| 277 | |
| 278 | // Go on to the next EH successor. |
| 279 | void Advance(Compiler* comp, BasicBlock* block); |
| 280 | |
| 281 | // Returns the current EH successor. |
| 282 | // Requires that "*this" is not equal to the "end" position. |
| 283 | BasicBlock* Current(Compiler* comp, BasicBlock* block); |
| 284 | |
| 285 | // Returns "true" iff "*this" is equal to "ehsi". |
| 286 | bool operator==(const EHSuccessorIterPosition& ehsi) |
| 287 | { |
| 288 | return m_curTry == ehsi.m_curTry && m_remainingRegSuccs == ehsi.m_remainingRegSuccs; |
| 289 | } |
| 290 | |
| 291 | bool operator!=(const EHSuccessorIterPosition& ehsi) |
| 292 | { |
| 293 | return !((*this) == ehsi); |
| 294 | } |
| 295 | }; |
| 296 | |
| 297 | // Yields both normal and EH successors (in that order) in one iteration. |
| 298 | // |
| 299 | // This class maintains the minimum amount of state necessary to implement |
| 300 | // successor iteration. The basic block whose successors are enumerated and |
| 301 | // the compiler need to be provided by Advance/Current's callers. In addition |
| 302 | // to iterators, this allows the use of other approaches that are more space |
| 303 | // efficient. |
| 304 | class AllSuccessorIterPosition |
| 305 | { |
| 306 | // Normal successor position |
| 307 | unsigned m_numNormSuccs; |
| 308 | unsigned m_remainingNormSucc; |
| 309 | // EH successor position |
| 310 | EHSuccessorIterPosition m_ehIter; |
| 311 | |
| 312 | // True iff m_blk is a BBJ_CALLFINALLY block, and the current try block of m_ehIter, |
| 313 | // the first block of whose handler would be next yielded, is the jump target of m_blk. |
| 314 | inline bool CurTryIsBlkCallFinallyTarget(Compiler* comp, BasicBlock* block); |
| 315 | |
| 316 | public: |
| 317 | // Constructs a position that "points" to the first successor of `block`. |
| 318 | inline AllSuccessorIterPosition(Compiler* comp, BasicBlock* block); |
| 319 | |
| 320 | // Constructs a position that "points" past the last successor of `block` ("end" position). |
| 321 | AllSuccessorIterPosition() : m_remainingNormSucc(0), m_ehIter() |
| 322 | { |
| 323 | } |
| 324 | |
| 325 | // Go on to the next successor. |
| 326 | inline void Advance(Compiler* comp, BasicBlock* block); |
| 327 | |
| 328 | // Returns the current successor. |
| 329 | // Requires that "*this" is not equal to the "end" position. |
| 330 | inline BasicBlock* Current(Compiler* comp, BasicBlock* block); |
| 331 | |
| 332 | bool IsCurrentEH() |
| 333 | { |
| 334 | return m_remainingNormSucc == 0; |
| 335 | } |
| 336 | |
| 337 | bool HasCurrent() |
| 338 | { |
| 339 | return *this != AllSuccessorIterPosition(); |
| 340 | } |
| 341 | |
| 342 | // Returns "true" iff "*this" is equal to "asi". |
| 343 | bool operator==(const AllSuccessorIterPosition& asi) |
| 344 | { |
| 345 | return (m_remainingNormSucc == asi.m_remainingNormSucc) && (m_ehIter == asi.m_ehIter); |
| 346 | } |
| 347 | |
| 348 | bool operator!=(const AllSuccessorIterPosition& asi) |
| 349 | { |
| 350 | return !((*this) == asi); |
| 351 | } |
| 352 | }; |
| 353 | |
| 354 | //------------------------------------------------------------------------ |
| 355 | // BasicBlock: describes a basic block in the flowgraph. |
| 356 | // |
| 357 | // Note that this type derives from LIR::Range in order to make the LIR |
| 358 | // utilities that are polymorphic over basic block and scratch ranges |
| 359 | // faster and simpler. |
| 360 | // |
| 361 | struct BasicBlock : private LIR::Range |
| 362 | { |
| 363 | friend class LIR; |
| 364 | |
| 365 | BasicBlock* bbNext; // next BB in ascending PC offset order |
| 366 | BasicBlock* bbPrev; |
| 367 | |
| 368 | void setNext(BasicBlock* next) |
| 369 | { |
| 370 | bbNext = next; |
| 371 | if (next) |
| 372 | { |
| 373 | next->bbPrev = this; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | unsigned __int64 bbFlags; // see BBF_xxxx below |
| 378 | |
| 379 | unsigned bbNum; // the block's number |
| 380 | |
| 381 | unsigned bbPostOrderNum; // the block's post order number in the graph. |
| 382 | unsigned bbRefs; // number of blocks that can reach here, either by fall-through or a branch. If this falls to zero, |
| 383 | // the block is unreachable. |
| 384 | |
| 385 | // clang-format off |
| 386 | |
| 387 | #define BBF_VISITED 0x00000001 // BB visited during optimizations |
| 388 | #define BBF_MARKED 0x00000002 // BB marked during optimizations |
| 389 | #define BBF_CHANGED 0x00000004 // input/output of this block has changed |
| 390 | #define BBF_REMOVED 0x00000008 // BB has been removed from bb-list |
| 391 | |
| 392 | #define BBF_DONT_REMOVE 0x00000010 // BB should not be removed during flow graph optimizations |
| 393 | #define BBF_IMPORTED 0x00000020 // BB byte-code has been imported |
| 394 | #define BBF_INTERNAL 0x00000040 // BB has been added by the compiler |
| 395 | #define BBF_FAILED_VERIFICATION 0x00000080 // BB has verification exception |
| 396 | |
| 397 | #define BBF_TRY_BEG 0x00000100 // BB starts a 'try' block |
| 398 | #define BBF_FUNCLET_BEG 0x00000200 // BB is the beginning of a funclet |
| 399 | #define BBF_HAS_NULLCHECK 0x00000400 // BB contains a null check |
| 400 | #define BBF_NEEDS_GCPOLL 0x00000800 // This BB is the source of a back edge and needs a GC Poll |
| 401 | |
| 402 | #define BBF_RUN_RARELY 0x00001000 // BB is rarely run (catch clauses, blocks with throws etc) |
| 403 | #define BBF_LOOP_HEAD 0x00002000 // BB is the head of a loop |
| 404 | #define BBF_LOOP_CALL0 0x00004000 // BB starts a loop that sometimes won't call |
| 405 | #define BBF_LOOP_CALL1 0x00008000 // BB starts a loop that will always call |
| 406 | |
| 407 | #define BBF_HAS_LABEL 0x00010000 // BB needs a label |
| 408 | #define BBF_JMP_TARGET 0x00020000 // BB is a target of an implicit/explicit jump |
| 409 | #define BBF_HAS_JMP 0x00040000 // BB executes a JMP instruction (instead of return) |
| 410 | #define BBF_GC_SAFE_POINT 0x00080000 // BB has a GC safe point (a call). More abstractly, BB does not require a |
| 411 | // (further) poll -- this may be because this BB has a call, or, in some |
| 412 | // cases, because the BB occurs in a loop, and we've determined that all |
| 413 | // paths in the loop body leading to BB include a call. |
| 414 | |
| 415 | #define BBF_HAS_VTABREF 0x00100000 // BB contains reference of vtable |
| 416 | #define BBF_HAS_IDX_LEN 0x00200000 // BB contains simple index or length expressions on an array local var. |
