| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | // ==++== |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // ==--== |
| 10 | #include <assert.h> |
| 11 | #include "sos.h" |
| 12 | #include "safemath.h" |
| 13 | |
| 14 | |
| 15 | // This is the increment for the segment lookup data |
| 16 | const int nSegLookupStgIncrement = 100; |
| 17 | |
| 18 | #define CCH_STRING_PREFIX_SUMMARY 64 |
| 19 | |
| 20 | /**********************************************************************\ |
| 21 | * Routine Description: * |
| 22 | * * |
| 23 | * This function is called to update GC heap statistics. * |
| 24 | * * |
| 25 | \**********************************************************************/ |
| 26 | void HeapStat::Add(DWORD_PTR aData, DWORD aSize) |
| 27 | { |
| 28 | if (head == 0) |
| 29 | { |
| 30 | head = new Node(); |
| 31 | if (head == NULL) |
| 32 | { |
| 33 | ReportOOM(); |
| 34 | ControlC = TRUE; |
| 35 | return; |
| 36 | } |
| 37 | |
| 38 | if (bHasStrings) |
| 39 | { |
| 40 | size_t capacity_pNew = _wcslen((WCHAR*)aData) + 1; |
| 41 | WCHAR *pNew = new WCHAR[capacity_pNew]; |
| 42 | if (pNew == NULL) |
| 43 | { |
| 44 | ReportOOM(); |
| 45 | ControlC = TRUE; |
| 46 | return; |
| 47 | } |
| 48 | wcscpy_s(pNew, capacity_pNew, (WCHAR*)aData); |
| 49 | aData = (DWORD_PTR)pNew; |
| 50 | } |
| 51 | |
| 52 | head->data = aData; |
| 53 | } |
| 54 | Node *walk = head; |
| 55 | int cmp = 0; |
| 56 | |
| 57 | for (;;) |
| 58 | { |
| 59 | if (IsInterrupt()) |
| 60 | return; |
| 61 | |
| 62 | cmp = CompareData(aData, walk->data); |
| 63 | |
| 64 | if (cmp == 0) |
| 65 | break; |
| 66 | |
| 67 | if (cmp < 0) |
| 68 | { |
| 69 | if (walk->left == NULL) |
| 70 | break; |
| 71 | walk = walk->left; |
| 72 | } |
| 73 | else |
| 74 | { |
| 75 | if (walk->right == NULL) |
| 76 | break; |
| 77 | walk = walk->right; |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | if (cmp == 0) |
| 82 | { |
| 83 | walk->count ++; |
| 84 | walk->totalSize += aSize; |
| 85 | } |
| 86 | else |
| 87 | { |
| 88 | Node *node = new Node(); |
| 89 | if (node == NULL) |
| 90 | { |
| 91 | ReportOOM(); |
| 92 | ControlC = TRUE; |
| 93 | return; |
| 94 | } |
| 95 | |
| 96 | if (bHasStrings) |
| 97 | { |
| 98 | size_t capacity_pNew = _wcslen((WCHAR*)aData) + 1; |
| 99 | WCHAR *pNew = new WCHAR[capacity_pNew]; |
| 100 | if (pNew == NULL) |
| 101 | { |
| 102 | ReportOOM(); |
| 103 | ControlC = TRUE; |
| 104 | return; |
| 105 | } |
| 106 | wcscpy_s(pNew, capacity_pNew, (WCHAR*)aData); |
| 107 | aData = (DWORD_PTR)pNew; |
| 108 | } |
| 109 | |
| 110 | node->data = aData; |
| 111 | node->totalSize = aSize; |
| 112 | node->count ++; |
| 113 | |
| 114 | if (cmp < 0) |
| 115 | { |
| 116 | walk->left = node; |
| 117 | } |
| 118 | else |
| 119 | { |
| 120 | walk->right = node; |
| 121 | } |
| 122 | } |
| 123 | } |
| 124 | /**********************************************************************\ |
| 125 | * Routine Description: * |
| 126 | * * |
| 127 | * This function compares two nodes in the tree. * |
| 128 | * * |
| 129 | \**********************************************************************/ |
| 130 | int HeapStat::CompareData(DWORD_PTR d1, DWORD_PTR d2) |
| 131 | { |
| 132 | if (bHasStrings) |
| 133 | return _wcscmp((WCHAR*)d1, (WCHAR*)d2); |
| 134 | |
| 135 | if (d1 > d2) |
| 136 | return 1; |
| 137 | |
| 138 | if (d1 < d2) |
| 139 | return -1; |
| 140 | |
| 141 | return 0; |
| 142 | } |
| 143 | |
| 144 | /**********************************************************************\ |
| 145 | * Routine Description: * |
| 146 | * * |
| 147 | * This function is called to sort all entries in the heap stat. * |
| 148 | * * |
| 149 | \**********************************************************************/ |
| 150 | void HeapStat::Sort () |
| 151 | { |
| 152 | Node *root = head; |
| 153 | head = NULL; |
| 154 | ReverseLeftMost (root); |
| 155 | |
| 156 | Node *sortRoot = NULL; |
| 157 | while (head) |
| 158 | { |
| 159 | Node *tmp = head; |
| 160 | head = head->left; |
| 161 | if (tmp->right) |
| 162 | ReverseLeftMost (tmp->right); |
| 163 | // add tmp |
| 164 | tmp->right = NULL; |
| 165 | tmp->left = NULL; |
| 166 | SortAdd (sortRoot, tmp); |
| 167 | } |
| 168 | head = sortRoot; |
| 169 | |
| 170 | Linearize(); |
| 171 | |
| 172 | //reverse the order |
| 173 | root = head; |
| 174 | head = NULL; |
| 175 | sortRoot = NULL; |
| 176 | while (root) |
| 177 | { |
| 178 | Node *tmp = root->right; |
| 179 | root->left = NULL; |
| 180 | root->right = NULL; |
| 181 | LinearAdd (sortRoot, root); |
| 182 | root = tmp; |
| 183 | } |
| 184 | head = sortRoot; |
| 185 | } |
| 186 | |
| 187 | void HeapStat::Linearize() |
| 188 | { |
| 189 | // Change binary tree to a linear tree |
| 190 | Node *root = head; |
| 191 | head = NULL; |
| 192 | ReverseLeftMost (root); |
| 193 | Node *sortRoot = NULL; |
| 194 | while (head) |
| 195 | { |
| 196 | Node *tmp = head; |
| 197 | head = head->left; |
| 198 | if (tmp->right) |
| 199 | ReverseLeftMost (tmp->right); |
| 200 | // add tmp |
| 201 | tmp->right = NULL; |
| 202 | tmp->left = NULL; |
| 203 | LinearAdd (sortRoot, tmp); |
| 204 | } |
| 205 | head = sortRoot; |
| 206 | fLinear = TRUE; |
| 207 | } |
| 208 | |
| 209 | void HeapStat::ReverseLeftMost (Node *root) |
| 210 | { |
| 211 | while (root) |
| 212 | { |
| 213 | Node *tmp = root->left; |
| 214 | root->left = head; |
| 215 | head = root; |
| 216 | root = tmp; |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | /**********************************************************************\ |
| 221 | * Routine Description: * |
| 222 | * * |
| 223 | * This function is called to help to sort heap stat. * |
| 224 | * * |
| 225 | \**********************************************************************/ |
| 226 | void HeapStat::SortAdd (Node *&root, Node *entry) |
| 227 | { |
| 228 | if (root == NULL) |
| 229 | { |
| 230 | root = entry; |
| 231 | } |
| 232 | else |
| 233 | { |
| 234 | Node *parent = root; |
| 235 | Node *ptr = root; |
| 236 | while (ptr) |
| 237 | { |
| 238 | parent = ptr; |
| 239 | if (ptr->totalSize < entry->totalSize) |
| 240 | ptr = ptr->right; |
| 241 | else |
| 242 | ptr = ptr->left; |
| 243 | } |
| 244 | if (parent->totalSize < entry->totalSize) |
| 245 | parent->right = entry; |
| 246 | else |
| 247 | parent->left = entry; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | void HeapStat::LinearAdd(Node *&root, Node *entry) |
| 252 | { |
| 253 | if (root == NULL) |
| 254 | { |
| 255 | root = entry; |
| 256 | } |
| 257 | else |
| 258 | { |
| 259 | entry->right = root; |
| 260 | root = entry; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | /**********************************************************************\ |
| 265 | * Routine Description: * |
| 266 | * * |
| 267 | * This function is called to print GC heap statistics. * |
| 268 | * * |
| 269 | \**********************************************************************/ |
| 270 | void HeapStat::Print(const char* label /* = NULL */) |
| 271 | { |
| 272 | if (label == NULL) |
| 273 | { |
| 274 | label = "Statistics:\n" ; |
| 275 | } |
| 276 | ExtOut(label); |
| 277 | if (bHasStrings) |
| 278 | ExtOut("%8s %12s %s\n" , "Count" , "TotalSize" , "String Value" ); |
| 279 | else |
| 280 | ExtOut("%" POINTERSIZE "s %8s %12s %s\n" ,"MT" , "Count" , "TotalSize" , "Class Name" ); |
| 281 | |
| 282 | Node *root = head; |
| 283 | int ncount = 0; |
| 284 | while (root) |
| 285 | { |
| 286 | if (IsInterrupt()) |
| 287 | return; |
| 288 | |
| 289 | ncount += root->count; |
| 290 | |
| 291 | if (bHasStrings) |
| 292 | { |
| 293 | ExtOut("%8d %12I64u \"%S\"\n" , root->count, (unsigned __int64)root->totalSize, root->data); |
| 294 | } |
| 295 | else |
| 296 | { |
| 297 | DMLOut("%s %8d %12I64u " , DMLDumpHeapMT(root->data), root->count, (unsigned __int64)root->totalSize); |
| 298 | if (IsMTForFreeObj(root->data)) |
| 299 | { |
| 300 | ExtOut("%9s\n" , "Free" ); |
| 301 | } |
| 302 | else |
| 303 | { |
| 304 | wcscpy_s(g_mdName, mdNameLen, W("UNKNOWN" )); |
| 305 | NameForMT_s((DWORD_PTR) root->data, g_mdName, mdNameLen); |
| 306 | ExtOut("%S\n" , g_mdName); |
| 307 | } |
| 308 | } |
| 309 | root = root->right; |
| 310 | |
| 311 | } |
| 312 | ExtOut ("Total %d objects\n" , ncount); |
| 313 | } |
| 314 | |
| 315 | void HeapStat::Delete() |
| 316 | { |
| 317 | if (head == NULL) |
| 318 | return; |
| 319 | |
