| 1 | /* |
| 2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <openssl/crypto.h> |
| 12 | #include <openssl/core_names.h> |
| 13 | #include <openssl/engine.h> |
| 14 | #include <openssl/evp.h> |
| 15 | #include "internal/cryptlib.h" |
| 16 | #include "internal/refcount.h" |
| 17 | #include "crypto/bn.h" |
| 18 | #include "crypto/evp.h" |
| 19 | #include "crypto/rsa.h" |
| 20 | #include "rsa_local.h" |
| 21 | |
| 22 | RSA *RSA_new(void) |
| 23 | { |
| 24 | return RSA_new_method(NULL); |
| 25 | } |
| 26 | |
| 27 | const RSA_METHOD *RSA_get_method(const RSA *rsa) |
| 28 | { |
| 29 | return rsa->meth; |
| 30 | } |
| 31 | |
| 32 | int RSA_set_method(RSA *rsa, const RSA_METHOD *meth) |
| 33 | { |
| 34 | /* |
| 35 | * NB: The caller is specifically setting a method, so it's not up to us |
| 36 | * to deal with which ENGINE it comes from. |
| 37 | */ |
| 38 | const RSA_METHOD *mtmp; |
| 39 | mtmp = rsa->meth; |
| 40 | if (mtmp->finish) |
| 41 | mtmp->finish(rsa); |
| 42 | #ifndef OPENSSL_NO_ENGINE |
| 43 | ENGINE_finish(rsa->engine); |
| 44 | rsa->engine = NULL; |
| 45 | #endif |
| 46 | rsa->meth = meth; |
| 47 | if (meth->init) |
| 48 | meth->init(rsa); |
| 49 | return 1; |
| 50 | } |
| 51 | |
| 52 | RSA *RSA_new_method(ENGINE *engine) |
| 53 | { |
| 54 | RSA *ret = OPENSSL_zalloc(sizeof(*ret)); |
| 55 | |
| 56 | if (ret == NULL) { |
| 57 | RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE); |
| 58 | return NULL; |
| 59 | } |
| 60 | |
| 61 | ret->references = 1; |
| 62 | ret->lock = CRYPTO_THREAD_lock_new(); |
| 63 | if (ret->lock == NULL) { |
| 64 | RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE); |
| 65 | OPENSSL_free(ret); |
| 66 | return NULL; |
| 67 | } |
| 68 | |
| 69 | ret->meth = RSA_get_default_method(); |
| 70 | #ifndef OPENSSL_NO_ENGINE |
| 71 | ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; |
| 72 | if (engine) { |
| 73 | if (!ENGINE_init(engine)) { |
| 74 | RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB); |
| 75 | goto err; |
| 76 | } |
| 77 | ret->engine = engine; |
| 78 | } else { |
| 79 | ret->engine = ENGINE_get_default_RSA(); |
| 80 | } |
| 81 | if (ret->engine) { |
| 82 | ret->meth = ENGINE_get_RSA(ret->engine); |
| 83 | if (ret->meth == NULL) { |
| 84 | RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB); |
| 85 | goto err; |
| 86 | } |
| 87 | } |
| 88 | #endif |
| 89 | |
| 90 | ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; |
| 91 | if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) { |
| 92 | goto err; |
| 93 | } |
| 94 | |
| 95 | if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { |
| 96 | RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_INIT_FAIL); |
| 97 | goto err; |
| 98 | } |
| 99 | |
| 100 | return ret; |
| 101 | |
| 102 | err: |
| 103 | RSA_free(ret); |
| 104 | return NULL; |
| 105 | } |
| 106 | |
| 107 | void RSA_free(RSA *r) |
| 108 | { |
| 109 | int i; |
| 110 | |
| 111 | if (r == NULL) |
| 112 | return; |
| 113 | |
| 114 | CRYPTO_DOWN_REF(&r->references, &i, r->lock); |
| 115 | REF_PRINT_COUNT("RSA" , r); |
| 116 | if (i > 0) |
| 117 | return; |
| 118 | REF_ASSERT_ISNT(i < 0); |
| 119 | |
| 120 | if (r->meth != NULL && r->meth->finish != NULL) |
| 121 | r->meth->finish(r); |
| 122 | #ifndef OPENSSL_NO_ENGINE |
| 123 | ENGINE_finish(r->engine); |
| 124 | #endif |
| 125 | |
| 126 | CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data); |
| 127 | |
| 128 | CRYPTO_THREAD_lock_free(r->lock); |
| 129 | |
| 130 | BN_free(r->n); |
| 131 | BN_free(r->e); |
| 132 | BN_clear_free(r->d); |
| 133 | BN_clear_free(r->p); |
| 134 | BN_clear_free(r->q); |
| 135 | BN_clear_free(r->dmp1); |
| 136 | BN_clear_free(r->dmq1); |
| 137 | BN_clear_free(r->iqmp); |
| 138 | RSA_PSS_PARAMS_free(r->pss); |
| 139 | sk_RSA_PRIME_INFO_pop_free(r->prime_infos, rsa_multip_info_free); |
| 140 | BN_BLINDING_free(r->blinding); |
| 141 | BN_BLINDING_free(r->mt_blinding); |
| 142 | OPENSSL_free(r->bignum_data); |
| 143 | OPENSSL_free(r); |
| 144 | } |
| 145 | |
| 146 | int RSA_up_ref(RSA *r) |
| 147 | { |
| 148 | int i; |