| 417 | #define BBF_HAS_NEWARRAY 0x00400000 // BB contains 'new' of an array |
| 418 | #define BBF_HAS_NEWOBJ 0x00800000 // BB contains 'new' of an object type. |
| 419 | |
| 420 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 421 | |
| 422 | #define BBF_FINALLY_TARGET 0x01000000 // BB is the target of a finally return: where a finally will return during |
| 423 | // non-exceptional flow. Because the ARM calling sequence for calling a |
| 424 | // finally explicitly sets the return address to the finally target and jumps |
| 425 | // to the finally, instead of using a call instruction, ARM needs this to |
| 426 | // generate correct code at the finally target, to allow for proper stack |
| 427 | // unwind from within a non-exceptional call to a finally. |
| 428 | |
| 429 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 430 | |
| 431 | #define BBF_BACKWARD_JUMP 0x02000000 // BB is surrounded by a backward jump/switch arc |
| 432 | #define BBF_RETLESS_CALL 0x04000000 // BBJ_CALLFINALLY that will never return (and therefore, won't need a paired |
| 433 | // BBJ_ALWAYS); see isBBCallAlwaysPair(). |
| 434 | #define 0x08000000 // BB is a loop preheader block |
| 435 | |
| 436 | #define BBF_COLD 0x10000000 // BB is cold |
| 437 | #define BBF_PROF_WEIGHT 0x20000000 // BB weight is computed from profile data |
| 438 | #define BBF_IS_LIR 0x40000000 // Set if the basic block contains LIR (as opposed to HIR) |
| 439 | #define BBF_KEEP_BBJ_ALWAYS 0x80000000 // A special BBJ_ALWAYS block, used by EH code generation. Keep the jump kind |
| 440 | // as BBJ_ALWAYS. Used for the paired BBJ_ALWAYS block following the |
| 441 | // BBJ_CALLFINALLY block, as well as, on x86, the final step block out of a |
| 442 | // finally. |
| 443 | |
| 444 | #define BBF_CLONED_FINALLY_BEGIN 0x100000000 // First block of a cloned finally region |
| 445 | #define BBF_CLONED_FINALLY_END 0x200000000 // Last block of a cloned finally region |
| 446 | |
| 447 | // clang-format on |
| 448 | |
| 449 | #define BBF_DOMINATED_BY_EXCEPTIONAL_ENTRY 0x400000000 // Block is dominated by exceptional entry. |
| 450 | |
| 451 | // Flags that relate blocks to loop structure. |
| 452 | |
| 453 | #define BBF_LOOP_FLAGS (BBF_LOOP_PREHEADER | BBF_LOOP_HEAD | BBF_LOOP_CALL0 | BBF_LOOP_CALL1) |
| 454 | |
| 455 | bool isRunRarely() const |
| 456 | { |
| 457 | return ((bbFlags & BBF_RUN_RARELY) != 0); |
| 458 | } |
| 459 | bool isLoopHead() const |
| 460 | { |
| 461 | return ((bbFlags & BBF_LOOP_HEAD) != 0); |
| 462 | } |
| 463 | |
| 464 | // Flags to update when two blocks are compacted |
| 465 | |
| 466 | #define BBF_COMPACT_UPD \ |
| 467 | (BBF_CHANGED | BBF_GC_SAFE_POINT | BBF_HAS_JMP | BBF_NEEDS_GCPOLL | BBF_HAS_IDX_LEN | BBF_BACKWARD_JUMP | \ |
| 468 | BBF_HAS_NEWARRAY | BBF_HAS_NEWOBJ) |
| 469 | |
| 470 | // Flags a block should not have had before it is split. |
| 471 | |
| 472 | #define BBF_SPLIT_NONEXIST \ |
| 473 | (BBF_CHANGED | BBF_LOOP_HEAD | BBF_LOOP_CALL0 | BBF_LOOP_CALL1 | BBF_RETLESS_CALL | BBF_LOOP_PREHEADER | BBF_COLD) |
| 474 | |
| 475 | // Flags lost by the top block when a block is split. |
| 476 | // Note, this is a conservative guess. |
| 477 | // For example, the top block might or might not have BBF_GC_SAFE_POINT, |
| 478 | // but we assume it does not have BBF_GC_SAFE_POINT any more. |
| 479 | |
| 480 | #define BBF_SPLIT_LOST (BBF_GC_SAFE_POINT | BBF_HAS_JMP | BBF_KEEP_BBJ_ALWAYS | BBF_CLONED_FINALLY_END) |
| 481 | |
| 482 | // Flags gained by the bottom block when a block is split. |
| 483 | // Note, this is a conservative guess. |
| 484 | // For example, the bottom block might or might not have BBF_HAS_NEWARRAY, |
| 485 | // but we assume it has BBF_HAS_NEWARRAY. |
| 486 | |
| 487 | // TODO: Should BBF_RUN_RARELY be added to BBF_SPLIT_GAINED ? |
| 488 | |
| 489 | #define BBF_SPLIT_GAINED \ |
| 490 | (BBF_DONT_REMOVE | BBF_HAS_LABEL | BBF_HAS_JMP | BBF_BACKWARD_JUMP | BBF_HAS_IDX_LEN | BBF_HAS_NEWARRAY | \ |
| 491 | BBF_PROF_WEIGHT | BBF_HAS_NEWOBJ | BBF_KEEP_BBJ_ALWAYS | BBF_CLONED_FINALLY_END) |
| 492 | |
| 493 | #ifndef __GNUC__ // GCC doesn't like C_ASSERT at global scope |
| 494 | static_assert_no_msg((BBF_SPLIT_NONEXIST & BBF_SPLIT_LOST) == 0); |
| 495 | static_assert_no_msg((BBF_SPLIT_NONEXIST & BBF_SPLIT_GAINED) == 0); |
| 496 | #endif |
| 497 | |
| 498 | #ifdef DEBUG |
| 499 | void dspFlags(); // Print the flags |
| 500 | unsigned dspCheapPreds(); // Print the predecessors (bbCheapPreds) |
| 501 | unsigned dspPreds(); // Print the predecessors (bbPreds) |
| 502 | unsigned dspSuccs(Compiler* compiler); // Print the successors. The 'compiler' argument determines whether EH |
| 503 | // regions are printed: see NumSucc() for details. |
| 504 | void dspJumpKind(); // Print the block jump kind (e.g., BBJ_NONE, BBJ_COND, etc.). |
| 505 | void (Compiler* compiler, |
| 506 | bool showKind = true, |
| 507 | bool showFlags = false, |
| 508 | bool showPreds = true); // Print a simple basic block header for various output, including a |
| 509 | // list of predecessors and successors. |
| 510 | const char* dspToString(int blockNumPadding = 0); |
| 511 | #endif // DEBUG |
| 512 | |
| 513 | typedef unsigned weight_t; // Type used to hold block and edge weights |
| 514 | // Note that for CLR v2.0 and earlier our |
| 515 | // block weights were stored using unsigned shorts |
| 516 | |
| 517 | #define BB_UNITY_WEIGHT 100 // how much a normal execute once block weights |
| 518 | #define BB_LOOP_WEIGHT 8 // how much more loops are weighted |
| 519 | #define BB_ZERO_WEIGHT 0 |
| 520 | #define BB_MAX_WEIGHT ULONG_MAX // we're using an 'unsigned' for the weight |
| 521 | #define BB_VERY_HOT_WEIGHT 256 // how many average hits a BB has (per BBT scenario run) for this block |
| 522 | // to be considered as very hot |
| 523 | |
| 524 | weight_t bbWeight; // The dynamic execution weight of this block |
| 525 | |
| 526 | // getCalledCount -- get the value used to normalize weights for this method |
| 527 | weight_t getCalledCount(Compiler* comp); |
| 528 | |
| 529 | // getBBWeight -- get the normalized weight of this block |
| 530 | weight_t getBBWeight(Compiler* comp); |
| 531 | |
| 532 | // hasProfileWeight -- Returns true if this block's weight came from profile data |
| 533 | bool hasProfileWeight() const |
| 534 | { |
| 535 | return ((this->bbFlags & BBF_PROF_WEIGHT) != 0); |