| 320 | // Ensure the data structure is already linearized. |
| 321 | if (!fLinear) |
| 322 | Linearize(); |
| 323 | |
| 324 | while (head) |
| 325 | { |
| 326 | // The list is linearized on such that the left node is always null. |
| 327 | Node *tmp = head; |
| 328 | head = head->right; |
| 329 | |
| 330 | if (bHasStrings) |
| 331 | delete[] ((WCHAR*)tmp->data); |
| 332 | delete tmp; |
| 333 | } |
| 334 | |
| 335 | // return to default state |
| 336 | bHasStrings = FALSE; |
| 337 | fLinear = FALSE; |
| 338 | } |
| 339 | |
| 340 | // ----------------------------------------------------------------------- |
| 341 | // |
| 342 | // MethodTableCache implementation |
| 343 | // |
| 344 | // Used during heap traversals for quick object size computation |
| 345 | // |
| 346 | MethodTableInfo* MethodTableCache::Lookup (DWORD_PTR aData) |
| 347 | { |
| 348 | Node** addHere = &head; |
| 349 | if (head != 0) { |
| 350 | Node *walk = head; |
| 351 | int cmp = 0; |
| 352 | |
| 353 | for (;;) |
| 354 | { |
| 355 | cmp = CompareData(aData, walk->data); |
| 356 | |
| 357 | if (cmp == 0) |
| 358 | return &walk->info; |
| 359 | |
| 360 | if (cmp < 0) |
| 361 | { |
| 362 | if (walk->left == NULL) |
| 363 | { |
| 364 | addHere = &walk->left; |
| 365 | break; |
| 366 | } |
| 367 | walk = walk->left; |
| 368 | } |
| 369 | else |
| 370 | { |
| 371 | if (walk->right == NULL) |
| 372 | { |
| 373 | addHere = &walk->right; |
| 374 | break; |
| 375 | } |
| 376 | walk = walk->right; |
| 377 | } |
| 378 | } |
| 379 | } |
| 380 | Node* newNode = new Node(aData); |
| 381 | if (newNode == NULL) |
| 382 | { |
| 383 | ReportOOM(); |
| 384 | return NULL; |
| 385 | } |
| 386 | *addHere = newNode; |
| 387 | return &newNode->info; |
| 388 | } |
| 389 | |
| 390 | /**********************************************************************\ |
| 391 | * Routine Description: * |
| 392 | * * |
| 393 | * This function compares two nodes in the tree. * |
| 394 | * * |
| 395 | \**********************************************************************/ |
| 396 | int MethodTableCache::CompareData(DWORD_PTR d1, DWORD_PTR d2) |
| 397 | { |
| 398 | if (d1 > d2) |
| 399 | return 1; |
| 400 | |
| 401 | if (d1 < d2) |
| 402 | return -1; |
| 403 | |
| 404 | return 0; |
| 405 | } |
| 406 | |
| 407 | void MethodTableCache::ReverseLeftMost (Node *root) |
| 408 | { |
| 409 | if (root) |
| 410 | { |
| 411 | if (root->left) ReverseLeftMost(root->left); |
| 412 | if (root->right) ReverseLeftMost(root->right); |
| 413 | delete root; |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | void MethodTableCache::Clear() |
| 418 | { |
| 419 | Node *root = head; |
| 420 | head = NULL; |
| 421 | ReverseLeftMost (root); |
| 422 | } |
| 423 | |
| 424 | MethodTableCache g_special_mtCache; |
| 425 | |
| 426 | size_t Align (size_t nbytes) |
| 427 | { |
| 428 | return (nbytes + ALIGNCONST) & ~ALIGNCONST; |
| 429 | } |
| 430 | |
| 431 | size_t AlignLarge(size_t nbytes) |
| 432 | { |
| 433 | return (nbytes + ALIGNCONSTLARGE) & ~ALIGNCONSTLARGE; |
| 434 | } |
| 435 | |
| 436 | /**********************************************************************\ |
| 437 | * Routine Description: * |
| 438 | * * |
| 439 | * Print the gc heap info. * |
| 440 | * * |
| 441 | \**********************************************************************/ |
| 442 | void GCPrintGenerationInfo(const DacpGcHeapDetails &heap) |
| 443 | { |
| 444 | UINT n; |
| 445 | for (n = 0; n <= GetMaxGeneration(); n ++) |
| 446 | { |
| 447 | if (IsInterrupt()) |
| 448 | return; |
| 449 | ExtOut("generation %d starts at 0x%p\n" , |
| 450 | n, SOS_PTR(heap.generation_table[n].allocation_start)); |
| 451 | } |
| 452 | |
| 453 | // We also need to look at the gen0 alloc context. |
| 454 | ExtOut("ephemeral segment allocation context: " ); |
| 455 | if (heap.generation_table[0].allocContextPtr) |
| 456 | { |
| 457 | ExtOut("(0x%p, 0x%p)\n" , |
| 458 | SOS_PTR(heap.generation_table[0].allocContextPtr), |
| 459 | SOS_PTR(heap.generation_table[0].allocContextLimit + Align(min_obj_size))); |
| 460 | } |
| 461 | else |
| 462 | { |
| 463 | ExtOut("none\n" ); |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | |
| 468 | void GCPrintSegmentInfo(const DacpGcHeapDetails &heap, DWORD_PTR &total_size) |
| 469 | { |
| 470 | DWORD_PTR dwAddrSeg; |
| 471 | DacpHeapSegmentData segment; |
| 472 | |
| 473 | dwAddrSeg = (DWORD_PTR)heap.generation_table[GetMaxGeneration()].start_segment; |
| 474 | total_size = 0; |
| 475 | // the loop below will terminate, because we retrieved at most nMaxHeapSegmentCount segments |
| 476 | while (dwAddrSeg != (DWORD_PTR)heap.generation_table[0].start_segment) |
| 477 | { |
| 478 | if (IsInterrupt()) |
| 479 | return; |
| 480 | if (segment.Request(g_sos, dwAddrSeg, heap) != S_OK) |
| 481 | { |
| 482 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(dwAddrSeg)); |
| 483 | return; |
| 484 | } |
| 485 | ExtOut("%p %p %p 0x%" POINTERSIZE_TYPE "x(%" POINTERSIZE_TYPE "d)\n" , SOS_PTR(dwAddrSeg), |
| 486 | SOS_PTR(segment.mem), SOS_PTR(segment.allocated), |
| 487 | (ULONG_PTR)(segment.allocated - segment.mem), |
| 488 | (ULONG_PTR)(segment.allocated - segment.mem)); |
| 489 | total_size += (DWORD_PTR) (segment.allocated - segment.mem); |
| 490 | dwAddrSeg = (DWORD_PTR)segment.next; |
| 491 | } |
| 492 | |
| 493 | if (segment.Request(g_sos, dwAddrSeg, heap) != S_OK) |
| 494 | { |
| 495 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(dwAddrSeg)); |
| 496 | return; |
| 497 | } |
| 498 | |
| 499 | DWORD_PTR end = (DWORD_PTR)heap.alloc_allocated; |
| 500 | ExtOut("%p %p %p 0x%" POINTERSIZE_TYPE "x(%" POINTERSIZE_TYPE "d)\n" , SOS_PTR(dwAddrSeg), |
| 501 | SOS_PTR(segment.mem), SOS_PTR(end), |
| 502 | (ULONG_PTR)(end - (DWORD_PTR)segment.mem), |
| 503 | (ULONG_PTR)(end - (DWORD_PTR)segment.mem)); |
| 504 | |
| 505 | total_size += end - (DWORD_PTR)segment.mem; |
| 506 | |
| 507 | } |
| 508 | |
| 509 | |
| 510 | void GCPrintLargeHeapSegmentInfo(const DacpGcHeapDetails &heap, DWORD_PTR &total_size) |
| 511 | { |
| 512 | DWORD_PTR dwAddrSeg; |
| 513 | DacpHeapSegmentData segment; |
| 514 | dwAddrSeg = (DWORD_PTR)heap.generation_table[GetMaxGeneration()+1].start_segment; |
| 515 | |
| 516 | // total_size = 0; |
| 517 | // the loop below will terminate, because we retrieved at most nMaxHeapSegmentCount segments |
| 518 | while (dwAddrSeg != NULL) |
| 519 | { |
| 520 | if (IsInterrupt()) |
| 521 | return; |
| 522 | if (segment.Request(g_sos, dwAddrSeg, heap) != S_OK) |
| 523 | { |
| 524 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(dwAddrSeg)); |
| 525 | return; |
| 526 | } |
| 527 | ExtOut("%p %p %p 0x%" POINTERSIZE_TYPE "x(%" POINTERSIZE_TYPE "d)\n" , SOS_PTR(dwAddrSeg), |
| 528 | SOS_PTR(segment.mem), SOS_PTR(segment.allocated), |
| 529 | (ULONG_PTR)(segment.allocated - segment.mem), |
| 530 | segment.allocated - segment.mem); |
| 531 | total_size += (DWORD_PTR) (segment.allocated - segment.mem); |
| 532 | dwAddrSeg = (DWORD_PTR)segment.next; |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | void GCHeapInfo(const DacpGcHeapDetails &heap, DWORD_PTR &total_size) |
| 537 | { |
| 538 | GCPrintGenerationInfo(heap); |
| 539 | ExtOut("%" POINTERSIZE "s %" POINTERSIZE "s %" POINTERSIZE "s %" POINTERSIZE "s\n" , "segment" , "begin" , "allocated" , "size" ); |
| 540 | GCPrintSegmentInfo(heap, total_size); |
| 541 | ExtOut("Large object heap starts at 0x%p\n" , |
| 542 | SOS_PTR(heap.generation_table[GetMaxGeneration()+1].allocation_start)); |
| 543 | ExtOut("%" POINTERSIZE "s %" POINTERSIZE "s %" POINTERSIZE "s %" POINTERSIZE "s\n" , "segment" , "begin" , "allocated" , "size" ); |
| 544 | GCPrintLargeHeapSegmentInfo(heap,total_size); |
| 545 | } |
| 546 | |
| 547 | BOOL GCObjInGeneration(TADDR taddrObj, const DacpGcHeapDetails &heap, |
| 548 | const TADDR_SEGINFO& /*seg*/, int& gen, TADDR_RANGE& allocCtx) |
| 549 | { |
| 550 | gen = -1; |
| 551 | for (UINT n = 0; n <= GetMaxGeneration(); n ++) |
| 552 | { |
| 553 | if (taddrObj >= TO_TADDR(heap.generation_table[n].allocation_start)) |
| 554 | { |
| 555 | gen = n; |
| 556 | break; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | // We also need to look at the gen0 alloc context. |
| 561 | if (heap.generation_table[0].allocContextPtr |
| 562 | && taddrObj >= TO_TADDR(heap.generation_table[0].allocContextPtr) |
| 563 | && taddrObj < TO_TADDR(heap.generation_table[0].allocContextLimit) + Align(min_obj_size)) |