| 149 | |
| 150 | if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0) |
| 151 | return 0; |
| 152 | |
| 153 | REF_PRINT_COUNT("RSA" , r); |
| 154 | REF_ASSERT_ISNT(i < 2); |
| 155 | return i > 1 ? 1 : 0; |
| 156 | } |
| 157 | |
| 158 | int RSA_set_ex_data(RSA *r, int idx, void *arg) |
| 159 | { |
| 160 | return CRYPTO_set_ex_data(&r->ex_data, idx, arg); |
| 161 | } |
| 162 | |
| 163 | void *RSA_get_ex_data(const RSA *r, int idx) |
| 164 | { |
| 165 | return CRYPTO_get_ex_data(&r->ex_data, idx); |
| 166 | } |
| 167 | |
| 168 | /* |
| 169 | * Define a scaling constant for our fixed point arithmetic. |
| 170 | * This value must be a power of two because the base two logarithm code |
| 171 | * makes this assumption. The exponent must also be a multiple of three so |
| 172 | * that the scale factor has an exact cube root. Finally, the scale factor |
| 173 | * should not be so large that a multiplication of two scaled numbers |
| 174 | * overflows a 64 bit unsigned integer. |
| 175 | */ |
| 176 | static const unsigned int scale = 1 << 18; |
| 177 | static const unsigned int cbrt_scale = 1 << (2 * 18 / 3); |
| 178 | |
| 179 | /* Define some constants, none exceed 32 bits */ |
| 180 | static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */ |
| 181 | static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */ |
| 182 | static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */ |
| 183 | static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */ |
| 184 | |
| 185 | /* |
| 186 | * Multiply two scaled integers together and rescale the result. |
| 187 | */ |
| 188 | static ossl_inline uint64_t mul2(uint64_t a, uint64_t b) |
| 189 | { |
| 190 | return a * b / scale; |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * Calculate the cube root of a 64 bit scaled integer. |
| 195 | * Although the cube root of a 64 bit number does fit into a 32 bit unsigned |
| 196 | * integer, this is not guaranteed after scaling, so this function has a |
| 197 | * 64 bit return. This uses the shifting nth root algorithm with some |
| 198 | * algebraic simplifications. |
| 199 | */ |
| 200 | static uint64_t icbrt64(uint64_t x) |
| 201 | { |
| 202 | uint64_t r = 0; |
| 203 | uint64_t b; |
| 204 | int s; |
| 205 | |
| 206 | for (s = 63; s >= 0; s -= 3) { |
| 207 | r <<= 1; |
| 208 | b = 3 * r * (r + 1) + 1; |
| 209 | if ((x >> s) >= b) { |
| 210 | x -= b << s; |
| 211 | r++; |
| 212 | } |
| 213 | } |
| 214 | return r * cbrt_scale; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Calculate the natural logarithm of a 64 bit scaled integer. |
| 219 | * This is done by calculating a base two logarithm and scaling. |
| 220 | * The maximum logarithm (base 2) is 64 and this reduces base e, so |
| 221 | * a 32 bit result should not overflow. The argument passed must be |
| 222 | * greater than unity so we don't need to handle negative results. |
| 223 | */ |
| 224 | static uint32_t ilog_e(uint64_t v) |
| 225 | { |
| 226 | uint32_t i, r = 0; |
| 227 | |
| 228 | /* |
| 229 | * Scale down the value into the range 1 .. 2. |
| 230 | * |
| 231 | * If fractional numbers need to be processed, another loop needs |
| 232 | * to go here that checks v < scale and if so multiplies it by 2 and |
| 233 | * reduces r by scale. This also means making r signed. |
| 234 | */ |
| 235 | while (v >= 2 * scale) { |
| 236 | v >>= 1; |
| 237 | r += scale; |
| 238 | } |
| 239 | for (i = scale / 2; i != 0; i /= 2) { |
| 240 | v = mul2(v, v); |
| 241 | if (v >= 2 * scale) { |
| 242 | v >>= 1; |
| 243 | r += i; |
| 244 | } |
| 245 | } |
| 246 | r = (r * (uint64_t)scale) / log_e; |
| 247 | return r; |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC |
| 252 | * Modulus Lengths. |
| 253 | * |
| 254 | * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)} |
| 255 | * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)} |
| 256 | * The two cube roots are merged together here. |
| 257 | */ |
| 258 | uint16_t rsa_compute_security_bits(int n) |
| 259 | { |
| 260 | uint64_t x; |
| 261 | uint32_t lx; |
| 262 | uint16_t y; |