| 536 | } |
| 537 | |
| 538 | // setBBWeight -- if the block weight is not derived from a profile, |
| 539 | // then set the weight to the input weight, making sure to not overflow BB_MAX_WEIGHT |
| 540 | // Note to set the weight from profile data, instead use setBBProfileWeight |
| 541 | void setBBWeight(weight_t weight) |
| 542 | { |
| 543 | if (!hasProfileWeight()) |
| 544 | { |
| 545 | this->bbWeight = min(weight, BB_MAX_WEIGHT); |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | // setBBProfileWeight -- Set the profile-derived weight for a basic block |
| 550 | void setBBProfileWeight(unsigned weight) |
| 551 | { |
| 552 | this->bbFlags |= BBF_PROF_WEIGHT; |
| 553 | this->bbWeight = weight; |
| 554 | } |
| 555 | |
| 556 | // modifyBBWeight -- same as setBBWeight, but also make sure that if the block is rarely run, it stays that |
| 557 | // way, and if it's not rarely run then its weight never drops below 1. |
| 558 | void modifyBBWeight(weight_t weight) |
| 559 | { |
| 560 | if (this->bbWeight != BB_ZERO_WEIGHT) |
| 561 | { |
| 562 | setBBWeight(max(weight, 1)); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | // this block will inherit the same weight and relevant bbFlags as bSrc |
| 567 | void inheritWeight(BasicBlock* bSrc) |
| 568 | { |
| 569 | this->bbWeight = bSrc->bbWeight; |
| 570 | |
| 571 | if (bSrc->hasProfileWeight()) |
| 572 | { |
| 573 | this->bbFlags |= BBF_PROF_WEIGHT; |
| 574 | } |
| 575 | else |
| 576 | { |
| 577 | this->bbFlags &= ~BBF_PROF_WEIGHT; |
| 578 | } |
| 579 | |
| 580 | if (this->bbWeight == 0) |
| 581 | { |
| 582 | this->bbFlags |= BBF_RUN_RARELY; |
| 583 | } |
| 584 | else |
| 585 | { |
| 586 | this->bbFlags &= ~BBF_RUN_RARELY; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | // Similar to inheritWeight(), but we're splitting a block (such as creating blocks for qmark removal). |
| 591 | // So, specify a percentage (0 to 99; if it's 100, just use inheritWeight()) of the weight that we're |
| 592 | // going to inherit. Since the number isn't exact, clear the BBF_PROF_WEIGHT flag. |
| 593 | void inheritWeightPercentage(BasicBlock* bSrc, unsigned percentage) |
| 594 | { |
| 595 | assert(0 <= percentage && percentage < 100); |
| 596 | |
| 597 | // Check for overflow |
| 598 | if (bSrc->bbWeight * 100 <= bSrc->bbWeight) |
| 599 | { |
| 600 | this->bbWeight = bSrc->bbWeight; |
| 601 | } |
| 602 | else |
| 603 | { |
| 604 | this->bbWeight = bSrc->bbWeight * percentage / 100; |
| 605 | } |
| 606 | |
| 607 | this->bbFlags &= ~BBF_PROF_WEIGHT; |
| 608 | |
| 609 | if (this->bbWeight == 0) |
| 610 | { |
| 611 | this->bbFlags |= BBF_RUN_RARELY; |
| 612 | } |
| 613 | else |
| 614 | { |
| 615 | this->bbFlags &= ~BBF_RUN_RARELY; |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | // makeBlockHot() |
| 620 | // This is used to override any profiling data |
| 621 | // and force a block to be in the hot region. |
| 622 | // We only call this method for handler entry point |
| 623 | // and only when HANDLER_ENTRY_MUST_BE_IN_HOT_SECTION is 1. |
| 624 | // Doing this helps fgReorderBlocks() by telling |
| 625 | // it to try to move these blocks into the hot region. |
| 626 | // Note that we do this strictly as an optimization, |
| 627 | // not for correctness. fgDetermineFirstColdBlock() |
| 628 | // will find all handler entry points and ensure that |
| 629 | // for now we don't place them in the cold section. |
| 630 | // |
| 631 | void makeBlockHot() |
| 632 | { |
| 633 | if (this->bbWeight == BB_ZERO_WEIGHT) |
| 634 | { |
| 635 | this->bbFlags &= ~BBF_RUN_RARELY; // Clear any RarelyRun flag |
| 636 | this->bbFlags &= ~BBF_PROF_WEIGHT; // Clear any profile-derived flag |
| 637 | this->bbWeight = 1; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | bool isMaxBBWeight() |
| 642 | { |
| 643 | return (bbWeight == BB_MAX_WEIGHT); |
| 644 | } |
| 645 | |
| 646 | // Returns "true" if the block is empty. Empty here means there are no statement |
| 647 | // trees *except* PHI definitions. |
| 648 | bool isEmpty(); |
| 649 | |
| 650 | // Returns "true" iff "this" is the first block of a BBJ_CALLFINALLY/BBJ_ALWAYS pair -- |
| 651 | // a block corresponding to an exit from the try of a try/finally. In the flow graph, |
| 652 | // this becomes a block that calls the finally, and a second, immediately |
| 653 | // following empty block (in the bbNext chain) to which the finally will return, and which |
| 654 | // branches unconditionally to the next block to be executed outside the try/finally. |
| 655 | // Note that code is often generated differently than this description. For example, on ARM, |
| 656 | // the target of the BBJ_ALWAYS is loaded in LR (the return register), and a direct jump is |
| 657 | // made to the 'finally'. The effect is that the 'finally' returns directly to the target of |
| 658 | // the BBJ_ALWAYS. A "retless" BBJ_CALLFINALLY is one that has no corresponding BBJ_ALWAYS. |
| 659 | // This can happen if the finally is known to not return (e.g., it contains a 'throw'). In |
| 660 | // that case, the BBJ_CALLFINALLY flags has BBF_RETLESS_CALL set. Note that ARM never has |
| 661 | // "retless" BBJ_CALLFINALLY blocks due to a requirement to use the BBJ_ALWAYS for |
| 662 | // generating code. |
| 663 | bool isBBCallAlwaysPair() |
| 664 | { |
| 665 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 666 | if (this->bbJumpKind == BBJ_CALLFINALLY) |
| 667 | #else |
| 668 | if ((this->bbJumpKind == BBJ_CALLFINALLY) && !(this->bbFlags & BBF_RETLESS_CALL)) |
| 669 | #endif |
| 670 | { |
| 671 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 672 | // On ARM, there are no retless BBJ_CALLFINALLY. |
| 673 | assert(!(this->bbFlags & BBF_RETLESS_CALL)); |
| 674 | #endif |
| 675 | // Some asserts that the next block is a BBJ_ALWAYS of the proper form. |
| 676 | assert(this->bbNext != nullptr); |
| 677 | assert(this->bbNext->bbJumpKind == BBJ_ALWAYS); |
| 678 | assert(this->bbNext->bbFlags & BBF_KEEP_BBJ_ALWAYS); |
| 679 | assert(this->bbNext->isEmpty()); |
| 680 | |
| 681 | return true; |
| 682 | } |
| 683 | else |
| 684 | { |
| 685 | return false; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | BBjumpKinds bbJumpKind; // jump (if any) at the end of this block |
| 690 | |
| 691 | /* The following union describes the jump target(s) of this block */ |
| 692 | union { |
| 693 | unsigned bbJumpOffs; // PC offset (temporary only) |