| 564 | { |
| 565 | gen = 0; |
| 566 | allocCtx.start = (TADDR)heap.generation_table[0].allocContextPtr; |
| 567 | allocCtx.end = (TADDR)heap.generation_table[0].allocContextLimit; |
| 568 | } |
| 569 | else |
| 570 | { |
| 571 | allocCtx.start = allocCtx.end = 0; |
| 572 | } |
| 573 | return (gen != -1); |
| 574 | } |
| 575 | |
| 576 | |
| 577 | BOOL GCObjInSegment(TADDR taddrObj, const DacpGcHeapDetails &heap, |
| 578 | TADDR_SEGINFO& rngSeg, int& gen, TADDR_RANGE& allocCtx) |
| 579 | { |
| 580 | TADDR taddrSeg; |
| 581 | DacpHeapSegmentData dacpSeg; |
| 582 | |
| 583 | taddrSeg = (TADDR)heap.generation_table[GetMaxGeneration()].start_segment; |
| 584 | // the loop below will terminate, because we retrieved at most nMaxHeapSegmentCount segments |
| 585 | while (taddrSeg != (TADDR)heap.generation_table[0].start_segment) |
| 586 | { |
| 587 | if (IsInterrupt()) |
| 588 | return FALSE; |
| 589 | if (dacpSeg.Request(g_sos, taddrSeg, heap) != S_OK) |
| 590 | { |
| 591 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(taddrSeg)); |
| 592 | return FALSE; |
| 593 | } |
| 594 | if (taddrObj >= TO_TADDR(dacpSeg.mem) && taddrObj < TO_TADDR(dacpSeg.allocated)) |
| 595 | { |
| 596 | rngSeg.segAddr = (TADDR)dacpSeg.segmentAddr; |
| 597 | rngSeg.start = (TADDR)dacpSeg.mem; |
| 598 | rngSeg.end = (TADDR)dacpSeg.allocated; |
| 599 | gen = 2; |
| 600 | allocCtx.start = allocCtx.end = 0; |
| 601 | return TRUE; |
| 602 | } |
| 603 | taddrSeg = (TADDR)dacpSeg.next; |
| 604 | } |
| 605 | |
| 606 | // the ephemeral segment |
| 607 | if (dacpSeg.Request(g_sos, taddrSeg, heap) != S_OK) |
| 608 | { |
| 609 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(taddrSeg)); |
| 610 | return FALSE; |
| 611 | } |
| 612 | |
| 613 | if (taddrObj >= TO_TADDR(dacpSeg.mem) && taddrObj < TO_TADDR(heap.alloc_allocated)) |
| 614 | { |
| 615 | if (GCObjInGeneration(taddrObj, heap, rngSeg, gen, allocCtx)) |
| 616 | { |
| 617 | rngSeg.segAddr = (TADDR)dacpSeg.segmentAddr; |
| 618 | rngSeg.start = (TADDR)dacpSeg.mem; |
| 619 | rngSeg.end = (TADDR)heap.alloc_allocated; |
| 620 | return TRUE; |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | return FALSE; |
| 625 | } |
| 626 | |
| 627 | BOOL GCObjInLargeSegment(TADDR taddrObj, const DacpGcHeapDetails &heap, TADDR_SEGINFO& rngSeg) |
| 628 | { |
| 629 | TADDR taddrSeg; |
| 630 | DacpHeapSegmentData dacpSeg; |
| 631 | taddrSeg = (TADDR)heap.generation_table[GetMaxGeneration()+1].start_segment; |
| 632 | |
| 633 | // the loop below will terminate, because we retrieved at most nMaxHeapSegmentCount segments |
| 634 | while (taddrSeg != NULL) |
| 635 | { |
| 636 | if (IsInterrupt()) |
| 637 | return FALSE; |
| 638 | if (dacpSeg.Request(g_sos, taddrSeg, heap) != S_OK) |
| 639 | { |
| 640 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(taddrSeg)); |
| 641 | return FALSE; |
| 642 | } |
| 643 | if (taddrObj >= TO_TADDR(dacpSeg.mem) && taddrObj && taddrObj < TO_TADDR(dacpSeg.allocated)) |
| 644 | { |
| 645 | rngSeg.segAddr = (TADDR)dacpSeg.segmentAddr; |
| 646 | rngSeg.start = (TADDR)dacpSeg.mem; |
| 647 | rngSeg.end = (TADDR)dacpSeg.allocated; |
| 648 | return TRUE; |
| 649 | } |
| 650 | taddrSeg = (TADDR)dacpSeg.next; |
| 651 | } |
| 652 | return FALSE; |
| 653 | } |
| 654 | |
| 655 | BOOL GCObjInHeap(TADDR taddrObj, const DacpGcHeapDetails &heap, |
| 656 | TADDR_SEGINFO& rngSeg, int& gen, TADDR_RANGE& allocCtx, BOOL &bLarge) |
| 657 | { |
| 658 | if (GCObjInSegment(taddrObj, heap, rngSeg, gen, allocCtx)) |
| 659 | { |
| 660 | bLarge = FALSE; |
| 661 | return TRUE; |
| 662 | } |
| 663 | if (GCObjInLargeSegment(taddrObj, heap, rngSeg)) |
| 664 | { |
| 665 | bLarge = TRUE; |
| 666 | gen = GetMaxGeneration()+1; |
| 667 | allocCtx.start = allocCtx.end = 0; |
| 668 | return TRUE; |
| 669 | } |
| 670 | return FALSE; |
| 671 | } |
| 672 | |
| 673 | #ifndef FEATURE_PAL |
| 674 | // this function updates genUsage to reflect statistics from the range defined by [start, end) |
| 675 | void GCGenUsageStats(TADDR start, TADDR end, const std::unordered_set<TADDR> &liveObjs, |
| 676 | const DacpGcHeapDetails &heap, BOOL bLarge, const AllocInfo *pAllocInfo, GenUsageStat *genUsage) |
| 677 | { |
| 678 | // if this is an empty segment or generation return |
| 679 | if (start >= end) |
| 680 | { |
| 681 | return; |
| 682 | } |
| 683 | |
| 684 | // otherwise it should start with a valid object |
| 685 | _ASSERTE(sos::IsObject(start)); |
| 686 | |
| 687 | // update the "allocd" field |
| 688 | genUsage->allocd += end - start; |
| 689 | |
| 690 | size_t objSize = 0; |
| 691 | for (TADDR taddrObj = start; taddrObj < end; taddrObj += objSize) |
| 692 | { |
| 693 | TADDR taddrMT; |
| 694 | |
| 695 | move_xp(taddrMT, taddrObj); |
| 696 | taddrMT &= ~3; |
| 697 | |
| 698 | // skip allocation contexts |
| 699 | if (!bLarge) |
| 700 | { |
| 701 | // Is this the beginning of an allocation context? |
| 702 | int i; |
| 703 | for (i = 0; i < pAllocInfo->num; i ++) |
| 704 | { |
| 705 | if (taddrObj == (TADDR)pAllocInfo->array[i].alloc_ptr) |
| 706 | { |
| 707 | ExtDbgOut("Skipping allocation context: [%#p-%#p)\n" , |
| 708 | SOS_PTR(pAllocInfo->array[i].alloc_ptr), SOS_PTR(pAllocInfo->array[i].alloc_limit)); |
| 709 | taddrObj = |
| 710 | (TADDR)pAllocInfo->array[i].alloc_limit + Align(min_obj_size); |
| 711 | break; |
| 712 | } |
| 713 | } |
| 714 | if (i < pAllocInfo->num) |
| 715 | { |
| 716 | // we already adjusted taddrObj, so reset objSize |
| 717 | objSize = 0; |
| 718 | continue; |
| 719 | } |
| 720 | |
| 721 | // We also need to look at the gen0 alloc context. |
| 722 | if (taddrObj == (DWORD_PTR) heap.generation_table[0].allocContextPtr) |
| 723 | { |
| 724 | taddrObj = (DWORD_PTR) heap.generation_table[0].allocContextLimit + Align(min_obj_size); |
| 725 | // we already adjusted taddrObj, so reset objSize |
| 726 | objSize = 0; |
| 727 | continue; |
| 728 | } |
| 729 | |
| 730 | // Are we at the end of gen 0? |
| 731 | if (taddrObj == end - Align(min_obj_size)) |
| 732 | { |
| 733 | objSize = 0; |
| 734 | break; |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | BOOL bContainsPointers; |
| 739 | BOOL bMTOk = GetSizeEfficient(taddrObj, taddrMT, bLarge, objSize, bContainsPointers); |
| 740 | if (!bMTOk) |
| 741 | { |
| 742 | ExtErr("bad object: %#p - bad MT %#p\n" , SOS_PTR(taddrObj), SOS_PTR(taddrMT)); |
| 743 | // set objSize to size_t to look for the next valid MT |
| 744 | objSize = sizeof(TADDR); |
| 745 | continue; |
| 746 | } |
| 747 | |
| 748 | // at this point we should have a valid objSize, and there whould be no |
| 749 | // integer overflow when moving on to next object in heap |
| 750 | _ASSERTE(objSize > 0 && taddrObj < taddrObj + objSize); |
| 751 | if (objSize == 0 || taddrObj > taddrObj + objSize) |
| 752 | { |
| 753 | break; |
| 754 | } |
| 755 | |
| 756 | if (IsMTForFreeObj(taddrMT)) |
| 757 | { |
| 758 | genUsage->freed += objSize; |
| 759 | } |
| 760 | else if (!(liveObjs.empty()) && liveObjs.find(taddrObj) == liveObjs.end()) |
| 761 | { |
| 762 | genUsage->unrooted += objSize; |
| 763 | } |
| 764 | } |
| 765 | } |
| 766 | #endif // !FEATURE_PAL |
| 767 | |
| 768 | BOOL GCHeapUsageStats(const DacpGcHeapDetails& heap, BOOL bIncUnreachable, HeapUsageStat *hpUsage) |
| 769 | { |
| 770 | memset(hpUsage, 0, sizeof(*hpUsage)); |
| 771 | |
| 772 | AllocInfo allocInfo; |
| 773 | allocInfo.Init(); |
| 774 | |
| 775 | // 1. Start with small object segments |
| 776 | TADDR taddrSeg; |
| 777 | DacpHeapSegmentData dacpSeg; |
| 778 | |
| 779 | taddrSeg = (TADDR)heap.generation_table[GetMaxGeneration()].start_segment; |
| 780 | |
| 781 | #ifndef FEATURE_PAL |
| 782 | // this will create the bitmap of rooted objects only if bIncUnreachable is true |
| 783 | GCRootImpl gcroot; |
| 784 | std::unordered_set<TADDR> emptyLiveObjs; |
| 785 | const std::unordered_set<TADDR> &liveObjs = (bIncUnreachable ? gcroot.GetLiveObjects() : emptyLiveObjs); |
| 786 | |
| 787 | // 1a. enumerate all non-ephemeral segments |
| 788 | while (taddrSeg != (TADDR)heap.generation_table[0].start_segment) |
| 789 | { |
| 790 | if (IsInterrupt()) |
| 791 | return FALSE; |
| 792 | |
| 793 | if (dacpSeg.Request(g_sos, taddrSeg, heap) != S_OK) |
| 794 | { |
| 795 | ExtErr("Error requesting heap segment %p\n" , SOS_PTR(taddrSeg)); |
| 796 | return FALSE; |
| 797 | } |