| 263 | |
| 264 | /* Look for common values as listed in SP 800-56B rev 2 Appendix D */ |
| 265 | switch (n) { |
| 266 | case 2048: |
| 267 | return 112; |
| 268 | case 3072: |
| 269 | return 128; |
| 270 | case 4096: |
| 271 | return 152; |
| 272 | case 6144: |
| 273 | return 176; |
| 274 | case 8192: |
| 275 | return 200; |
| 276 | } |
| 277 | /* |
| 278 | * The first incorrect result (i.e. not accurate or off by one low) occurs |
| 279 | * for n = 699668. The true value here is 1200. Instead of using this n |
| 280 | * as the check threshold, the smallest n such that the correct result is |
| 281 | * 1200 is used instead. |
| 282 | */ |
| 283 | if (n >= 687737) |
| 284 | return 1200; |
| 285 | if (n < 8) |
| 286 | return 0; |
| 287 | |
| 288 | x = n * (uint64_t)log_2; |
| 289 | lx = ilog_e(x); |
| 290 | y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690) |
| 291 | / log_2); |
| 292 | return (y + 4) & ~7; |
| 293 | } |
| 294 | |
| 295 | int RSA_security_bits(const RSA *rsa) |
| 296 | { |
| 297 | int bits = BN_num_bits(rsa->n); |
| 298 | |
| 299 | if (rsa->version == RSA_ASN1_VERSION_MULTI) { |
| 300 | /* This ought to mean that we have private key at hand. */ |
| 301 | int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos); |
| 302 | |
| 303 | if (ex_primes <= 0 || (ex_primes + 2) > rsa_multip_cap(bits)) |
| 304 | return 0; |
| 305 | } |
| 306 | return rsa_compute_security_bits(bits); |
| 307 | } |
| 308 | |
| 309 | int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) |
| 310 | { |
| 311 | /* If the fields n and e in r are NULL, the corresponding input |
| 312 | * parameters MUST be non-NULL for n and e. d may be |
| 313 | * left NULL (in case only the public key is used). |
| 314 | */ |
| 315 | if ((r->n == NULL && n == NULL) |
| 316 | || (r->e == NULL && e == NULL)) |
| 317 | return 0; |
| 318 | |
| 319 | if (n != NULL) { |
| 320 | BN_free(r->n); |
| 321 | r->n = n; |
| 322 | } |
| 323 | if (e != NULL) { |
| 324 | BN_free(r->e); |
| 325 | r->e = e; |
| 326 | } |
| 327 | if (d != NULL) { |
| 328 | BN_clear_free(r->d); |
| 329 | r->d = d; |
| 330 | BN_set_flags(r->d, BN_FLG_CONSTTIME); |
| 331 | } |
| 332 | r->dirty_cnt++; |
| 333 | |
| 334 | return 1; |
| 335 | } |
| 336 | |
| 337 | int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q) |
| 338 | { |
| 339 | /* If the fields p and q in r are NULL, the corresponding input |
| 340 | * parameters MUST be non-NULL. |
| 341 | */ |
| 342 | if ((r->p == NULL && p == NULL) |
| 343 | || (r->q == NULL && q == NULL)) |
| 344 | return 0; |
| 345 | |
| 346 | if (p != NULL) { |
| 347 | BN_clear_free(r->p); |
| 348 | r->p = p; |
| 349 | BN_set_flags(r->p, BN_FLG_CONSTTIME); |
| 350 | } |
| 351 | if (q != NULL) { |
| 352 | BN_clear_free(r->q); |
| 353 | r->q = q; |
| 354 | BN_set_flags(r->q, BN_FLG_CONSTTIME); |
| 355 | } |
| 356 | r->dirty_cnt++; |
| 357 | |
| 358 | return 1; |
| 359 | } |
| 360 | |
| 361 | int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) |
| 362 | { |
| 363 | /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input |
| 364 | * parameters MUST be non-NULL. |
| 365 | */ |
| 366 | if ((r->dmp1 == NULL && dmp1 == NULL) |
| 367 | || (r->dmq1 == NULL && dmq1 == NULL) |
| 368 | || (r->iqmp == NULL && iqmp == NULL)) |
| 369 | return 0; |
| 370 | |
| 371 | if (dmp1 != NULL) { |
| 372 | BN_clear_free(r->dmp1); |
| 373 | r->dmp1 = dmp1; |
| 374 | BN_set_flags(r->dmp1, BN_FLG_CONSTTIME); |
| 375 | } |
| 376 | if (dmq1 != NULL) { |
| 377 | BN_clear_free(r->dmq1); |
| 378 | r->dmq1 = dmq1; |
| 379 | BN_set_flags(r->dmq1, BN_FLG_CONSTTIME); |
| 380 | } |
| 381 | if (iqmp != NULL) { |
| 382 | BN_clear_free(r->iqmp); |
| 383 | r->iqmp = iqmp; |
| 384 | BN_set_flags(r->iqmp, BN_FLG_CONSTTIME); |
| 385 | } |
| 386 | r->dirty_cnt++; |
| 387 | |
| 388 | return 1; |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * Is it better to export RSA_PRIME_INFO structure |
| 393 | * and related functions to let user pass a triplet? |
| 394 | */ |
| 395 | int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[], |