| 694 | BasicBlock* bbJumpDest; // basic block |
| 695 | BBswtDesc* bbJumpSwt; // switch descriptor |
| 696 | }; |
| 697 | |
| 698 | // NumSucc() gives the number of successors, and GetSucc() returns a given numbered successor. |
| 699 | // |
| 700 | // There are two versions of these functions: ones that take a Compiler* and ones that don't. You must |
| 701 | // always use a matching set. Thus, if you call NumSucc() without a Compiler*, you must also call |
| 702 | // GetSucc() without a Compiler*. |
| 703 | // |
| 704 | // The behavior of NumSucc()/GetSucc() is different when passed a Compiler* for blocks that end in: |
| 705 | // (1) BBJ_EHFINALLYRET (a return from a finally or fault block) |
| 706 | // (2) BBJ_EHFILTERRET (a return from EH filter block) |
| 707 | // (3) BBJ_SWITCH |
| 708 | // |
| 709 | // For BBJ_EHFINALLYRET, if no Compiler* is passed, then the block is considered to have no |
| 710 | // successor. If Compiler* is passed, we figure out the actual successors. Some cases will want one behavior, |
| 711 | // other cases the other. For example, IL verification requires that these blocks end in an empty operand |
| 712 | // stack, and since the dataflow analysis of IL verification is concerned only with the contents of the |
| 713 | // operand stack, we can consider the finally block to have no successors. But a more general dataflow |
| 714 | // analysis that is tracking the contents of local variables might want to consider *all* successors, |
| 715 | // and would pass the current Compiler object. |
| 716 | // |
| 717 | // Similarly, BBJ_EHFILTERRET blocks are assumed to have no successors if Compiler* is not passed; if |
| 718 | // Compiler* is passed, NumSucc/GetSucc yields the first block of the try block's handler. |
| 719 | // |
| 720 | // For BBJ_SWITCH, if Compiler* is not passed, then all switch successors are returned. If Compiler* |
| 721 | // is passed, then only unique switch successors are returned; the duplicate successors are omitted. |
| 722 | // |
| 723 | // Note that for BBJ_COND, which has two successors (fall through and condition true branch target), |
| 724 | // only the unique targets are returned. Thus, if both targets are the same, NumSucc() will only return 1 |
| 725 | // instead of 2. |
| 726 | |
| 727 | // NumSucc: Returns the number of successors of "this". |
| 728 | unsigned NumSucc(); |
| 729 | unsigned NumSucc(Compiler* comp); |
| 730 | |
| 731 | // GetSucc: Returns the "i"th successor. Requires (0 <= i < NumSucc()). |
| 732 | BasicBlock* GetSucc(unsigned i); |
| 733 | BasicBlock* GetSucc(unsigned i, Compiler* comp); |
| 734 | |
| 735 | BasicBlock* GetUniquePred(Compiler* comp); |
| 736 | |
| 737 | BasicBlock* GetUniqueSucc(); |
| 738 | |
| 739 | unsigned countOfInEdges() const |
| 740 | { |
| 741 | return bbRefs; |
| 742 | } |
| 743 | |
| 744 | __declspec(property(get = getBBTreeList, put = setBBTreeList)) GenTree* bbTreeList; // the body of the block. |
| 745 | |
| 746 | GenTree* getBBTreeList() const |
| 747 | { |
| 748 | return m_firstNode; |
| 749 | } |
| 750 | |
| 751 | void setBBTreeList(GenTree* tree) |
| 752 | { |
| 753 | m_firstNode = tree; |
| 754 | } |
| 755 | |
| 756 | EntryState* bbEntryState; // verifier tracked state of all entries in stack. |
| 757 | |
| 758 | #define NO_BASE_TMP UINT_MAX // base# to use when we have none |
| 759 | unsigned bbStkTempsIn; // base# for input stack temps |
| 760 | unsigned bbStkTempsOut; // base# for output stack temps |
| 761 | |
| 762 | #define MAX_XCPTN_INDEX (USHRT_MAX - 1) |
| 763 | |
| 764 | // It would be nice to make bbTryIndex and bbHndIndex private, but there is still code that uses them directly, |
| 765 | // especially Compiler::fgNewBBinRegion() and friends. |
| 766 | |
| 767 | // index, into the compHndBBtab table, of innermost 'try' clause containing the BB (used for raising exceptions). |
| 768 | // Stored as index + 1; 0 means "no try index". |
| 769 | unsigned short bbTryIndex; |
| 770 | |
| 771 | // index, into the compHndBBtab table, of innermost handler (filter, catch, fault/finally) containing the BB. |
| 772 | // Stored as index + 1; 0 means "no handler index". |
| 773 | unsigned short bbHndIndex; |
| 774 | |
| 775 | // Given two EH indices that are either bbTryIndex or bbHndIndex (or related), determine if index1 might be more |
| 776 | // deeply nested than index2. Both index1 and index2 are in the range [0..compHndBBtabCount], where 0 means |
| 777 | // "main function" and otherwise the value is an index into compHndBBtab[]. Note that "sibling" EH regions will |
| 778 | // have a numeric index relationship that doesn't indicate nesting, whereas a more deeply nested region must have |
| 779 | // a lower index than the region it is nested within. Note that if you compare a single block's bbTryIndex and |
| 780 | // bbHndIndex, there is guaranteed to be a nesting relationship, since that block can't be simultaneously in two |
| 781 | // sibling EH regions. In that case, "maybe" is actually "definitely". |
| 782 | static bool ehIndexMaybeMoreNested(unsigned index1, unsigned index2) |
| 783 | { |
| 784 | if (index1 == 0) |
| 785 | { |
| 786 | // index1 is in the main method. It can't be more deeply nested than index2. |
| 787 | return false; |
| 788 | } |
| 789 | else if (index2 == 0) |
| 790 | { |
| 791 | // index1 represents an EH region, whereas index2 is the main method. Thus, index1 is more deeply nested. |
| 792 | assert(index1 > 0); |
| 793 | return true; |
| 794 | } |
| 795 | else |
| 796 | { |
| 797 | // If index1 has a smaller index, it might be more deeply nested than index2. |
| 798 | assert(index1 > 0); |
| 799 | assert(index2 > 0); |
| 800 | return index1 < index2; |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | // catch type: class token of handler, or one of BBCT_*. Only set on first block of catch handler. |
| 805 | unsigned bbCatchTyp; |
| 806 | |
| 807 | bool hasTryIndex() const |
| 808 | { |
| 809 | return bbTryIndex != 0; |
| 810 | } |
| 811 | bool hasHndIndex() const |
| 812 | { |
| 813 | return bbHndIndex != 0; |
| 814 | } |
| 815 | unsigned getTryIndex() const |
| 816 | { |
| 817 | assert(bbTryIndex != 0); |
| 818 | return bbTryIndex - 1; |
| 819 | } |
| 820 | unsigned getHndIndex() const |
| 821 | { |
| 822 | assert(bbHndIndex != 0); |
| 823 | return bbHndIndex - 1; |
| 824 | } |
| 825 | void setTryIndex(unsigned val) |