| 798 | GCGenUsageStats((TADDR)dacpSeg.mem, (TADDR)dacpSeg.allocated, liveObjs, heap, FALSE, &allocInfo, &hpUsage->genUsage[2]); |
| 799 | taddrSeg = (TADDR)dacpSeg.next; |
| 800 | } |
| 801 | #endif |
| 802 | |
| 803 | // 1b. now handle the ephemeral segment |
| 804 | if (dacpSeg.Request(g_sos, taddrSeg, heap) != S_OK) |
| 805 | { |
| 806 | ExtErr("Error requesting heap segment %p\n" , SOS_PTR(taddrSeg)); |
| 807 | return FALSE; |
| 808 | } |
| 809 | |
| 810 | TADDR endGen = TO_TADDR(heap.alloc_allocated); |
| 811 | for (UINT n = 0; n <= GetMaxGeneration(); n ++) |
| 812 | { |
| 813 | TADDR startGen; |
| 814 | // gen 2 starts at the beginning of the segment |
| 815 | if (n == GetMaxGeneration()) |
| 816 | { |
| 817 | startGen = TO_TADDR(dacpSeg.mem); |
| 818 | } |
| 819 | else |
| 820 | { |
| 821 | startGen = TO_TADDR(heap.generation_table[n].allocation_start); |
| 822 | } |
| 823 | |
| 824 | #ifndef FEATURE_PAL |
| 825 | GCGenUsageStats(startGen, endGen, liveObjs, heap, FALSE, &allocInfo, &hpUsage->genUsage[n]); |
| 826 | #endif |
| 827 | endGen = startGen; |
| 828 | } |
| 829 | |
| 830 | // 2. Now process LOH |
| 831 | taddrSeg = (TADDR) heap.generation_table[GetMaxGeneration()+1].start_segment; |
| 832 | while (taddrSeg != NULL) |
| 833 | { |
| 834 | if (IsInterrupt()) |
| 835 | return FALSE; |
| 836 | |
| 837 | if (dacpSeg.Request(g_sos, taddrSeg, heap) != S_OK) |
| 838 | { |
| 839 | ExtErr("Error requesting heap segment %p\n" , SOS_PTR(taddrSeg)); |
| 840 | return FALSE; |
| 841 | } |
| 842 | |
| 843 | #ifndef FEATURE_PAL |
| 844 | GCGenUsageStats((TADDR) dacpSeg.mem, (TADDR) dacpSeg.allocated, liveObjs, heap, TRUE, NULL, &hpUsage->genUsage[3]); |
| 845 | #endif |
| 846 | taddrSeg = (TADDR)dacpSeg.next; |
| 847 | } |
| 848 | |
| 849 | return TRUE; |
| 850 | } |
| 851 | |
| 852 | DWORD GetNumComponents(TADDR obj) |
| 853 | { |
| 854 | // The number of components is always the second pointer in the object. |
| 855 | DWORD Value = NULL; |
| 856 | HRESULT hr = MOVE(Value, obj + sizeof(size_t)); |
| 857 | |
| 858 | // If we fail to read out the number of components, let's assume 0 so we don't try to |
| 859 | // read further data from the object. |
| 860 | if (FAILED(hr)) |
| 861 | return 0; |
| 862 | |
| 863 | // The component size on a String does not contain the trailing NULL character, |
| 864 | // so we must add that ourselves. |
| 865 | if(IsStringObject(obj)) |
| 866 | return Value+1; |
| 867 | |
| 868 | return Value; |
| 869 | } |
| 870 | |
| 871 | static MethodTableInfo* GetMethodTableInfo(DWORD_PTR dwAddrMethTable) |
| 872 | { |
| 873 | // Remove lower bits in case we are in mark phase |
| 874 | dwAddrMethTable = dwAddrMethTable & ~3; |
| 875 | MethodTableInfo* info = g_special_mtCache.Lookup(dwAddrMethTable); |
| 876 | if (!info->IsInitialized()) // An uninitialized entry |
| 877 | { |
| 878 | // this is the first time we see this method table, so we need to get the information |
| 879 | // from the target |
| 880 | DacpMethodTableData dmtd; |
| 881 | // see code:ClrDataAccess::RequestMethodTableData for details |
| 882 | if (dmtd.Request(g_sos, dwAddrMethTable) != S_OK) |
| 883 | return NULL; |
| 884 | |
| 885 | |
| 886 | info->BaseSize = dmtd.BaseSize; |
| 887 | info->ComponentSize = dmtd.ComponentSize; |
| 888 | info->bContainsPointers = dmtd.bContainsPointers; |
| 889 | |
| 890 | // The following request doesn't work on older runtimes. For those, the |
| 891 | // objects would just look like non-collectible, which is acceptable. |
| 892 | DacpMethodTableCollectibleData dmtcd; |
| 893 | if (SUCCEEDED(dmtcd.Request(g_sos, dwAddrMethTable))) |
| 894 | { |
| 895 | info->bCollectible = dmtcd.bCollectible; |
| 896 | info->LoaderAllocatorObjectHandle = TO_TADDR(dmtcd.LoaderAllocatorObjectHandle); |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | return info; |
| 901 | } |
| 902 | |
| 903 | BOOL GetSizeEfficient(DWORD_PTR dwAddrCurrObj, |
| 904 | DWORD_PTR dwAddrMethTable, BOOL bLarge, size_t& s, BOOL& bContainsPointers) |
| 905 | { |
| 906 | MethodTableInfo* info = GetMethodTableInfo(dwAddrMethTable); |
| 907 | if (info == NULL) |
| 908 | { |
| 909 | return FALSE; |
| 910 | } |
| 911 | |
| 912 | bContainsPointers = info->bContainsPointers; |
| 913 | s = info->BaseSize; |
| 914 | |
| 915 | if (info->ComponentSize) |
| 916 | { |
| 917 | // this is an array, so the size has to include the size of the components. We read the number |
| 918 | // of components from the target and multiply by the component size to get the size. |
| 919 | s += info->ComponentSize*GetNumComponents(dwAddrCurrObj); |
| 920 | } |
| 921 | |
| 922 | // On x64 we do an optimization to save 4 bytes in almost every string we create |
| 923 | // IMPORTANT: This cannot be done in ObjectSize, which is a wrapper to this function, |
| 924 | // because we must Align only after these changes are made |
| 925 | #ifdef _TARGET_WIN64_ |
| 926 | // Pad to min object size if necessary |
| 927 | if (s < min_obj_size) |
| 928 | s = min_obj_size; |
| 929 | #endif // _TARGET_WIN64_ |
| 930 | |
| 931 | s = (bLarge ? AlignLarge(s) : Align (s)); |
| 932 | return TRUE; |
| 933 | } |
| 934 | |
| 935 | BOOL GetCollectibleDataEfficient(DWORD_PTR dwAddrMethTable, BOOL& bCollectible, TADDR& loaderAllocatorObjectHandle) |
| 936 | { |
| 937 | MethodTableInfo* info = GetMethodTableInfo(dwAddrMethTable); |
| 938 | if (info == NULL) |
| 939 | { |
| 940 | return FALSE; |
| 941 | } |
| 942 | |
| 943 | bCollectible = info->bCollectible; |
| 944 | loaderAllocatorObjectHandle = info->LoaderAllocatorObjectHandle; |
| 945 | |
| 946 | return TRUE; |
| 947 | } |
| 948 | |
| 949 | // This function expects stat to be valid, and ready to get statistics. |
| 950 | void GatherOneHeapFinalization(DacpGcHeapDetails& heapDetails, HeapStat *stat, BOOL bAllReady, BOOL bShort) |
| 951 | { |
| 952 | DWORD_PTR dwAddr=0; |
| 953 | UINT m; |
| 954 | |
| 955 | if (!bShort) |
| 956 | { |
| 957 | for (m = 0; m <= GetMaxGeneration(); m ++) |
| 958 | { |
| 959 | if (IsInterrupt()) |
| 960 | return; |
| 961 | |
| 962 | ExtOut("generation %d has %d finalizable objects " , m, |
| 963 | (SegQueueLimit(heapDetails,gen_segment(m)) - SegQueue(heapDetails,gen_segment(m))) / sizeof(size_t)); |
| 964 | |
| 965 | ExtOut ("(%p->%p)\n" , |
| 966 | SOS_PTR(SegQueue(heapDetails,gen_segment(m))), |
| 967 | SOS_PTR(SegQueueLimit(heapDetails,gen_segment(m)))); |
| 968 | } |
| 969 | } |
| 970 | #ifndef FEATURE_PAL |
| 971 | if (bAllReady) |
| 972 | { |
| 973 | if (!bShort) |
| 974 | { |
| 975 | ExtOut ("Finalizable but not rooted: " ); |
| 976 | } |
| 977 | |
| 978 | TADDR rngStart = (TADDR)SegQueue(heapDetails, gen_segment(GetMaxGeneration())); |
| 979 | TADDR rngEnd = (TADDR)SegQueueLimit(heapDetails, gen_segment(0)); |
| 980 | |
| 981 | PrintNotReachableInRange(rngStart, rngEnd, TRUE, bAllReady ? stat : NULL, bShort); |
| 982 | } |
| 983 | #endif |
| 984 | |
| 985 | if (!bShort) |
| 986 | { |
| 987 | ExtOut ("Ready for finalization %d objects " , |
| 988 | (SegQueueLimit(heapDetails,FinalizerListSeg)-SegQueue(heapDetails,CriticalFinalizerListSeg)) / sizeof(size_t)); |
| 989 | ExtOut ("(%p->%p)\n" , |
| 990 | SOS_PTR(SegQueue(heapDetails,CriticalFinalizerListSeg)), |
| 991 | SOS_PTR(SegQueueLimit(heapDetails,FinalizerListSeg))); |
| 992 | } |
| 993 | |
| 994 | // if bAllReady we only count objects that are ready for finalization, |
| 995 | // otherwise we count all finalizable objects. |
| 996 | TADDR taddrLowerLimit = (bAllReady ? (TADDR)SegQueue(heapDetails, CriticalFinalizerListSeg) : |
| 997 | (DWORD_PTR)SegQueue(heapDetails, gen_segment(GetMaxGeneration()))); |
| 998 | for (dwAddr = taddrLowerLimit; |
| 999 | dwAddr < (DWORD_PTR)SegQueueLimit(heapDetails, FinalizerListSeg); |
| 1000 | dwAddr += sizeof (dwAddr)) |
| 1001 | { |
| 1002 | if (IsInterrupt()) |
| 1003 | { |
| 1004 | return; |
| 1005 | } |
| 1006 | |
| 1007 | DWORD_PTR objAddr = NULL, |
| 1008 | MTAddr = NULL; |
| 1009 | |
| 1010 | if (SUCCEEDED(MOVE(objAddr, dwAddr)) && SUCCEEDED(GetMTOfObject(objAddr, &MTAddr)) && MTAddr) |
| 1011 | { |
| 1012 | if (bShort) |
| 1013 | { |
| 1014 | DMLOut("%s\n" , DMLObject(objAddr)); |
| 1015 | } |
| 1016 | else |
| 1017 | { |
| 1018 | size_t s = ObjectSize(objAddr); |
| 1019 | stat->Add(MTAddr, (DWORD)s); |
| 1020 | } |