| 396 | BIGNUM *coeffs[], int pnum) |
| 397 | { |
| 398 | STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL; |
| 399 | RSA_PRIME_INFO *pinfo; |
| 400 | int i; |
| 401 | |
| 402 | if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0) |
| 403 | return 0; |
| 404 | |
| 405 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum); |
| 406 | if (prime_infos == NULL) |
| 407 | return 0; |
| 408 | |
| 409 | if (r->prime_infos != NULL) |
| 410 | old = r->prime_infos; |
| 411 | |
| 412 | for (i = 0; i < pnum; i++) { |
| 413 | pinfo = rsa_multip_info_new(); |
| 414 | if (pinfo == NULL) |
| 415 | goto err; |
| 416 | if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) { |
| 417 | BN_clear_free(pinfo->r); |
| 418 | BN_clear_free(pinfo->d); |
| 419 | BN_clear_free(pinfo->t); |
| 420 | pinfo->r = primes[i]; |
| 421 | pinfo->d = exps[i]; |
| 422 | pinfo->t = coeffs[i]; |
| 423 | BN_set_flags(pinfo->r, BN_FLG_CONSTTIME); |
| 424 | BN_set_flags(pinfo->d, BN_FLG_CONSTTIME); |
| 425 | BN_set_flags(pinfo->t, BN_FLG_CONSTTIME); |
| 426 | } else { |
| 427 | rsa_multip_info_free(pinfo); |
| 428 | goto err; |
| 429 | } |
| 430 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); |
| 431 | } |
| 432 | |
| 433 | r->prime_infos = prime_infos; |
| 434 | |
| 435 | if (!rsa_multip_calc_product(r)) { |
| 436 | r->prime_infos = old; |
| 437 | goto err; |
| 438 | } |
| 439 | |
| 440 | if (old != NULL) { |
| 441 | /* |
| 442 | * This is hard to deal with, since the old infos could |
| 443 | * also be set by this function and r, d, t should not |
| 444 | * be freed in that case. So currently, stay consistent |
| 445 | * with other *set0* functions: just free it... |
| 446 | */ |
| 447 | sk_RSA_PRIME_INFO_pop_free(old, rsa_multip_info_free); |
| 448 | } |
| 449 | |
| 450 | r->version = RSA_ASN1_VERSION_MULTI; |
| 451 | r->dirty_cnt++; |
| 452 | |
| 453 | return 1; |
| 454 | err: |
| 455 | /* r, d, t should not be freed */ |
| 456 | sk_RSA_PRIME_INFO_pop_free(prime_infos, rsa_multip_info_free_ex); |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | void RSA_get0_key(const RSA *r, |
| 461 | const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) |
| 462 | { |
| 463 | if (n != NULL) |
| 464 | *n = r->n; |
| 465 | if (e != NULL) |
| 466 | *e = r->e; |
| 467 | if (d != NULL) |
| 468 | *d = r->d; |
| 469 | } |
| 470 | |
| 471 | void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q) |
| 472 | { |
| 473 | if (p != NULL) |
| 474 | *p = r->p; |
| 475 | if (q != NULL) |
| 476 | *q = r->q; |
| 477 | } |
| 478 | |
| 479 | int (const RSA *r) |
| 480 | { |
| 481 | int pnum; |
| 482 | |
| 483 | pnum = sk_RSA_PRIME_INFO_num(r->prime_infos); |
| 484 | if (pnum <= 0) |
| 485 | pnum = 0; |
| 486 | return pnum; |
| 487 | } |
| 488 | |
| 489 | int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[]) |
| 490 | { |
| 491 | int pnum, i; |
| 492 | RSA_PRIME_INFO *pinfo; |
| 493 | |
| 494 | if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) |
| 495 | return 0; |
| 496 | |
| 497 | /* |
| 498 | * return other primes |
| 499 | * it's caller's responsibility to allocate oth_primes[pnum] |
| 500 | */ |
| 501 | for (i = 0; i < pnum; i++) { |
| 502 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); |
| 503 | primes[i] = pinfo->r; |
| 504 | } |
| 505 | |
| 506 | return 1; |
| 507 | } |
| 508 | |
| 509 | void RSA_get0_crt_params(const RSA *r, |
| 510 | const BIGNUM **dmp1, const BIGNUM **dmq1, |
| 511 | const BIGNUM **iqmp) |
| 512 | { |
| 513 | if (dmp1 != NULL) |
| 514 | *dmp1 = r->dmp1; |
| 515 | if (dmq1 != NULL) |
| 516 | *dmq1 = r->dmq1; |
| 517 | if (iqmp != NULL) |
| 518 | *iqmp = r->iqmp; |
| 519 | } |
| 520 | |
| 521 | int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[], |
| 522 | const BIGNUM *coeffs[]) |
| 523 | { |
| 524 | int pnum; |
| 525 | |
| 526 | if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) |
| 527 | return 0; |
| 528 | |
| 529 | /* return other primes */ |
| 530 | if (exps != NULL || coeffs != NULL) { |
| 531 | RSA_PRIME_INFO *pinfo; |
| 532 | int i; |
| 533 | |