| 826 | { |
| 827 | bbTryIndex = (unsigned short)(val + 1); |
| 828 | assert(bbTryIndex != 0); |
| 829 | } |
| 830 | void setHndIndex(unsigned val) |
| 831 | { |
| 832 | bbHndIndex = (unsigned short)(val + 1); |
| 833 | assert(bbHndIndex != 0); |
| 834 | } |
| 835 | void clearTryIndex() |
| 836 | { |
| 837 | bbTryIndex = 0; |
| 838 | } |
| 839 | void clearHndIndex() |
| 840 | { |
| 841 | bbHndIndex = 0; |
| 842 | } |
| 843 | |
| 844 | void copyEHRegion(const BasicBlock* from) |
| 845 | { |
| 846 | bbTryIndex = from->bbTryIndex; |
| 847 | bbHndIndex = from->bbHndIndex; |
| 848 | } |
| 849 | |
| 850 | static bool sameTryRegion(const BasicBlock* blk1, const BasicBlock* blk2) |
| 851 | { |
| 852 | return blk1->bbTryIndex == blk2->bbTryIndex; |
| 853 | } |
| 854 | static bool sameHndRegion(const BasicBlock* blk1, const BasicBlock* blk2) |
| 855 | { |
| 856 | return blk1->bbHndIndex == blk2->bbHndIndex; |
| 857 | } |
| 858 | static bool sameEHRegion(const BasicBlock* blk1, const BasicBlock* blk2) |
| 859 | { |
| 860 | return sameTryRegion(blk1, blk2) && sameHndRegion(blk1, blk2); |
| 861 | } |
| 862 | |
| 863 | // Some non-zero value that will not collide with real tokens for bbCatchTyp |
| 864 | #define BBCT_NONE 0x00000000 |
| 865 | #define BBCT_FAULT 0xFFFFFFFC |
| 866 | #define BBCT_FINALLY 0xFFFFFFFD |
| 867 | #define BBCT_FILTER 0xFFFFFFFE |
| 868 | #define BBCT_FILTER_HANDLER 0xFFFFFFFF |
| 869 | #define handlerGetsXcptnObj(hndTyp) ((hndTyp) != BBCT_NONE && (hndTyp) != BBCT_FAULT && (hndTyp) != BBCT_FINALLY) |
| 870 | |
| 871 | // TODO-Cleanup: Get rid of bbStkDepth and use bbStackDepthOnEntry() instead |
| 872 | union { |
| 873 | unsigned short bbStkDepth; // stack depth on entry |
| 874 | unsigned short bbFPinVars; // number of inner enregistered FP vars |
| 875 | }; |
| 876 | |
| 877 | // Basic block predecessor lists. Early in compilation, some phases might need to compute "cheap" predecessor |
| 878 | // lists. These are stored in bbCheapPreds, computed by fgComputeCheapPreds(). If bbCheapPreds is valid, |
| 879 | // 'fgCheapPredsValid' will be 'true'. Later, the "full" predecessor lists are created by fgComputePreds(), stored |
| 880 | // in 'bbPreds', and then maintained throughout compilation. 'fgComputePredsDone' will be 'true' after the |
| 881 | // full predecessor lists are created. See the comment at fgComputeCheapPreds() to see how those differ from |
| 882 | // the "full" variant. |
| 883 | union { |
| 884 | BasicBlockList* bbCheapPreds; // ptr to list of cheap predecessors (used before normal preds are computed) |
| 885 | flowList* bbPreds; // ptr to list of predecessors |
| 886 | }; |
| 887 | |
| 888 | BlockSet bbReach; // Set of all blocks that can reach this one |
| 889 | BasicBlock* bbIDom; // Represent the closest dominator to this block (called the Immediate |
| 890 | // Dominator) used to compute the dominance tree. |
| 891 | unsigned bbDfsNum; // The index of this block in DFS reverse post order |
| 892 | // relative to the flow graph. |
| 893 | |
| 894 | IL_OFFSET bbCodeOffs; // IL offset of the beginning of the block |
| 895 | IL_OFFSET bbCodeOffsEnd; // IL offset past the end of the block. Thus, the [bbCodeOffs..bbCodeOffsEnd) |
| 896 | // range is not inclusive of the end offset. The count of IL bytes in the block |
| 897 | // is bbCodeOffsEnd - bbCodeOffs, assuming neither are BAD_IL_OFFSET. |
| 898 | |
| 899 | #ifdef DEBUG |
| 900 | void dspBlockILRange(); // Display the block's IL range as [XXX...YYY), where XXX and YYY might be "???" for |
| 901 | // BAD_IL_OFFSET. |
| 902 | #endif // DEBUG |
| 903 | |
| 904 | VARSET_TP bbVarUse; // variables used by block (before an assignment) |
| 905 | VARSET_TP bbVarDef; // variables assigned by block (before a use) |
| 906 | |
| 907 | VARSET_TP bbLiveIn; // variables live on entry |
| 908 | VARSET_TP bbLiveOut; // variables live on exit |
| 909 | |
| 910 | // Use, def, live in/out information for the implicit memory variable. |
| 911 | MemoryKindSet bbMemoryUse : MemoryKindCount; // must be set for any MemoryKinds this block references |
| 912 | MemoryKindSet bbMemoryDef : MemoryKindCount; // must be set for any MemoryKinds this block mutates |
| 913 | MemoryKindSet bbMemoryLiveIn : MemoryKindCount; |
| 914 | MemoryKindSet bbMemoryLiveOut : MemoryKindCount; |
| 915 | MemoryKindSet bbMemoryHavoc : MemoryKindCount; // If true, at some point the block does an operation |
| 916 | // that leaves memory in an unknown state. (E.g., |
| 917 | // unanalyzed call, store through unknown pointer...) |
| 918 | |
| 919 | // We want to make phi functions for the special implicit var memory. But since this is not a real |
| 920 | // lclVar, and thus has no local #, we can't use a GenTreePhiArg. Instead, we use this struct. |
| 921 | struct MemoryPhiArg |
| 922 | { |
| 923 | unsigned m_ssaNum; // SSA# for incoming value. |
| 924 | MemoryPhiArg* m_nextArg; // Next arg in the list, else NULL. |
| 925 | |
| 926 | unsigned GetSsaNum() |
| 927 | { |
| 928 | return m_ssaNum; |
| 929 | } |
| 930 | |
| 931 | MemoryPhiArg(unsigned ssaNum, MemoryPhiArg* nextArg = nullptr) : m_ssaNum(ssaNum), m_nextArg(nextArg) |
| 932 | { |
| 933 | } |
| 934 | |
| 935 | void* operator new(size_t sz, class Compiler* comp); |
| 936 | }; |
| 937 | static MemoryPhiArg* EmptyMemoryPhiDef; // Special value (0x1, FWIW) to represent a to-be-filled in Phi arg list |
| 938 | // for Heap. |
| 939 | MemoryPhiArg* bbMemorySsaPhiFunc[MemoryKindCount]; // If the "in" Heap SSA var is not a phi definition, this value |
| 940 | // is NULL. |
| 941 | // Otherwise, it is either the special value EmptyMemoryPhiDefn, to indicate |
| 942 | // that Heap needs a phi definition on entry, or else it is the linked list |
| 943 | // of the phi arguments. |
| 944 | unsigned bbMemorySsaNumIn[MemoryKindCount]; // The SSA # of memory on entry to the block. |
| 945 | unsigned bbMemorySsaNumOut[MemoryKindCount]; // The SSA # of memory on exit from the block. |
| 946 | |
| 947 | VARSET_TP bbScope; // variables in scope over the block |
| 948 | |
| 949 | void InitVarSets(class Compiler* comp); |
| 950 | |
| 951 | /* The following are the standard bit sets for dataflow analysis. |
| 952 | * We perform CSE and range-checks at the same time |
| 953 | * and assertion propagation separately, |
| 954 | * thus we can union them since the two operations are completely disjunct. |
| 955 | */ |
| 956 | |