| 1021 | } |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | BOOL GCHeapTraverse(const DacpGcHeapDetails &heap, AllocInfo* pallocInfo, VISITGCHEAPFUNC pFunc, LPVOID token, BOOL verify) |
| 1026 | { |
| 1027 | DWORD_PTR begin_youngest; |
| 1028 | DWORD_PTR end_youngest; |
| 1029 | begin_youngest = (DWORD_PTR)heap.generation_table[0].allocation_start; |
| 1030 | DWORD_PTR dwAddr = (DWORD_PTR)heap.ephemeral_heap_segment; |
| 1031 | DacpHeapSegmentData segment; |
| 1032 | |
| 1033 | end_youngest = (DWORD_PTR)heap.alloc_allocated; |
| 1034 | |
| 1035 | DWORD_PTR dwAddrSeg = (DWORD_PTR)heap.generation_table[GetMaxGeneration()].start_segment; |
| 1036 | dwAddr = dwAddrSeg; |
| 1037 | |
| 1038 | if (segment.Request(g_sos, dwAddr, heap) != S_OK) |
| 1039 | { |
| 1040 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(dwAddr)); |
| 1041 | return FALSE; |
| 1042 | } |
| 1043 | |
| 1044 | // DWORD_PTR dwAddrCurrObj = (DWORD_PTR)heap.generation_table[GetMaxGeneration()].allocation_start; |
| 1045 | DWORD_PTR dwAddrCurrObj = (DWORD_PTR)segment.mem; |
| 1046 | |
| 1047 | size_t s, sPrev=0; |
| 1048 | BOOL bPrevFree=FALSE; |
| 1049 | DWORD_PTR dwAddrMethTable; |
| 1050 | DWORD_PTR dwAddrPrevObj=0; |
| 1051 | |
| 1052 | while(1) |
| 1053 | { |
| 1054 | if (IsInterrupt()) |
| 1055 | { |
| 1056 | ExtOut("<heap walk interrupted>\n" ); |
| 1057 | return FALSE; |
| 1058 | } |
| 1059 | DWORD_PTR end_of_segment = (DWORD_PTR)segment.allocated; |
| 1060 | if (dwAddrSeg == (DWORD_PTR)heap.ephemeral_heap_segment) |
| 1061 | { |
| 1062 | end_of_segment = end_youngest; |
| 1063 | if (dwAddrCurrObj - SIZEOF_OBJHEADER == end_youngest - Align(min_obj_size)) |
| 1064 | break; |
| 1065 | } |
| 1066 | if (dwAddrCurrObj >= (DWORD_PTR)end_of_segment) |
| 1067 | { |
| 1068 | if (dwAddrCurrObj > (DWORD_PTR)end_of_segment) |
| 1069 | { |
| 1070 | ExtOut ("curr_object: %p > heap_segment_allocated (seg: %p)\n" , |
| 1071 | SOS_PTR(dwAddrCurrObj), SOS_PTR(dwAddrSeg)); |
| 1072 | if (dwAddrPrevObj) { |
| 1073 | ExtOut ("Last good object: %p\n" , SOS_PTR(dwAddrPrevObj)); |
| 1074 | } |
| 1075 | return FALSE; |
| 1076 | } |
| 1077 | dwAddrSeg = (DWORD_PTR)segment.next; |
| 1078 | if (dwAddrSeg) |
| 1079 | { |
| 1080 | dwAddr = dwAddrSeg; |
| 1081 | if (segment.Request(g_sos, dwAddr, heap) != S_OK) |
| 1082 | { |
| 1083 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(dwAddr)); |
| 1084 | return FALSE; |
| 1085 | } |
| 1086 | dwAddrCurrObj = (DWORD_PTR)segment.mem; |
| 1087 | continue; |
| 1088 | } |
| 1089 | else |
| 1090 | break; // Done Verifying Heap |
| 1091 | } |
| 1092 | |
| 1093 | if (dwAddrSeg == (DWORD_PTR)heap.ephemeral_heap_segment |
| 1094 | && dwAddrCurrObj >= end_youngest) |
| 1095 | { |
| 1096 | if (dwAddrCurrObj > end_youngest) |
| 1097 | { |
| 1098 | // prev_object length is too long |
| 1099 | ExtOut("curr_object: %p > end_youngest: %p\n" , |
| 1100 | SOS_PTR(dwAddrCurrObj), SOS_PTR(end_youngest)); |
| 1101 | if (dwAddrPrevObj) { |
| 1102 | DMLOut("Last good object: %s\n" , DMLObject(dwAddrPrevObj)); |
| 1103 | } |
| 1104 | return FALSE; |
| 1105 | } |
| 1106 | return FALSE; |
| 1107 | } |
| 1108 | |
| 1109 | if (FAILED(GetMTOfObject(dwAddrCurrObj, &dwAddrMethTable))) |
| 1110 | { |
| 1111 | return FALSE; |
| 1112 | } |
| 1113 | |
| 1114 | dwAddrMethTable = dwAddrMethTable & ~3; |
| 1115 | if (dwAddrMethTable == 0) |
| 1116 | { |
| 1117 | // Is this the beginning of an allocation context? |
| 1118 | int i; |
| 1119 | for (i = 0; i < pallocInfo->num; i ++) |
| 1120 | { |
| 1121 | if (dwAddrCurrObj == (DWORD_PTR)pallocInfo->array[i].alloc_ptr) |
| 1122 | { |
| 1123 | dwAddrCurrObj = |
| 1124 | (DWORD_PTR)pallocInfo->array[i].alloc_limit + Align(min_obj_size); |
| 1125 | break; |
| 1126 | } |
| 1127 | } |
| 1128 | if (i < pallocInfo->num) |
| 1129 | continue; |
| 1130 | |
| 1131 | // We also need to look at the gen0 alloc context. |
| 1132 | if (dwAddrCurrObj == (DWORD_PTR) heap.generation_table[0].allocContextPtr) |
| 1133 | { |
| 1134 | dwAddrCurrObj = (DWORD_PTR) heap.generation_table[0].allocContextLimit + Align(min_obj_size); |
| 1135 | continue; |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | BOOL bContainsPointers; |
| 1140 | BOOL bMTOk = GetSizeEfficient(dwAddrCurrObj, dwAddrMethTable, FALSE, s, bContainsPointers); |
| 1141 | if (verify && bMTOk) |
| 1142 | bMTOk = VerifyObject (heap, dwAddrCurrObj, dwAddrMethTable, s, TRUE); |
| 1143 | if (!bMTOk) |
| 1144 | { |
| 1145 | DMLOut("curr_object: %s\n" , DMLListNearObj(dwAddrCurrObj)); |
| 1146 | if (dwAddrPrevObj) |
| 1147 | DMLOut("Last good object: %s\n" , DMLObject(dwAddrPrevObj)); |
| 1148 | |
| 1149 | ExtOut ("----------------\n" ); |
| 1150 | return FALSE; |
| 1151 | } |
| 1152 | |
| 1153 | pFunc (dwAddrCurrObj, s, dwAddrMethTable, token); |
| 1154 | |
| 1155 | // We believe we did this alignment in ObjectSize above. |
| 1156 | assert((s & ALIGNCONST) == 0); |
| 1157 | dwAddrPrevObj = dwAddrCurrObj; |
| 1158 | sPrev = s; |
| 1159 | bPrevFree = IsMTForFreeObj(dwAddrMethTable); |
| 1160 | |
| 1161 | dwAddrCurrObj += s; |
| 1162 | } |
| 1163 | |
| 1164 | // Now for the large object generation: |
| 1165 | dwAddrSeg = (DWORD_PTR)heap.generation_table[GetMaxGeneration()+1].start_segment; |
| 1166 | dwAddr = dwAddrSeg; |
| 1167 | |
| 1168 | if (segment.Request(g_sos, dwAddr, heap) != S_OK) |
| 1169 | { |
| 1170 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(dwAddr)); |
| 1171 | return FALSE; |
| 1172 | } |
| 1173 | |
| 1174 | // dwAddrCurrObj = (DWORD_PTR)heap.generation_table[GetMaxGeneration()+1].allocation_start; |
| 1175 | dwAddrCurrObj = (DWORD_PTR)segment.mem; |
| 1176 | |
| 1177 | dwAddrPrevObj=0; |
| 1178 | |
| 1179 | while(1) |
| 1180 | { |
| 1181 | if (IsInterrupt()) |
| 1182 | { |
| 1183 | ExtOut("<heap traverse interrupted>\n" ); |
| 1184 | return FALSE; |
| 1185 | } |
| 1186 | |
| 1187 | DWORD_PTR end_of_segment = (DWORD_PTR)segment.allocated; |
| 1188 | |
| 1189 | if (dwAddrCurrObj >= (DWORD_PTR)end_of_segment) |
| 1190 | { |
| 1191 | if (dwAddrCurrObj > (DWORD_PTR)end_of_segment) |
| 1192 | { |
| 1193 | ExtOut("curr_object: %p > heap_segment_allocated (seg: %p)\n" , |
| 1194 | SOS_PTR(dwAddrCurrObj), SOS_PTR(dwAddrSeg)); |
| 1195 | if (dwAddrPrevObj) { |
| 1196 | ExtOut("Last good object: %p\n" , SOS_PTR(dwAddrPrevObj)); |
| 1197 | } |
| 1198 | return FALSE; |
| 1199 | } |
| 1200 | dwAddrSeg = (DWORD_PTR)segment.next; |
| 1201 | if (dwAddrSeg) |
| 1202 | { |
| 1203 | dwAddr = dwAddrSeg; |
| 1204 | if (segment.Request(g_sos, dwAddr, heap) != S_OK) |
| 1205 | { |
| 1206 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(dwAddr)); |
| 1207 | return FALSE; |
| 1208 | } |
| 1209 | dwAddrCurrObj = (DWORD_PTR)segment.mem; |
| 1210 | continue; |
| 1211 | } |
| 1212 | else |
| 1213 | break; // Done Verifying Heap |
| 1214 | } |
| 1215 | |
| 1216 | if (FAILED(GetMTOfObject(dwAddrCurrObj, &dwAddrMethTable))) |
| 1217 | { |
| 1218 | return FALSE; |
| 1219 | } |
| 1220 | |
| 1221 | dwAddrMethTable = dwAddrMethTable & ~3; |
| 1222 | BOOL bContainsPointers; |
| 1223 | BOOL bMTOk = GetSizeEfficient(dwAddrCurrObj, dwAddrMethTable, TRUE, s, bContainsPointers); |
| 1224 | if (verify && bMTOk) |
| 1225 | bMTOk = VerifyObject (heap, dwAddrCurrObj, dwAddrMethTable, s, TRUE); |
| 1226 | if (!bMTOk) |
| 1227 | { |
| 1228 | DMLOut("curr_object: %s\n" , DMLListNearObj(dwAddrCurrObj)); |
| 1229 | |
| 1230 | if (dwAddrPrevObj) |
| 1231 | DMLOut("Last good object: %s\n" , dwAddrPrevObj); |
| 1232 | |
| 1233 | ExtOut ("----------------\n" ); |
| 1234 | return FALSE; |
| 1235 | } |
| 1236 | |
| 1237 | pFunc (dwAddrCurrObj, s, dwAddrMethTable, token); |
| 1238 | |
| 1239 | // We believe we did this alignment in ObjectSize above. |
| 1240 | assert((s & ALIGNCONSTLARGE) == 0); |
| 1241 | dwAddrPrevObj = dwAddrCurrObj; |
| 1242 | dwAddrCurrObj += s; |
| 1243 | } |
| 1244 | |
| 1245 | return TRUE; |
| 1246 | } |
| 1247 | |
| 1248 | BOOL GCHeapsTraverse(VISITGCHEAPFUNC pFunc, LPVOID token, BOOL verify) |
| 1249 | { |
| 1250 | // Obtain allocation context for each managed thread. |
| 1251 | AllocInfo allocInfo; |
| 1252 | allocInfo.Init(); |
| 1253 | |
| 1254 | if (!IsServerBuild()) |
| 1255 | { |
| 1256 | DacpGcHeapDetails heapDetails; |
| 1257 | if (heapDetails.Request(g_sos) != S_OK) |
| 1258 | { |
| 1259 | ExtOut("Error requesting gc heap details\n" ); |
| 1260 | return FALSE; |
| 1261 | } |
| 1262 | |
| 1263 | return GCHeapTraverse (heapDetails, &allocInfo, pFunc, token, verify); |
