| 1 | #include "consistent_hashing.h" |
| 2 | |
| 3 | #include "bitops.h" |
| 4 | |
| 5 | #include "popcount.h" |
| 6 | |
| 7 | #include <stdexcept> |
| 8 | |
| 9 | /* |
| 10 | * (all numbers are written in big-endian manner: the least significant digit on the right) |
| 11 | * (only bit representations are used - no hex or octal, leading zeroes are ommited) |
| 12 | * |
| 13 | * Consistent hashing scheme: |
| 14 | * |
| 15 | * (sizeof(TValue) * 8, y] (y, 0] |
| 16 | * a = * ablock |
| 17 | * b = * cblock |
| 18 | * |
| 19 | * (sizeof(TValue) * 8, k] (k, 0] |
| 20 | * c = * cblock |
| 21 | * |
| 22 | * d = * |
| 23 | * |
| 24 | * k - is determined by 2^(k-1) < n <= 2^k inequality |
| 25 | * z - is number of ones in cblock |
| 26 | * y - number of digits after first one in cblock |
| 27 | * |
| 28 | * The cblock determines logic of using a- and b- blocks: |
| 29 | * |
| 30 | * bits of cblock | result of a function |
| 31 | * 0 : 0 |
| 32 | * 1 : 1 (optimization, the next case includes this one) |
| 33 | * 1?..? : 1ablock (z is even) or 1bblock (z is odd) if possible (<n) |
| 34 | * |
| 35 | * If last case is not possible (>=n), than smooth moving from n=2^(k-1) to n=2^k is applied. |
| 36 | * Using "*" bits of a-,b-,c-,d- blocks uint64_t value is combined, modulo of which determines |
| 37 | * if the value should be greather than 2^(k-1) or ConsistentHashing(x, 2^(k-1)) should be used. |
| 38 | * The last case is optimized according to previous checks. |
| 39 | */ |
| 40 | |
| 41 | namespace { |
| 42 | |
| 43 | template<class TValue> |
| 44 | TValue PowerOf2(size_t k) { |
| 45 | return (TValue)0x1 << k; |
| 46 | } |
| 47 | |
| 48 | template<class TValue> |
| 49 | TValue SelectAOrBBlock(TValue a, TValue b, TValue cBlock) { |
| 50 | size_t z = PopCount<uint64_t>(cBlock); |
| 51 | bool useABlock = z % 2 == 0; |
| 52 | return useABlock ? a : b; |
| 53 | } |
| 54 | |
| 55 | // Gets the exact result for n = k2 = 2 ^ k |
| 56 | template<class TValue> |
| 57 | size_t ConsistentHashingForPowersOf2(TValue a, TValue b, TValue c, TValue k2) { |
| 58 | TValue cBlock = c & (k2 - 1); // (k, 0] bits of c |
| 59 | // Zero and one cases |
| 60 | if (cBlock < 2) { |
| 61 | // First two cases of result function table: 0 if cblock is 0, 1 if cblock is 1. |
| 62 | return cBlock; |
| 63 | } |
| 64 | size_t y = GetValueBitCount<uint64_t>(cBlock) - 1; // cblock = 0..01?..? (y = number of digits after 1), y > 0 |
| 65 | TValue y2 = PowerOf2<TValue>(y); // y2 = 2^y |
| 66 | TValue abBlock = SelectAOrBBlock(a, b, cBlock) & (y2 - 1); |
| 67 | return y2 + abBlock; |
| 68 | } |
| 69 | |
| 70 | template<class TValue> |
| 71 | uint64_t GetAsteriskBits(TValue a, TValue b, TValue c, TValue d, size_t k) { |
| 72 | size_t shift = sizeof(TValue) * 8 - k; |
| 73 | uint64_t res = (d << shift) | (c >> k); |
| 74 | ++shift; |
| 75 | res <<= shift; |
| 76 | res |= b >> (k - 1); |
| 77 | res <<= shift; |
| 78 | res |= a >> (k - 1); |
| 79 | |
| 80 | return res; |
| 81 | } |
| 82 | |
| 83 | template<class TValue> |
| 84 | size_t ConsistentHashingImpl(TValue a, TValue b, TValue c, TValue d, size_t n) { |
| 85 | if (n <= 0) |
| 86 | throw std::runtime_error("Can't map consistently to a zero values." ); |
| 87 | |
| 88 | // Uninteresting case |
| 89 | if (n == 1) { |
| 90 | return 0; |
| 91 | } |
| 92 | size_t k = GetValueBitCount(n - 1); // 2^(k-1) < n <= 2^k, k >= 1 |
| 93 | TValue k2 = PowerOf2<TValue>(k); // k2 = 2^k |
| 94 | size_t largeValue; |
| 95 | { |
| 96 | // Bit determined variant. Large scheme. |
| 97 | largeValue = ConsistentHashingForPowersOf2(a, b, c, k2); |
| 98 | if (largeValue < n) { |
| 99 | return largeValue; |
| 100 | } |
| 101 | } |
| 102 | // Since largeValue is not assigned yet |
| 103 | // Smooth moving from one bit scheme to another |
| 104 | TValue k21 = PowerOf2<TValue>(k - 1); |
| 105 | { |
| 106 | size_t s = GetAsteriskBits(a, b, c, d, k) % (largeValue * (largeValue + 1)); |
| 107 | size_t largeValue2 = s / k2 + k21; |
| 108 | if (largeValue2 < n) { |
| 109 | return largeValue2; |
| 110 | } |
| 111 | } |
| 112 | // Bit determined variant. Short scheme. |
| 113 | return ConsistentHashingForPowersOf2(a, b, c, k21); // Do not apply checks. It is always less than k21 = 2^(k-1) |
| 114 | } |
| 115 | |
| 116 | } // namespace // anonymous |
| 117 | |
| 118 | std::size_t ConsistentHashing(std::uint64_t x, std::size_t n) { |
| 119 | uint32_t lo = LO_32(x); |
| 120 | uint32_t hi = HI_32(x); |
| 121 | return ConsistentHashingImpl<uint16_t>(LO_16(lo), HI_16(lo), LO_16(hi), HI_16(hi), n); |
| 122 | } |
| 123 | std::size_t ConsistentHashing(std::uint64_t lo, std::uint64_t hi, std::size_t n) { |
| 124 | return ConsistentHashingImpl<uint32_t>(LO_32(lo), HI_32(lo), LO_32(hi), HI_32(hi), n); |
| 125 | } |
| 126 | |