| 957 | union { |
| 958 | EXPSET_TP bbCseGen; // CSEs computed by block |
| 959 | #if ASSERTION_PROP |
| 960 | ASSERT_TP bbAssertionGen; // value assignments computed by block |
| 961 | #endif |
| 962 | }; |
| 963 | |
| 964 | union { |
| 965 | EXPSET_TP bbCseIn; // CSEs available on entry |
| 966 | #if ASSERTION_PROP |
| 967 | ASSERT_TP bbAssertionIn; // value assignments available on entry |
| 968 | #endif |
| 969 | }; |
| 970 | |
| 971 | union { |
| 972 | EXPSET_TP bbCseOut; // CSEs available on exit |
| 973 | #if ASSERTION_PROP |
| 974 | ASSERT_TP bbAssertionOut; // value assignments available on exit |
| 975 | #endif |
| 976 | }; |
| 977 | |
| 978 | void* bbEmitCookie; |
| 979 | |
| 980 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 981 | void* bbUnwindNopEmitCookie; |
| 982 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
| 983 | |
| 984 | #ifdef VERIFIER |
| 985 | stackDesc bbStackIn; // stack descriptor for input |
| 986 | stackDesc bbStackOut; // stack descriptor for output |
| 987 | |
| 988 | verTypeVal* bbTypesIn; // list of variable types on input |
| 989 | verTypeVal* bbTypesOut; // list of variable types on output |
| 990 | #endif // VERIFIER |
| 991 | |
| 992 | /* The following fields used for loop detection */ |
| 993 | |
| 994 | typedef unsigned char loopNumber; |
| 995 | static const unsigned NOT_IN_LOOP = UCHAR_MAX; |
| 996 | |
| 997 | #ifdef DEBUG |
| 998 | // This is the label a loop gets as part of the second, reachability-based |
| 999 | // loop discovery mechanism. This is apparently only used for debugging. |
| 1000 | // We hope we'll eventually just have one loop-discovery mechanism, and this will go away. |
| 1001 | loopNumber bbLoopNum; // set to 'n' for a loop #n header |
| 1002 | #endif // DEBUG |
| 1003 | |
| 1004 | loopNumber bbNatLoopNum; // Index, in optLoopTable, of most-nested loop that contains this block, |
| 1005 | // or else NOT_IN_LOOP if this block is not in a loop. |
| 1006 | |
| 1007 | #define MAX_LOOP_NUM 16 // we're using a 'short' for the mask |
| 1008 | #define LOOP_MASK_TP unsigned // must be big enough for a mask |
| 1009 | |
| 1010 | //------------------------------------------------------------------------- |
| 1011 | |
| 1012 | #if MEASURE_BLOCK_SIZE |
| 1013 | static size_t s_Size; |
| 1014 | static size_t s_Count; |
| 1015 | #endif // MEASURE_BLOCK_SIZE |
| 1016 | |
| 1017 | bool bbFallsThrough(); |
| 1018 | |
| 1019 | // Our slop fraction is 1/128 of the block weight rounded off |
| 1020 | static weight_t GetSlopFraction(weight_t weightBlk) |
| 1021 | { |
| 1022 | return ((weightBlk + 64) / 128); |
| 1023 | } |
| 1024 | |
| 1025 | // Given an the edge b1 -> b2, calculate the slop fraction by |
| 1026 | // using the higher of the two block weights |
| 1027 | static weight_t GetSlopFraction(BasicBlock* b1, BasicBlock* b2) |
| 1028 | { |
| 1029 | return GetSlopFraction(max(b1->bbWeight, b2->bbWeight)); |
| 1030 | } |
| 1031 | |
| 1032 | #ifdef DEBUG |
| 1033 | unsigned bbTgtStkDepth; // Native stack depth on entry (for throw-blocks) |
| 1034 | static unsigned s_nMaxTrees; // The max # of tree nodes in any BB |
| 1035 | |
| 1036 | unsigned bbStmtNum; // The statement number of the first stmt in this block |
| 1037 | |
| 1038 | // This is used in integrity checks. We semi-randomly pick a traversal stamp, label all blocks |
| 1039 | // in the BB list with that stamp (in this field); then we can tell if (e.g.) predecessors are |
| 1040 | // still in the BB list by whether they have the same stamp (with high probability). |
| 1041 | unsigned bbTraversalStamp; |
| 1042 | unsigned bbID; |
| 1043 | #endif // DEBUG |
| 1044 | |
| 1045 | ThisInitState bbThisOnEntry(); |
| 1046 | unsigned bbStackDepthOnEntry(); |
| 1047 | void bbSetStack(void* stackBuffer); |
| 1048 | StackEntry* bbStackOnEntry(); |
| 1049 | void bbSetRunRarely(); |
| 1050 | |
| 1051 | // "bbNum" is one-based (for unknown reasons); it is sometimes useful to have the corresponding |
| 1052 | // zero-based number for use as an array index. |
| 1053 | unsigned bbInd() |
| 1054 | { |
| 1055 | assert(bbNum > 0); |
| 1056 | return bbNum - 1; |
| 1057 | } |
| 1058 | |
| 1059 | GenTreeStmt* firstStmt() const; |
| 1060 | GenTreeStmt* lastStmt() const; |
| 1061 | |
| 1062 | GenTree* firstNode(); |
| 1063 | GenTree* lastNode(); |
| 1064 | |
| 1065 | bool endsWithJmpMethod(Compiler* comp); |
| 1066 | |
| 1067 | bool endsWithTailCall(Compiler* comp, |
| 1068 | bool fastTailCallsOnly, |
| 1069 | bool tailCallsConvertibleToLoopOnly, |
| 1070 | GenTree** tailCall); |
| 1071 | |
| 1072 | bool endsWithTailCallOrJmp(Compiler* comp, bool fastTailCallsOnly = false); |
| 1073 | |
| 1074 | bool endsWithTailCallConvertibleToLoop(Compiler* comp, GenTree** tailCall); |
| 1075 | |
| 1076 | // Returns the first statement in the statement list of "this" that is |
| 1077 | // not an SSA definition (a lcl = phi(...) assignment). |
| 1078 | GenTreeStmt* FirstNonPhiDef(); |
| 1079 | GenTree* FirstNonPhiDefOrCatchArgAsg(); |
| 1080 | |
| 1081 | BasicBlock() : bbLiveIn(VarSetOps::UninitVal()), bbLiveOut(VarSetOps::UninitVal()) |
| 1082 | { |
| 1083 | } |
| 1084 | |
| 1085 | // Iteratable collection of successors of a block. |
| 1086 | template <typename TPosition> |
| 1087 | class Successors |
| 1088 | { |
| 1089 | Compiler* m_comp; |
| 1090 | BasicBlock* m_block; |
| 1091 | |
| 1092 | public: |
| 1093 | Successors(Compiler* comp, BasicBlock* block) : m_comp(comp), m_block(block) |
| 1094 | { |
| 1095 | } |
| 1096 | |
| 1097 | class iterator |
| 1098 | { |
| 1099 | Compiler* m_comp; |
| 1100 | BasicBlock* m_block; |
| 1101 | TPosition m_pos; |
| 1102 | |
| 1103 | public: |
| 1104 | iterator(Compiler* comp, BasicBlock* block) : m_comp(comp), m_block(block), m_pos(comp, block) |
| 1105 | { |
| 1106 | } |
| 1107 | |
| 1108 | iterator() : m_pos() |
| 1109 | { |
| 1110 | } |
| 1111 | |
| 1112 | void operator++(void) |
| 1113 | { |
| 1114 | m_pos.Advance(m_comp, m_block); |
| 1115 | } |
| 1116 | |
| 1117 | BasicBlock* operator*() |
| 1118 | { |
| 1119 | return m_pos.Current(m_comp, m_block); |
| 1120 | } |
| 1121 | |
| 1122 | bool operator==(const iterator& other) |
| 1123 | { |
| 1124 | return m_pos == other.m_pos; |
| 1125 | } |
| 1126 | |
| 1127 | bool operator!=(const iterator& other) |
| 1128 | { |
| 1129 | return m_pos != other.m_pos; |
| 1130 | } |
| 1131 | }; |
| 1132 | |
| 1133 | iterator begin() |