| 1264 | } |
| 1265 | else |
| 1266 | { |
| 1267 | DacpGcHeapData gcheap; |
| 1268 | if (gcheap.Request(g_sos) != S_OK) |
| 1269 | { |
| 1270 | ExtOut("Error requesting GC Heap data\n" ); |
| 1271 | return FALSE; |
| 1272 | } |
| 1273 | |
| 1274 | DWORD dwAllocSize; |
| 1275 | DWORD dwNHeaps = gcheap.HeapCount; |
| 1276 | if (!ClrSafeInt<DWORD>::multiply(sizeof(CLRDATA_ADDRESS), dwNHeaps, dwAllocSize)) |
| 1277 | { |
| 1278 | ExtOut("Failed to get GCHeaps: integer overflow error\n" ); |
| 1279 | return FALSE; |
| 1280 | } |
| 1281 | CLRDATA_ADDRESS *heapAddrs = (CLRDATA_ADDRESS*)alloca(dwAllocSize); |
| 1282 | if (g_sos->GetGCHeapList(dwNHeaps, heapAddrs, NULL) != S_OK) |
| 1283 | { |
| 1284 | ExtOut("Failed to get GCHeaps\n" ); |
| 1285 | return FALSE; |
| 1286 | } |
| 1287 | |
| 1288 | DWORD n; |
| 1289 | for (n = 0; n < dwNHeaps; n ++) |
| 1290 | { |
| 1291 | DacpGcHeapDetails heapDetails; |
| 1292 | if (heapDetails.Request(g_sos, heapAddrs[n]) != S_OK) |
| 1293 | { |
| 1294 | ExtOut("Error requesting details\n" ); |
| 1295 | return FALSE; |
| 1296 | } |
| 1297 | |
| 1298 | if (!GCHeapTraverse (heapDetails, &allocInfo, pFunc, token, verify)) |
| 1299 | { |
| 1300 | ExtOut("Traversing a gc heap failed\n" ); |
| 1301 | return FALSE; |
| 1302 | } |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | return TRUE; |
| 1307 | } |
| 1308 | |
| 1309 | GCHeapSnapshot::GCHeapSnapshot() |
| 1310 | { |
| 1311 | m_isBuilt = FALSE; |
| 1312 | m_heapDetails = NULL; |
| 1313 | } |
| 1314 | |
| 1315 | /////////////////////////////////////////////////////////// |
| 1316 | SegmentLookup::SegmentLookup() |
| 1317 | { |
| 1318 | m_iSegmentsSize = m_iSegmentCount = 0; |
| 1319 | |
| 1320 | m_segments = new DacpHeapSegmentData[nSegLookupStgIncrement]; |
| 1321 | if (m_segments == NULL) |
| 1322 | { |
| 1323 | ReportOOM(); |
| 1324 | } |
| 1325 | else |
| 1326 | { |
| 1327 | m_iSegmentsSize = nSegLookupStgIncrement; |
| 1328 | } |
| 1329 | } |
| 1330 | |
| 1331 | BOOL SegmentLookup::AddSegment(DacpHeapSegmentData *pData) |
| 1332 | { |
| 1333 | // appends the address of a new (initialized) instance of DacpHeapSegmentData to the list of segments |
| 1334 | // (m_segments) adding space for a segment when necessary. |
| 1335 | // @todo Microsoft: The field name m_iSegmentSize is a little misleading. It's not the size in bytes, |
| 1336 | // but the number of elements allocated for the array. It probably should have been named something like |
| 1337 | // m_iMaxSegments instead. |
| 1338 | if (m_iSegmentCount >= m_iSegmentsSize) |
| 1339 | { |
| 1340 | // expand buffer--allocate enough space to hold the elements we already have plus nSegLookupStgIncrement |
| 1341 | // more elements |
| 1342 | DacpHeapSegmentData *pNewBuffer = new DacpHeapSegmentData[m_iSegmentsSize+nSegLookupStgIncrement]; |
| 1343 | if (pNewBuffer==NULL) |
| 1344 | return FALSE; |
| 1345 | |
| 1346 | // copy the old elements into the new array |
| 1347 | memcpy(pNewBuffer, m_segments, sizeof(DacpHeapSegmentData)*m_iSegmentsSize); |
| 1348 | |
| 1349 | // record the new number of elements available |
| 1350 | m_iSegmentsSize+=nSegLookupStgIncrement; |
| 1351 | |
| 1352 | // delete the old array |
| 1353 | delete [] m_segments; |
| 1354 | |
| 1355 | // set m_segments to point to the new array |
| 1356 | m_segments = pNewBuffer; |
| 1357 | } |
| 1358 | |
| 1359 | // add pData to the array |
| 1360 | m_segments[m_iSegmentCount++] = *pData; |
| 1361 | |
| 1362 | return TRUE; |
| 1363 | } |
| 1364 | |
| 1365 | SegmentLookup::~SegmentLookup() |
| 1366 | { |
| 1367 | if (m_segments) |
| 1368 | { |
| 1369 | delete [] m_segments; |
| 1370 | m_segments = NULL; |
| 1371 | } |
| 1372 | } |
| 1373 | |
| 1374 | void SegmentLookup::Clear() |
| 1375 | { |
| 1376 | m_iSegmentCount = 0; |
| 1377 | } |
| 1378 | |
| 1379 | CLRDATA_ADDRESS SegmentLookup::GetHeap(CLRDATA_ADDRESS object, BOOL& bFound) |
| 1380 | { |
| 1381 | CLRDATA_ADDRESS ret = NULL; |
| 1382 | bFound = FALSE; |
| 1383 | |
| 1384 | // Visit our segments |
| 1385 | for (int i=0; i<m_iSegmentCount; i++) |
| 1386 | { |
| 1387 | if (TO_TADDR(m_segments[i].mem) <= TO_TADDR(object) && |
| 1388 | TO_TADDR(m_segments[i].highAllocMark) > TO_TADDR(object)) |
| 1389 | { |
| 1390 | ret = m_segments[i].gc_heap; |
| 1391 | bFound = TRUE; |
| 1392 | break; |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | return ret; |
| 1397 | } |
| 1398 | |
| 1399 | /////////////////////////////////////////////////////////////////////////// |
| 1400 | |
| 1401 | BOOL GCHeapSnapshot::Build() |
| 1402 | { |
| 1403 | Clear(); |
| 1404 | |
| 1405 | m_isBuilt = FALSE; |
| 1406 | |
| 1407 | ///- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1408 | /// 1. Get some basic information such as the heap type (SVR or WKS), how many heaps there are, mode and max generation |
| 1409 | /// (See code:ClrDataAccess::RequestGCHeapData) |
| 1410 | ///- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1411 | if (m_gcheap.Request(g_sos) != S_OK) |
| 1412 | { |
| 1413 | ExtOut("Error requesting GC Heap data\n" ); |
| 1414 | return FALSE; |
| 1415 | } |
| 1416 | |
| 1417 | ArrayHolder<CLRDATA_ADDRESS> heapAddrs = NULL; |
| 1418 | |
| 1419 | ///- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1420 | /// 2. Get a list of the addresses of the heaps when we have multiple heaps in server mode |
| 1421 | ///- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1422 | if (m_gcheap.bServerMode) |
| 1423 | { |
| 1424 | UINT AllocSize; |
| 1425 | // allocate an array to hold the starting addresses of each heap when we're in server mode |
| 1426 | if (!ClrSafeInt<UINT>::multiply(sizeof(CLRDATA_ADDRESS), m_gcheap.HeapCount, AllocSize) || |
| 1427 | (heapAddrs = new CLRDATA_ADDRESS [m_gcheap.HeapCount]) == NULL) |
| 1428 | { |
| 1429 | ReportOOM(); |
| 1430 | return FALSE; |
| 1431 | } |
| 1432 | |
| 1433 | // and initialize it with their addresses (see code:ClrDataAccess::RequestGCHeapList |
| 1434 | // for details) |
| 1435 | if (g_sos->GetGCHeapList(m_gcheap.HeapCount, heapAddrs, NULL) != S_OK) |
| 1436 | { |
| 1437 | ExtOut("Failed to get GCHeaps\n" ); |
| 1438 | return FALSE; |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | ///- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1443 | /// 3. Get some necessary information about each heap, such as the card table location, the generation |
| 1444 | /// table, the heap bounds, etc., and retrieve the heap segments |
| 1445 | ///- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1446 | |
| 1447 | // allocate an array to hold the information |
| 1448 | m_heapDetails = new DacpGcHeapDetails[m_gcheap.HeapCount]; |
| 1449 | |
| 1450 | if (m_heapDetails == NULL) |
| 1451 | { |
| 1452 | ReportOOM(); |
| 1453 | return FALSE; |
| 1454 | } |
| 1455 | |
| 1456 | // get the heap information for each heap |
| 1457 | // See code:ClrDataAccess::RequestGCHeapDetails for details |
| 1458 | for (UINT n = 0; n < m_gcheap.HeapCount; n ++) |
| 1459 | { |
| 1460 | if (m_gcheap.bServerMode) |
| 1461 | { |
| 1462 | if (m_heapDetails[n].Request(g_sos, heapAddrs[n]) != S_OK) |
| 1463 | { |
| 1464 | ExtOut("Error requesting details\n" ); |
| 1465 | return FALSE; |
| 1466 | } |
| 1467 | } |
| 1468 | else |
| 1469 | { |
| 1470 | if (m_heapDetails[n].Request(g_sos) != S_OK) |
| 1471 | { |
| 1472 | ExtOut("Error requesting details\n" ); |
| 1473 | return FALSE; |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | // now get information about the heap segments for this heap |
| 1478 | if (!AddSegments(m_heapDetails[n])) |
| 1479 | { |
| 1480 | ExtOut("Failed to retrieve segments for gc heap\n" ); |
| 1481 | return FALSE; |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | m_isBuilt = TRUE; |
| 1486 | return TRUE; |
| 1487 | } |
| 1488 | |
| 1489 | BOOL GCHeapSnapshot::AddSegments(DacpGcHeapDetails& details) |
| 1490 | { |
| 1491 | int n = 0; |
| 1492 | DacpHeapSegmentData segment; |
| 1493 | |
| 1494 | // This array of two addresses gives us access to all the segments. The generation segments are linked |
| 1495 | // to each other, starting with the maxGeneration segment. The second address gives us the large object heap. |
| 1496 | CLRDATA_ADDRESS AddrSegs[] = |
| 1497 | { |
| 1498 | details.generation_table[GetMaxGeneration()].start_segment, |