| 534 | /* it's the user's job to guarantee the buffer length */ |
| 535 | for (i = 0; i < pnum; i++) { |
| 536 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); |
| 537 | if (exps != NULL) |
| 538 | exps[i] = pinfo->d; |
| 539 | if (coeffs != NULL) |
| 540 | coeffs[i] = pinfo->t; |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | return 1; |
| 545 | } |
| 546 | |
| 547 | const BIGNUM *RSA_get0_n(const RSA *r) |
| 548 | { |
| 549 | return r->n; |
| 550 | } |
| 551 | |
| 552 | const BIGNUM *RSA_get0_e(const RSA *r) |
| 553 | { |
| 554 | return r->e; |
| 555 | } |
| 556 | |
| 557 | const BIGNUM *RSA_get0_d(const RSA *r) |
| 558 | { |
| 559 | return r->d; |
| 560 | } |
| 561 | |
| 562 | const BIGNUM *RSA_get0_p(const RSA *r) |
| 563 | { |
| 564 | return r->p; |
| 565 | } |
| 566 | |
| 567 | const BIGNUM *RSA_get0_q(const RSA *r) |
| 568 | { |
| 569 | return r->q; |
| 570 | } |
| 571 | |
| 572 | const BIGNUM *RSA_get0_dmp1(const RSA *r) |
| 573 | { |
| 574 | return r->dmp1; |
| 575 | } |
| 576 | |
| 577 | const BIGNUM *RSA_get0_dmq1(const RSA *r) |
| 578 | { |
| 579 | return r->dmq1; |
| 580 | } |
| 581 | |
| 582 | const BIGNUM *RSA_get0_iqmp(const RSA *r) |
| 583 | { |
| 584 | return r->iqmp; |
| 585 | } |
| 586 | |
| 587 | const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r) |
| 588 | { |
| 589 | return r->pss; |
| 590 | } |
| 591 | |
| 592 | void RSA_clear_flags(RSA *r, int flags) |
| 593 | { |
| 594 | r->flags &= ~flags; |
| 595 | } |
| 596 | |
| 597 | int RSA_test_flags(const RSA *r, int flags) |
| 598 | { |
| 599 | return r->flags & flags; |
| 600 | } |
| 601 | |
| 602 | void RSA_set_flags(RSA *r, int flags) |
| 603 | { |
| 604 | r->flags |= flags; |
| 605 | } |
| 606 | |
| 607 | int RSA_get_version(RSA *r) |
| 608 | { |
| 609 | /* { two-prime(0), multi(1) } */ |
| 610 | return r->version; |
| 611 | } |
| 612 | |
| 613 | ENGINE *RSA_get0_engine(const RSA *r) |
| 614 | { |
| 615 | return r->engine; |
| 616 | } |
| 617 | |
| 618 | int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2) |
| 619 | { |
| 620 | /* If key type not RSA or RSA-PSS return error */ |
| 621 | if (ctx != NULL && ctx->pmeth != NULL |
| 622 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA |
| 623 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) |
| 624 | return -1; |
| 625 | return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2); |
| 626 | } |
| 627 | |
| 628 | DEFINE_STACK_OF(BIGNUM) |
| 629 | |
| 630 | int rsa_set0_all_params(RSA *r, const STACK_OF(BIGNUM) *primes, |
| 631 | const STACK_OF(BIGNUM) *exps, |
| 632 | const STACK_OF(BIGNUM) *coeffs) |
| 633 | { |
| 634 | STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL; |
| 635 | int pnum; |
| 636 | |
| 637 | if (primes == NULL || exps == NULL || coeffs == NULL) |
| 638 | return 0; |
| 639 | |
| 640 | pnum = sk_BIGNUM_num(primes); |
| 641 | if (pnum < 2 |
| 642 | || pnum != sk_BIGNUM_num(exps) |
| 643 | || pnum != sk_BIGNUM_num(coeffs) + 1) |
| 644 | return 0; |
| 645 | |
| 646 | if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0), |
| 647 | sk_BIGNUM_value(primes, 1)) |
| 648 | || !RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0), |
| 649 | sk_BIGNUM_value(exps, 1), |
| 650 | sk_BIGNUM_value(coeffs, 0))) |
| 651 | return 0; |
| 652 | |
| 653 | old_infos = r->prime_infos; |
| 654 | |
| 655 | if (pnum > 2) { |
| 656 | int i; |
| 657 | |
| 658 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum); |
| 659 | if (prime_infos == NULL) |
| 660 | return 0; |
| 661 | |
| 662 | for (i = 2; i < pnum; i++) { |
| 663 | BIGNUM *prime = sk_BIGNUM_value(primes, i); |
| 664 | BIGNUM *exp = sk_BIGNUM_value(exps, i); |
| 665 | BIGNUM *coeff = sk_BIGNUM_value(coeffs, i - 1); |
| 666 | RSA_PRIME_INFO *pinfo = NULL; |
| 667 | |
| 668 | if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL)) |
| 669 | goto err; |
| 670 | |
| 671 | /* Using rsa_multip_info_new() is wasteful, so allocate directly */ |
| 672 | if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL) { |
| 673 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