| 1134 | { |
| 1135 | return iterator(m_comp, m_block); |
| 1136 | } |
| 1137 | |
| 1138 | iterator end() |
| 1139 | { |
| 1140 | return iterator(); |
| 1141 | } |
| 1142 | }; |
| 1143 | |
| 1144 | Successors<EHSuccessorIterPosition> GetEHSuccs(Compiler* comp) |
| 1145 | { |
| 1146 | return Successors<EHSuccessorIterPosition>(comp, this); |
| 1147 | } |
| 1148 | |
| 1149 | Successors<AllSuccessorIterPosition> GetAllSuccs(Compiler* comp) |
| 1150 | { |
| 1151 | return Successors<AllSuccessorIterPosition>(comp, this); |
| 1152 | } |
| 1153 | |
| 1154 | // Try to clone block state and statements from `from` block to `to` block (which must be new/empty), |
| 1155 | // optionally replacing uses of local `varNum` with IntCns `varVal`. Return true if all statements |
| 1156 | // in the block are cloned successfully, false (with partially-populated `to` block) if one fails. |
| 1157 | static bool CloneBlockState( |
| 1158 | Compiler* compiler, BasicBlock* to, const BasicBlock* from, unsigned varNum = (unsigned)-1, int varVal = 0); |
| 1159 | |
| 1160 | void MakeLIR(GenTree* firstNode, GenTree* lastNode); |
| 1161 | bool IsLIR(); |
| 1162 | |
| 1163 | void SetDominatedByExceptionalEntryFlag() |
| 1164 | { |
| 1165 | bbFlags |= BBF_DOMINATED_BY_EXCEPTIONAL_ENTRY; |
| 1166 | } |
| 1167 | |
| 1168 | bool IsDominatedByExceptionalEntryFlag() |
| 1169 | { |
| 1170 | return (bbFlags & BBF_DOMINATED_BY_EXCEPTIONAL_ENTRY) != 0; |
| 1171 | } |
| 1172 | }; |
| 1173 | |
| 1174 | template <> |
| 1175 | struct JitPtrKeyFuncs<BasicBlock> : public JitKeyFuncsDefEquals<const BasicBlock*> |
| 1176 | { |
| 1177 | public: |
| 1178 | // Make sure hashing is deterministic and not on "ptr." |
| 1179 | static unsigned GetHashCode(const BasicBlock* ptr); |
| 1180 | }; |
| 1181 | |
| 1182 | // A set of blocks. |
| 1183 | typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, bool> BlkSet; |
| 1184 | |
| 1185 | // A vector of blocks. |
| 1186 | typedef jitstd::vector<BasicBlock*> BlkVector; |
| 1187 | |
| 1188 | // A map of block -> set of blocks, can be used as sparse block trees. |
| 1189 | typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, BlkSet*> BlkToBlkSetMap; |
| 1190 | |
| 1191 | // A map of block -> vector of blocks, can be used as sparse block trees. |
| 1192 | typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, BlkVector> BlkToBlkVectorMap; |
| 1193 | |
| 1194 | // Map from Block to Block. Used for a variety of purposes. |
| 1195 | typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, BasicBlock*> BlockToBlockMap; |
| 1196 | |
| 1197 | // In compiler terminology the control flow between two BasicBlocks |
| 1198 | // is typically referred to as an "edge". Most well known are the |
| 1199 | // backward branches for loops, which are often called "back-edges". |
| 1200 | // |
| 1201 | // "struct flowList" is the type that represents our control flow edges. |
| 1202 | // This type is a linked list of zero or more "edges". |
| 1203 | // (The list of zero edges is represented by NULL.) |
| 1204 | // Every BasicBlock has a field called bbPreds of this type. This field |
| 1205 | // represents the list of "edges" that flow into this BasicBlock. |
| 1206 | // The flowList type only stores the BasicBlock* of the source for the |
| 1207 | // control flow edge. The destination block for the control flow edge |
| 1208 | // is implied to be the block which contained the bbPreds field. |
| 1209 | // |
| 1210 | // For a switch branch target there may be multiple "edges" that have |
| 1211 | // the same source block (and destination block). We need to count the |
| 1212 | // number of these edges so that during optimization we will know when |
| 1213 | // we have zero of them. Rather than have extra flowList entries we |
| 1214 | // increment the flDupCount field. |
| 1215 | // |
| 1216 | // When we have Profile weight for the BasicBlocks we can usually compute |
| 1217 | // the number of times each edge was executed by examining the adjacent |
| 1218 | // BasicBlock weights. As we are doing for BasicBlocks, we call the number |
| 1219 | // of times that a control flow edge was executed the "edge weight". |
| 1220 | // In order to compute the edge weights we need to use a bounded range |
| 1221 | // for every edge weight. These two fields, 'flEdgeWeightMin' and 'flEdgeWeightMax' |
| 1222 | // are used to hold a bounded range. Most often these will converge such |
| 1223 | // that both values are the same and that value is the exact edge weight. |
| 1224 | // Sometimes we are left with a rage of possible values between [Min..Max] |
| 1225 | // which represents an inexact edge weight. |
| 1226 | // |
| 1227 | // The bbPreds list is initially created by Compiler::fgComputePreds() |
| 1228 | // and is incrementally kept up to date. |
| 1229 | // |
| 1230 | // The edge weight are computed by Compiler::fgComputeEdgeWeights() |
| 1231 | // the edge weights are used to straighten conditional branches |
| 1232 | // by Compiler::fgReorderBlocks() |
| 1233 | // |
| 1234 | // We have a simpler struct, BasicBlockList, which is simply a singly-linked |
| 1235 | // list of blocks. This is used for various purposes, but one is as a "cheap" |
| 1236 | // predecessor list, computed by fgComputeCheapPreds(), and stored as a list |
| 1237 | // on BasicBlock pointed to by bbCheapPreds. |
| 1238 | |
| 1239 | struct BasicBlockList |
| 1240 | { |
| 1241 | BasicBlockList* next; // The next BasicBlock in the list, nullptr for end of list. |
| 1242 | BasicBlock* block; // The BasicBlock of interest. |
| 1243 | |
| 1244 | BasicBlockList() : next(nullptr), block(nullptr) |
| 1245 | { |
| 1246 | } |
| 1247 | |
| 1248 | BasicBlockList(BasicBlock* blk, BasicBlockList* rest) : next(rest), block(blk) |
| 1249 | { |
| 1250 | } |
| 1251 | }; |
| 1252 | |
| 1253 | struct flowList |
| 1254 | { |
| 1255 | flowList* flNext; // The next BasicBlock in the list, nullptr for end of list. |
| 1256 | BasicBlock* flBlock; // The BasicBlock of interest. |
| 1257 | |
| 1258 | BasicBlock::weight_t flEdgeWeightMin; |
| 1259 | BasicBlock::weight_t flEdgeWeightMax; |
| 1260 | |
| 1261 | unsigned flDupCount; // The count of duplicate "edges" (use only for switch stmts) |
| 1262 | |
| 1263 | // These two methods are used to set new values for flEdgeWeightMin and flEdgeWeightMax |
| 1264 | // they are used only during the computation of the edge weights |