| 1499 | details.generation_table[GetMaxGeneration()+1].start_segment // large object heap |
| 1500 | }; |
| 1501 | |
| 1502 | // this loop will get information for all the heap segments in this heap. The outer loop iterates once |
| 1503 | // for the "normal" generation segments and once for the large object heap. The inner loop follows the chain |
| 1504 | // of segments rooted at AddrSegs[i] |
| 1505 | for (unsigned int i = 0; i < sizeof(AddrSegs)/sizeof(AddrSegs[0]); ++i) |
| 1506 | { |
| 1507 | CLRDATA_ADDRESS AddrSeg = AddrSegs[i]; |
| 1508 | |
| 1509 | while (AddrSeg != NULL) |
| 1510 | { |
| 1511 | if (IsInterrupt()) |
| 1512 | { |
| 1513 | return FALSE; |
| 1514 | } |
| 1515 | // Initialize segment by copying fields from the target's heap segment at AddrSeg. |
| 1516 | // See code:ClrDataAccess::RequestGCHeapSegment for details. |
| 1517 | if (segment.Request(g_sos, AddrSeg, details) != S_OK) |
| 1518 | { |
| 1519 | ExtOut("Error requesting heap segment %p\n" , SOS_PTR(AddrSeg)); |
| 1520 | return FALSE; |
| 1521 | } |
| 1522 | if (n++ > nMaxHeapSegmentCount) // that would be insane |
| 1523 | { |
| 1524 | ExtOut("More than %d heap segments, there must be an error\n" , nMaxHeapSegmentCount); |
| 1525 | return FALSE; |
| 1526 | } |
| 1527 | |
| 1528 | // add the new segment to the array of segments. This will expand the array if necessary |
| 1529 | if (!m_segments.AddSegment(&segment)) |
| 1530 | { |
| 1531 | ExtOut("strike: Failed to store segment\n" ); |
| 1532 | return FALSE; |
| 1533 | } |
| 1534 | // get the next segment in the chain |
| 1535 | AddrSeg = segment.next; |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | return TRUE; |
| 1540 | } |
| 1541 | |
| 1542 | void GCHeapSnapshot::Clear() |
| 1543 | { |
| 1544 | if (m_heapDetails != NULL) |
| 1545 | { |
| 1546 | delete [] m_heapDetails; |
| 1547 | m_heapDetails = NULL; |
| 1548 | } |
| 1549 | |
| 1550 | m_segments.Clear(); |
| 1551 | |
| 1552 | m_isBuilt = FALSE; |
| 1553 | } |
| 1554 | |
| 1555 | GCHeapSnapshot g_snapshot; |
| 1556 | |
| 1557 | DacpGcHeapDetails *GCHeapSnapshot::GetHeap(CLRDATA_ADDRESS objectPointer) |
| 1558 | { |
| 1559 | // We need bFound because heap will be NULL if we are Workstation Mode. |
| 1560 | // We still need a way to know if the address was found in our segment |
| 1561 | // list. |
| 1562 | BOOL bFound = FALSE; |
| 1563 | CLRDATA_ADDRESS heap = m_segments.GetHeap(objectPointer, bFound); |
| 1564 | if (heap) |
| 1565 | { |
| 1566 | for (UINT i=0; i<m_gcheap.HeapCount; i++) |
| 1567 | { |
| 1568 | if (m_heapDetails[i].heapAddr == heap) |
| 1569 | return m_heapDetails + i; |
| 1570 | } |
| 1571 | } |
| 1572 | else if (!m_gcheap.bServerMode) |
| 1573 | { |
| 1574 | if (bFound) |
| 1575 | { |
| 1576 | return m_heapDetails; |
| 1577 | } |
| 1578 | } |
| 1579 | |
| 1580 | // Not found |
| 1581 | return NULL; |
| 1582 | } |
| 1583 | |
| 1584 | // TODO: Do we need to handle the LOH here? |
| 1585 | int GCHeapSnapshot::GetGeneration(CLRDATA_ADDRESS objectPointer) |
| 1586 | { |
| 1587 | DacpGcHeapDetails *pDetails = GetHeap(objectPointer); |
| 1588 | if (pDetails == NULL) |
| 1589 | { |
| 1590 | ExtOut("Object %p has no generation\n" , SOS_PTR(objectPointer)); |
| 1591 | return 0; |
| 1592 | } |
| 1593 | |
| 1594 | TADDR taObj = TO_TADDR(objectPointer); |
| 1595 | // The DAC doesn't fill the generation table with true CLRDATA_ADDRESS values |
| 1596 | // but rather with ULONG64 values (i.e. non-sign-extended 64-bit values) |
| 1597 | // We use the TO_TADDR below to ensure we won't break if this will ever |
| 1598 | // be fixed in the DAC. |
| 1599 | if (taObj >= TO_TADDR(pDetails->generation_table[0].allocation_start) && |
| 1600 | taObj <= TO_TADDR(pDetails->alloc_allocated)) |
| 1601 | return 0; |
| 1602 | |
| 1603 | if (taObj >= TO_TADDR(pDetails->generation_table[1].allocation_start) && |
| 1604 | taObj <= TO_TADDR(pDetails->generation_table[0].allocation_start)) |
| 1605 | return 1; |
| 1606 | |
| 1607 | return 2; |
| 1608 | } |
| 1609 | |
| 1610 | |
| 1611 | DWORD_PTR g_trav_totalSize = 0; |
| 1612 | DWORD_PTR g_trav_wastedSize = 0; |
| 1613 | |
| 1614 | void LoaderHeapTraverse(CLRDATA_ADDRESS blockData,size_t blockSize,BOOL blockIsCurrentBlock) |
| 1615 | { |
| 1616 | DWORD_PTR dwAddr1; |
| 1617 | DWORD_PTR curSize = 0; |
| 1618 | char ch; |
| 1619 | for (dwAddr1 = (DWORD_PTR)blockData; |
| 1620 | dwAddr1 < (DWORD_PTR)blockData + blockSize; |
| 1621 | dwAddr1 += OSPageSize()) |
| 1622 | { |
| 1623 | if (IsInterrupt()) |
| 1624 | break; |
| 1625 | if (SafeReadMemory(dwAddr1, &ch, sizeof(ch), NULL)) |
| 1626 | { |
| 1627 | curSize += OSPageSize(); |
| 1628 | } |
| 1629 | else |
| 1630 | break; |
| 1631 | } |
| 1632 | |
| 1633 | if (!blockIsCurrentBlock) |
| 1634 | { |
| 1635 | g_trav_wastedSize += blockSize - curSize; |
| 1636 | } |
| 1637 | |
| 1638 | g_trav_totalSize += curSize; |
| 1639 | ExtOut("%p(%x:%x) " , SOS_PTR(blockData), blockSize, curSize); |
| 1640 | } |
| 1641 | |
| 1642 | /**********************************************************************\ |
| 1643 | * Routine Description: * |
| 1644 | * * |
| 1645 | * This function prints out the size for various heaps. * |
| 1646 | * total - the total size of the heap * |
| 1647 | * wasted - the amount of size wasted by the heap. * |
| 1648 | * * |
| 1649 | \**********************************************************************/ |
| 1650 | void PrintHeapSize(DWORD_PTR total, DWORD_PTR wasted) |
| 1651 | { |
| 1652 | ExtOut("Size: 0x%" POINTERSIZE_TYPE "x (%" POINTERSIZE_TYPE "u) bytes" , total, total); |
| 1653 | if (wasted) |
| 1654 | ExtOut(" total, 0x%" POINTERSIZE_TYPE "x (%" POINTERSIZE_TYPE "u) bytes wasted" , wasted, wasted); |
| 1655 | ExtOut(".\n" ); |
| 1656 | } |
| 1657 | |
| 1658 | /**********************************************************************\ |
| 1659 | * Routine Description: * |
| 1660 | * * |
| 1661 | * This function prints out the size information for the JIT heap. * |
| 1662 | * * |
| 1663 | * Returns: The size of this heap. * |
| 1664 | * * |
| 1665 | \**********************************************************************/ |
| 1666 | DWORD_PTR JitHeapInfo() |
| 1667 | { |
| 1668 | // walk ExecutionManager__m_pJitList |
| 1669 | unsigned int count = 0; |
| 1670 | if (FAILED(g_sos->GetJitManagerList(0, NULL, &count))) |
| 1671 | { |
| 1672 | ExtOut("Unable to get JIT info\n" ); |
| 1673 | return 0; |
| 1674 | } |
| 1675 | |
| 1676 | ArrayHolder<DacpJitManagerInfo> pArray = new DacpJitManagerInfo[count]; |
| 1677 | if (pArray==NULL) |
| 1678 | { |
| 1679 | ReportOOM(); |
| 1680 | return 0; |
| 1681 | } |
| 1682 | |
| 1683 | if (g_sos->GetJitManagerList(count, pArray, NULL) != S_OK) |
| 1684 | { |
| 1685 | ExtOut("Unable to get array of JIT Managers\n" ); |
| 1686 | return 0; |
| 1687 | } |
| 1688 | |
| 1689 | DWORD_PTR totalSize = 0; |
| 1690 | DWORD_PTR wasted = 0; |
| 1691 | |
| 1692 | for (unsigned int n=0; n < count; n++) |
| 1693 | { |
| 1694 | if (IsInterrupt()) |
| 1695 | break; |
| 1696 | |
| 1697 | if (IsMiIL(pArray[n].codeType)) // JIT |
| 1698 | { |
| 1699 | unsigned int heapCount = 0; |
| 1700 | if (FAILED(g_sos->GetCodeHeapList(pArray[n].managerAddr, 0, NULL, &heapCount))) |
| 1701 | { |
| 1702 | ExtOut("Error getting EEJitManager code heaps\n" ); |
| 1703 | break; |
| 1704 | } |
| 1705 | |
| 1706 | if (heapCount > 0) |
| 1707 | { |
| 1708 | ArrayHolder<DacpJitCodeHeapInfo> codeHeapInfo = new DacpJitCodeHeapInfo[heapCount]; |
| 1709 | if (codeHeapInfo == NULL) |
| 1710 | { |
| 1711 | ReportOOM(); |
| 1712 | break; |
| 1713 | } |
| 1714 | |
| 1715 | if (g_sos->GetCodeHeapList(pArray[n].managerAddr, heapCount, codeHeapInfo, NULL) != S_OK) |
| 1716 | { |
| 1717 | ExtOut("Unable to get code heap info\n" ); |
| 1718 | break; |
| 1719 | } |
| 1720 | |
| 1721 | for (unsigned int iHeaps = 0; iHeaps < heapCount; iHeaps++) |
| 1722 | { |
| 1723 | if (IsInterrupt()) |
| 1724 | break; |
| 1725 | |
| 1726 | if (codeHeapInfo[iHeaps].codeHeapType == CODEHEAP_LOADER) |
| 1727 | { |
| 1728 | ExtOut("LoaderCodeHeap: " ); |
| 1729 | totalSize += LoaderHeapInfo(codeHeapInfo[iHeaps].LoaderHeap, &wasted); |
| 1730 | } |
| 1731 | else if (codeHeapInfo[iHeaps].codeHeapType == CODEHEAP_HOST) |
| 1732 | { |
| 1733 | ExtOut("HostCodeHeap: " ); |
| 1734 | ExtOut("%p " , SOS_PTR(codeHeapInfo[iHeaps].HostData.baseAddr)); |