| 674 | goto err; |
| 675 | } |
| 676 | |
| 677 | pinfo->r = prime; |
| 678 | pinfo->d = exp; |
| 679 | pinfo->t = coeff; |
| 680 | BN_set_flags(pinfo->r, BN_FLG_CONSTTIME); |
| 681 | BN_set_flags(pinfo->d, BN_FLG_CONSTTIME); |
| 682 | BN_set_flags(pinfo->t, BN_FLG_CONSTTIME); |
| 683 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); |
| 684 | } |
| 685 | |
| 686 | r->prime_infos = prime_infos; |
| 687 | |
| 688 | if (!rsa_multip_calc_product(r)) { |
| 689 | r->prime_infos = old_infos; |
| 690 | goto err; |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | if (old_infos != NULL) { |
| 695 | /* |
| 696 | * This is hard to deal with, since the old infos could |
| 697 | * also be set by this function and r, d, t should not |
| 698 | * be freed in that case. So currently, stay consistent |
| 699 | * with other *set0* functions: just free it... |
| 700 | */ |
| 701 | sk_RSA_PRIME_INFO_pop_free(old_infos, rsa_multip_info_free); |
| 702 | } |
| 703 | |
| 704 | r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT; |
| 705 | r->dirty_cnt++; |
| 706 | |
| 707 | return 1; |
| 708 | err: |
| 709 | /* r, d, t should not be freed */ |
| 710 | sk_RSA_PRIME_INFO_pop_free(prime_infos, rsa_multip_info_free_ex); |
| 711 | return 0; |
| 712 | } |
| 713 | |
| 714 | DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM) |
| 715 | |
| 716 | int rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes, |
| 717 | STACK_OF(BIGNUM_const) *exps, |
| 718 | STACK_OF(BIGNUM_const) *coeffs) |
| 719 | { |
| 720 | RSA_PRIME_INFO *pinfo; |
| 721 | int i, pnum; |
| 722 | |
| 723 | if (r == NULL) |
| 724 | return 0; |
| 725 | |
| 726 | pnum = RSA_get_multi_prime_extra_count(r); |
| 727 | |
| 728 | sk_BIGNUM_const_push(primes, RSA_get0_p(r)); |
| 729 | sk_BIGNUM_const_push(primes, RSA_get0_q(r)); |
| 730 | sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r)); |
| 731 | sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r)); |
| 732 | sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r)); |
| 733 | for (i = 0; i < pnum; i++) { |
| 734 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); |
| 735 | sk_BIGNUM_const_push(primes, pinfo->r); |
| 736 | sk_BIGNUM_const_push(exps, pinfo->d); |
| 737 | sk_BIGNUM_const_push(coeffs, pinfo->t); |
| 738 | } |
| 739 | |
| 740 | return 1; |
| 741 | } |
| 742 | |
| 743 | int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode) |
| 744 | { |
| 745 | OSSL_PARAM pad_params[2], *p = pad_params; |
| 746 | |
| 747 | if (ctx == NULL) { |
| 748 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 749 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 750 | return -2; |
| 751 | } |
| 752 | |
| 753 | /* If key type not RSA or RSA-PSS return error */ |
| 754 | if (ctx->pmeth != NULL |
| 755 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA |
| 756 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) |
| 757 | return -1; |
| 758 | |
| 759 | /* TODO(3.0): Remove this eventually when no more legacy */ |
| 760 | if (!EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx) |
| 761 | || ctx->op.ciph.ciphprovctx == NULL) |
| 762 | return EVP_PKEY_CTX_ctrl(ctx, -1, -1, EVP_PKEY_CTRL_RSA_PADDING, |
| 763 | pad_mode, NULL); |
| 764 | |
| 765 | *p++ = OSSL_PARAM_construct_int(OSSL_ASYM_CIPHER_PARAM_PAD_MODE, &pad_mode); |
| 766 | *p++ = OSSL_PARAM_construct_end(); |
| 767 | |
| 768 | return EVP_PKEY_CTX_set_params(ctx, pad_params); |
| 769 | } |
| 770 | |
| 771 | int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode) |
| 772 | { |
| 773 | OSSL_PARAM pad_params[2], *p = pad_params; |
| 774 | |
| 775 | if (ctx == NULL || pad_mode == NULL) { |
| 776 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 777 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 778 | return -2; |
| 779 | } |
| 780 | |
| 781 | /* If key type not RSA or RSA-PSS return error */ |
| 782 | if (ctx->pmeth != NULL |
| 783 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA |
| 784 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) |
| 785 | return -1; |
| 786 | |