| 1265 | // They return false if the newWeight is not between the current [min..max] |
| 1266 | // when slop is non-zero we allow for the case where our weights might be off by 'slop' |
| 1267 | // |
| 1268 | bool setEdgeWeightMinChecked(BasicBlock::weight_t newWeight, BasicBlock::weight_t slop, bool* wbUsedSlop); |
| 1269 | bool setEdgeWeightMaxChecked(BasicBlock::weight_t newWeight, BasicBlock::weight_t slop, bool* wbUsedSlop); |
| 1270 | |
| 1271 | flowList() : flNext(nullptr), flBlock(nullptr), flEdgeWeightMin(0), flEdgeWeightMax(0), flDupCount(0) |
| 1272 | { |
| 1273 | } |
| 1274 | |
| 1275 | flowList(BasicBlock* blk, flowList* rest) |
| 1276 | : flNext(rest), flBlock(blk), flEdgeWeightMin(0), flEdgeWeightMax(0), flDupCount(0) |
| 1277 | { |
| 1278 | } |
| 1279 | }; |
| 1280 | |
| 1281 | // This enum represents a pre/post-visit action state to emulate a depth-first |
| 1282 | // spanning tree traversal of a tree or graph. |
| 1283 | enum DfsStackState |
| 1284 | { |
| 1285 | DSS_Invalid, // The initialized, invalid error state |
| 1286 | DSS_Pre, // The DFS pre-order (first visit) traversal state |
| 1287 | DSS_Post // The DFS post-order (last visit) traversal state |
| 1288 | }; |
| 1289 | |
| 1290 | // These structs represents an entry in a stack used to emulate a non-recursive |
| 1291 | // depth-first spanning tree traversal of a graph. The entry contains either a |
| 1292 | // block pointer or a block number depending on which is more useful. |
| 1293 | struct DfsBlockEntry |
| 1294 | { |
| 1295 | DfsStackState dfsStackState; // The pre/post traversal action for this entry |
| 1296 | BasicBlock* dfsBlock; // The corresponding block for the action |
| 1297 | |
| 1298 | DfsBlockEntry(DfsStackState state, BasicBlock* basicBlock) : dfsStackState(state), dfsBlock(basicBlock) |
| 1299 | { |
| 1300 | } |
| 1301 | }; |
| 1302 | |
| 1303 | struct DfsNumEntry |
| 1304 | { |
| 1305 | DfsStackState dfsStackState; // The pre/post traversal action for this entry |
| 1306 | unsigned dfsNum; // The corresponding block number for the action |
| 1307 | |
| 1308 | DfsNumEntry() : dfsStackState(DSS_Invalid), dfsNum(0) |
| 1309 | { |
| 1310 | } |
| 1311 | |
| 1312 | DfsNumEntry(DfsStackState state, unsigned bbNum) : dfsStackState(state), dfsNum(bbNum) |
| 1313 | { |
| 1314 | } |
| 1315 | }; |
| 1316 | |
| 1317 | /***************************************************************************** |
| 1318 | * |
| 1319 | * The following call-backs supplied by the client; it's used by the code |
| 1320 | * emitter to convert a basic block to its corresponding emitter cookie. |
| 1321 | */ |
| 1322 | |
| 1323 | void* emitCodeGetCookie(BasicBlock* block); |
| 1324 | |
| 1325 | AllSuccessorIterPosition::AllSuccessorIterPosition(Compiler* comp, BasicBlock* block) |
| 1326 | : m_numNormSuccs(block->NumSucc(comp)), m_remainingNormSucc(m_numNormSuccs), m_ehIter(comp, block) |
| 1327 | { |
| 1328 | if (CurTryIsBlkCallFinallyTarget(comp, block)) |
| 1329 | { |
| 1330 | m_ehIter.Advance(comp, block); |
| 1331 | } |
| 1332 | } |
| 1333 | |
| 1334 | bool AllSuccessorIterPosition::CurTryIsBlkCallFinallyTarget(Compiler* comp, BasicBlock* block) |
| 1335 | { |
| 1336 | return (block->bbJumpKind == BBJ_CALLFINALLY) && (m_ehIter != EHSuccessorIterPosition()) && |
| 1337 | (block->bbJumpDest == m_ehIter.Current(comp, block)); |
| 1338 | } |
| 1339 | |
| 1340 | void AllSuccessorIterPosition::Advance(Compiler* comp, BasicBlock* block) |
| 1341 | { |
| 1342 | if (m_remainingNormSucc > 0) |
| 1343 | { |
| 1344 | m_remainingNormSucc--; |
| 1345 | } |
| 1346 | else |
| 1347 | { |
| 1348 | m_ehIter.Advance(comp, block); |
| 1349 | |
| 1350 | // If the original block whose successors we're iterating over |
| 1351 | // is a BBJ_CALLFINALLY, that finally clause's first block |
| 1352 | // will be yielded as a normal successor. Don't also yield as |
| 1353 | // an exceptional successor. |
| 1354 | if (CurTryIsBlkCallFinallyTarget(comp, block)) |
| 1355 | { |
| 1356 | m_ehIter.Advance(comp, block); |
| 1357 | } |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | // Requires that "this" is not equal to the standard "end" iterator. Returns the |
| 1362 | // current successor. |
| 1363 | BasicBlock* AllSuccessorIterPosition::Current(Compiler* comp, BasicBlock* block) |
| 1364 | { |
| 1365 | if (m_remainingNormSucc > 0) |
| 1366 | { |
| 1367 | return block->GetSucc(m_numNormSuccs - m_remainingNormSucc, comp); |
| 1368 | } |
| 1369 | else |
| 1370 | { |
| 1371 | return m_ehIter.Current(comp, block); |
| 1372 | } |
| 1373 | } |
| 1374 | |
| 1375 | typedef BasicBlock::Successors<EHSuccessorIterPosition>::iterator EHSuccessorIter; |
| 1376 | typedef BasicBlock::Successors<AllSuccessorIterPosition>::iterator AllSuccessorIter; |
| 1377 | |
| 1378 | // An enumerator of a block's all successors. In some cases (e.g. SsaBuilder::TopologicalSort) |
| 1379 | // using iterators is not exactly efficient, at least because they contain an unnecessary |
| 1380 | // member - a pointer to the Compiler object. |
| 1381 | class AllSuccessorEnumerator |
| 1382 | { |
| 1383 | BasicBlock* m_block; |
| 1384 | AllSuccessorIterPosition m_pos; |
| 1385 | |
| 1386 | public: |
| 1387 | // Constructs an enumerator of all `block`'s successors. |
| 1388 | AllSuccessorEnumerator(Compiler* comp, BasicBlock* block) : m_block(block), m_pos(comp, block) |
| 1389 | { |
| 1390 | } |
| 1391 | |
| 1392 | // Gets the block whose successors are enumerated. |
| 1393 | BasicBlock* Block() |
| 1394 | { |
| 1395 | return m_block; |
| 1396 | } |
| 1397 | |
| 1398 | // Returns true if the next successor is an EH successor. |
| 1399 | bool IsNextEHSuccessor() |
| 1400 | { |
| 1401 | return m_pos.IsCurrentEH(); |
| 1402 | } |
| 1403 | |
| 1404 | // Returns the next available successor or `nullptr` if there are no more successors. |
| 1405 | BasicBlock* NextSuccessor(Compiler* comp) |
| 1406 | { |
| 1407 | if (!m_pos.HasCurrent()) |
| 1408 | { |
| 1409 | return nullptr; |
| 1410 | } |
| 1411 | |
| 1412 | BasicBlock* succ = m_pos.Current(comp, m_block); |
| 1413 | m_pos.Advance(comp, m_block); |
| 1414 | return succ; |
| 1415 | } |
| 1416 | }; |
| 1417 | |
| 1418 | /*****************************************************************************/ |
| 1419 | #endif // _BLOCK_H_ |
| 1420 | /*****************************************************************************/ |
| 1421 | |