| 1735 | DWORD dwSize = (DWORD)(codeHeapInfo[iHeaps].HostData.currentAddr - codeHeapInfo[iHeaps].HostData.baseAddr); |
| 1736 | PrintHeapSize(dwSize, 0); |
| 1737 | totalSize += dwSize; |
| 1738 | } |
| 1739 | } |
| 1740 | } |
| 1741 | } |
| 1742 | else if (!IsMiNative(pArray[n].codeType)) // ignore native heaps for now |
| 1743 | { |
| 1744 | ExtOut("Unknown Jit encountered, ignored\n" ); |
| 1745 | } |
| 1746 | } |
| 1747 | |
| 1748 | ExtOut("Total size: " ); |
| 1749 | PrintHeapSize(totalSize, wasted); |
| 1750 | |
| 1751 | return totalSize; |
| 1752 | } |
| 1753 | |
| 1754 | |
| 1755 | /**********************************************************************\ |
| 1756 | * Routine Description: * |
| 1757 | * * |
| 1758 | * This function prints out the loader heap info for a single AD. * |
| 1759 | * pLoaderHeapAddr - pointer to the loader heap * |
| 1760 | * wasted - a pointer to store the number of bytes wasted in this * |
| 1761 | * VSDHeap (this pointer can be NULL) * |
| 1762 | * * |
| 1763 | * Returns: The size of this heap. * |
| 1764 | * * |
| 1765 | \**********************************************************************/ |
| 1766 | DWORD_PTR LoaderHeapInfo(CLRDATA_ADDRESS pLoaderHeapAddr, DWORD_PTR *wasted) |
| 1767 | { |
| 1768 | g_trav_totalSize = 0; |
| 1769 | g_trav_wastedSize = 0; |
| 1770 | |
| 1771 | if (pLoaderHeapAddr) |
| 1772 | g_sos->TraverseLoaderHeap(pLoaderHeapAddr, LoaderHeapTraverse); |
| 1773 | |
| 1774 | PrintHeapSize(g_trav_totalSize, g_trav_wastedSize); |
| 1775 | |
| 1776 | if (wasted) |
| 1777 | *wasted += g_trav_wastedSize; |
| 1778 | return g_trav_totalSize; |
| 1779 | } |
| 1780 | |
| 1781 | |
| 1782 | /**********************************************************************\ |
| 1783 | * Routine Description: * |
| 1784 | * * |
| 1785 | * This function prints out the heap info for a single VSDHeap. * |
| 1786 | * name - the name to print * |
| 1787 | * type - the type of heap * |
| 1788 | * appDomain - the app domain in which this resides * |
| 1789 | * wasted - a pointer to store the number of bytes wasted in this * |
| 1790 | * VSDHeap (this pointer can be NULL) * |
| 1791 | * * |
| 1792 | * Returns: The size of this heap. * |
| 1793 | * * |
| 1794 | \**********************************************************************/ |
| 1795 | static DWORD_PTR PrintOneVSDHeap(const char *name, VCSHeapType type, CLRDATA_ADDRESS appDomain, DWORD_PTR *wasted) |
| 1796 | { |
| 1797 | g_trav_totalSize = 0; g_trav_wastedSize = 0; |
| 1798 | |
| 1799 | ExtOut(name); |
| 1800 | g_sos->TraverseVirtCallStubHeap(appDomain, type, LoaderHeapTraverse); |
| 1801 | |
| 1802 | PrintHeapSize(g_trav_totalSize, g_trav_wastedSize); |
| 1803 | if (wasted) |
| 1804 | *wasted += g_trav_wastedSize; |
| 1805 | return g_trav_totalSize; |
| 1806 | } |
| 1807 | |
| 1808 | |
| 1809 | /**********************************************************************\ |
| 1810 | * Routine Description: * |
| 1811 | * * |
| 1812 | * This function prints out the heap info for VSDHeaps. * |
| 1813 | * appDomain - The AppDomain to print info for. * |
| 1814 | * wasted - a pointer to store the number of bytes wasted in this * |
| 1815 | * AppDomain (this pointer can be NULL) * |
| 1816 | * * |
| 1817 | * Returns: The size of this heap. * |
| 1818 | * * |
| 1819 | \**********************************************************************/ |
| 1820 | DWORD_PTR VSDHeapInfo(CLRDATA_ADDRESS appDomain, DWORD_PTR *wasted) |
| 1821 | { |
| 1822 | DWORD_PTR totalSize = 0; |
| 1823 | |
| 1824 | if (appDomain) |
| 1825 | { |
| 1826 | totalSize += PrintOneVSDHeap(" IndcellHeap: " , IndcellHeap, appDomain, wasted); |
| 1827 | totalSize += PrintOneVSDHeap(" LookupHeap: " , LookupHeap, appDomain, wasted); |
| 1828 | totalSize += PrintOneVSDHeap(" ResolveHeap: " , ResolveHeap, appDomain, wasted); |
| 1829 | totalSize += PrintOneVSDHeap(" DispatchHeap: " , DispatchHeap, appDomain, wasted); |
| 1830 | totalSize += PrintOneVSDHeap(" CacheEntryHeap: " , CacheEntryHeap, appDomain, wasted); |
| 1831 | } |
| 1832 | |
| 1833 | return totalSize; |
| 1834 | } |
| 1835 | |
| 1836 | |
| 1837 | /**********************************************************************\ |
| 1838 | * Routine Description: * |
| 1839 | * * |
| 1840 | * This function prints out the heap info for a domain * |
| 1841 | * name - the name of the domain (to be printed) * |
| 1842 | * adPtr - a pointer to the AppDomain to print info about * |
| 1843 | * outSize - a pointer to an int to store the size at (this may be * |
| 1844 | * NULL) * |
| 1845 | * outWasted - a pointer to an int to store the number of bytes this * |
| 1846 | * domain is wasting (this may be NULL) * |
| 1847 | * * |
| 1848 | * returns: SUCCESS if we successfully printed out the domain heap * |
| 1849 | * info, FAILED otherwise; if FAILED, outSize and * |
| 1850 | * outWasted are untouched. * |
| 1851 | * * |
| 1852 | \**********************************************************************/ |
| 1853 | HRESULT PrintDomainHeapInfo(const char *name, CLRDATA_ADDRESS adPtr, DWORD_PTR *outSize, DWORD_PTR *outWasted) |
| 1854 | { |
| 1855 | DacpAppDomainData appDomain; |
| 1856 | HRESULT hr = appDomain.Request(g_sos, adPtr); |
| 1857 | if (FAILED(hr)) |
| 1858 | { |
| 1859 | ExtOut("Unable to get information for %s.\n" , name); |
| 1860 | return hr; |
| 1861 | } |
| 1862 | |
| 1863 | ExtOut("--------------------------------------\n" ); |
| 1864 | |
| 1865 | const int column = 19; |
| 1866 | ExtOut("%s:" , name); |
| 1867 | WhitespaceOut(column - (int)strlen(name) - 1); |
| 1868 | DMLOut("%s\n" , DMLDomain(adPtr)); |
| 1869 | |
| 1870 | DWORD_PTR domainHeapSize = 0; |
| 1871 | DWORD_PTR wasted = 0; |
| 1872 | |
| 1873 | ExtOut("LowFrequencyHeap: " ); |
| 1874 | domainHeapSize += LoaderHeapInfo(appDomain.pLowFrequencyHeap, &wasted); |
| 1875 | |
| 1876 | ExtOut("HighFrequencyHeap: " ); |
| 1877 | domainHeapSize += LoaderHeapInfo(appDomain.pHighFrequencyHeap, &wasted); |
| 1878 | |
| 1879 | ExtOut("StubHeap: " ); |
| 1880 | domainHeapSize += LoaderHeapInfo(appDomain.pStubHeap, &wasted); |
| 1881 | |
| 1882 | ExtOut("Virtual Call Stub Heap:\n" ); |
| 1883 | domainHeapSize += VSDHeapInfo(appDomain.AppDomainPtr, &wasted); |
| 1884 | |
| 1885 | ExtOut("Total size: " ); |
| 1886 | PrintHeapSize(domainHeapSize, wasted); |
| 1887 | |
| 1888 | if (outSize) |
| 1889 | *outSize += domainHeapSize; |
| 1890 | if (outWasted) |
| 1891 | *outWasted += wasted; |
| 1892 | |
| 1893 | return hr; |
| 1894 | } |
| 1895 | |
| 1896 | /**********************************************************************\ |
| 1897 | * Routine Description: * |
| 1898 | * * |
| 1899 | * This function prints out the heap info for a list of modules. * |
| 1900 | * moduleList - an array of modules * |
| 1901 | * count - the number of modules in moduleList * |
| 1902 | * type - the type of heap * |
| 1903 | * outWasted - a pointer to store the number of bytes wasted in this * |
| 1904 | * heap (this pointer can be NULL) * |
| 1905 | * * |
| 1906 | * Returns: The size of this heap. * |
| 1907 | * * |
| 1908 | \**********************************************************************/ |
| 1909 | DWORD_PTR PrintModuleHeapInfo(__out_ecount(count) DWORD_PTR *moduleList, int count, ModuleHeapType type, DWORD_PTR *outWasted) |
| 1910 | { |
| 1911 | DWORD_PTR toReturn = 0; |
| 1912 | DWORD_PTR wasted = 0; |
| 1913 | |
| 1914 | if (IsMiniDumpFile()) |
| 1915 | { |
| 1916 | ExtOut("<no information>\n" ); |
| 1917 | } |
| 1918 | else |
| 1919 | { |
| 1920 | DWORD_PTR thunkHeapSize = 0; |
| 1921 | |
| 1922 | for (int i = 0; i < count; i++) |
| 1923 | { |
| 1924 | CLRDATA_ADDRESS addr = moduleList[i]; |
| 1925 | DacpModuleData dmd; |
| 1926 | if (dmd.Request(g_sos, addr) != S_OK) |
| 1927 | { |
| 1928 | ExtOut("Unable to read module %p\n" , SOS_PTR(addr)); |
| 1929 | } |
| 1930 | else |
| 1931 | { |
| 1932 | DMLOut("Module %s: " , DMLModule(addr)); |
| 1933 | CLRDATA_ADDRESS heap = type == ModuleHeapType_ThunkHeap ? dmd.pThunkHeap : dmd.pLookupTableHeap; |
| 1934 | thunkHeapSize += LoaderHeapInfo(heap, &wasted); |
| 1935 | } |
| 1936 | } |
| 1937 | |
| 1938 | ExtOut("Total size: " WIN86_8SPACES); |
| 1939 | PrintHeapSize(thunkHeapSize, wasted); |
| 1940 | |
| 1941 | toReturn = thunkHeapSize; |
| 1942 | } |
| 1943 | |
| 1944 | if (outWasted) |
| 1945 | *outWasted += wasted; |
| 1946 | |
| 1947 | return toReturn; |
| 1948 | } |
| 1949 | |