| 787 | /* TODO(3.0): Remove this eventually when no more legacy */ |
| 788 | if (!EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx) |
| 789 | || ctx->op.ciph.ciphprovctx == NULL) |
| 790 | return EVP_PKEY_CTX_ctrl(ctx, -1, -1, EVP_PKEY_CTRL_GET_RSA_PADDING, 0, |
| 791 | pad_mode); |
| 792 | |
| 793 | *p++ = OSSL_PARAM_construct_int(OSSL_ASYM_CIPHER_PARAM_PAD_MODE, pad_mode); |
| 794 | *p++ = OSSL_PARAM_construct_end(); |
| 795 | |
| 796 | if (!EVP_PKEY_CTX_get_params(ctx, pad_params)) |
| 797 | return 0; |
| 798 | |
| 799 | return 1; |
| 800 | |
| 801 | } |
| 802 | |
| 803 | int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) |
| 804 | { |
| 805 | const char *name; |
| 806 | |
| 807 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { |
| 808 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 809 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 810 | return -2; |
| 811 | } |
| 812 | |
| 813 | /* If key type not RSA return error */ |
| 814 | if (ctx->pmeth != NULL && ctx->pmeth->pkey_id != EVP_PKEY_RSA) |
| 815 | return -1; |
| 816 | |
| 817 | /* TODO(3.0): Remove this eventually when no more legacy */ |
| 818 | if (ctx->op.ciph.ciphprovctx == NULL) |
| 819 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| 820 | EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)md); |
| 821 | |
| 822 | name = (md == NULL) ? "" : EVP_MD_name(md); |
| 823 | |
| 824 | return EVP_PKEY_CTX_set_rsa_oaep_md_name(ctx, name, NULL); |
| 825 | } |
| 826 | |
| 827 | int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname, |
| 828 | const char *mdprops) |
| 829 | { |
| 830 | OSSL_PARAM rsa_params[3], *p = rsa_params; |
| 831 | |
| 832 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { |
| 833 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 834 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 835 | return -2; |
| 836 | } |
| 837 | |
| 838 | /* If key type not RSA return error */ |
| 839 | if (ctx->pmeth != NULL && ctx->pmeth->pkey_id != EVP_PKEY_RSA) |
| 840 | return -1; |
| 841 | |
| 842 | |
| 843 | *p++ = OSSL_PARAM_construct_utf8_string(OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, |
| 844 | /* |
| 845 | * Cast away the const. This is read |
| 846 | * only so should be safe |
| 847 | */ |
| 848 | (char *)mdname, |
| 849 | strlen(mdname) + 1); |
| 850 | if (mdprops != NULL) { |
| 851 | *p++ = OSSL_PARAM_construct_utf8_string( |
| 852 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, |
| 853 | /* |
| 854 | * Cast away the const. This is read |
| 855 | * only so should be safe |
| 856 | */ |
| 857 | (char *)mdprops, |
| 858 | strlen(mdprops) + 1); |
| 859 | } |
| 860 | *p++ = OSSL_PARAM_construct_end(); |
| 861 | |
| 862 | return EVP_PKEY_CTX_set_params(ctx, rsa_params); |
| 863 | } |
| 864 | |
| 865 | int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name, |
| 866 | size_t namelen) |
| 867 | { |
| 868 | OSSL_PARAM rsa_params[2], *p = rsa_params; |
| 869 | |
| 870 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { |
| 871 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 872 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 873 | return -2; |
| 874 | } |
| 875 | |
| 876 | /* If key type not RSA return error */ |
| 877 | if (ctx->pmeth != NULL && ctx->pmeth->pkey_id != EVP_PKEY_RSA) |
| 878 | return -1; |
| 879 | |
| 880 | *p++ = OSSL_PARAM_construct_utf8_string(OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, |
| 881 | name, namelen); |
| 882 | *p++ = OSSL_PARAM_construct_end(); |
| 883 | |
| 884 | if (!EVP_PKEY_CTX_get_params(ctx, rsa_params)) |
| 885 | return -1; |
| 886 | |
| 887 | return 1; |
| 888 | } |
| 889 | |
| 890 | int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md) |
| 891 | { |
| 892 | /* 80 should be big enough */ |
| 893 | char name[80] = "" ; |
| 894 | |
| 895 | if (ctx == NULL || md == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { |
| 896 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 897 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 898 | return -2; |
| 899 | } |
| 900 | |
| 901 | /* If key type not RSA return error */ |
| 902 | if (ctx->pmeth != NULL && ctx->pmeth->pkey_id != EVP_PKEY_RSA) |
| 903 | return -1; |
| 904 | |
| 905 | /* TODO(3.0): Remove this eventually when no more legacy */ |
| 906 | if (ctx->op.ciph.ciphprovctx == NULL) |
| 907 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| 908 | EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md); |
| 909 | |
| 910 | if (EVP_PKEY_CTX_get_rsa_oaep_md_name(ctx, name, sizeof(name)) <= 0) |
| 911 | return -1; |
| 912 | |
| 913 | /* May be NULL meaning "unknown" */ |
| 914 | *md = EVP_get_digestbyname(name); |
| 915 | |
| 916 | return 1; |
| 917 | } |
| 918 | |
| 919 | int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) |
| 920 | { |
| 921 | const char *name; |
| 922 | |
| 923 | if (ctx == NULL |
| 924 | || (!EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx) |
| 925 | && !EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx))) { |
| 926 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 927 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 928 | return -2; |
| 929 | } |
| 930 | |
| 931 | /* If key type not RSA return error */ |
| 932 | if (ctx->pmeth != NULL |
| 933 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA |
| 934 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) |
| 935 | return -1; |
| 936 | |
| 937 | /* TODO(3.0): Remove this eventually when no more legacy */ |
| 938 | if ((EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx) |
| 939 | && ctx->op.ciph.ciphprovctx == NULL) |
| 940 | || (EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx) |
| 941 | && ctx->op.sig.sigprovctx == NULL)) |
| 942 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, |
| 943 | EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, |
| 944 | EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)md); |
| 945 | |
| 946 | name = (md == NULL) ? "" : EVP_MD_name(md); |
| 947 | |
| 948 | return EVP_PKEY_CTX_set_rsa_mgf1_md_name(ctx, name, NULL); |
| 949 | } |
| 950 | |
| 951 | int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname, |
| 952 | const char *mdprops) |
| 953 | { |
| 954 | OSSL_PARAM rsa_params[3], *p = rsa_params; |
| 955 | |
| 956 | if (ctx == NULL |
| 957 | || mdname == NULL |
| 958 | || (!EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx) |
| 959 | && !EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx))) { |
| 960 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 961 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 962 | return -2; |
| 963 | } |
| 964 | |
| 965 | /* If key type not RSA return error */ |
| 966 | if (ctx->pmeth != NULL |
| 967 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA |
| 968 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) |
| 969 | return -1; |
| 970 | |
| 971 | *p++ = OSSL_PARAM_construct_utf8_string(OSSL_ASYM_CIPHER_PARAM_MGF1_DIGEST, |
| 972 | /* |
| 973 | * Cast away the const. This is read |
| 974 | * only so should be safe |
| 975 | */ |
| 976 | (char *)mdname, |
| 977 | strlen(mdname) + 1); |
| 978 | if (mdprops != NULL) { |
| 979 | *p++ = OSSL_PARAM_construct_utf8_string( |
| 980 | OSSL_ASYM_CIPHER_PARAM_MGF1_DIGEST_PROPS, |
| 981 | /* |
| 982 | * Cast away the const. This is read |
| 983 | * only so should be safe |
| 984 | */ |
| 985 | (char *)mdprops, |
| 986 | strlen(mdprops) + 1); |
| 987 | } |
| 988 | *p++ = OSSL_PARAM_construct_end(); |
| 989 | |
| 990 | return EVP_PKEY_CTX_set_params(ctx, rsa_params); |
| 991 | } |
| 992 | |
| 993 | int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name, |
| 994 | size_t namelen) |
| 995 | { |
| 996 | OSSL_PARAM rsa_params[2], *p = rsa_params; |
| 997 | |
| 998 | if (ctx == NULL |
| 999 | || (!EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx) |
| 1000 | && !EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx))) { |
| 1001 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 1002 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 1003 | return -2; |
| 1004 | } |
| 1005 | |
| 1006 | /* If key type not RSA or RSA-PSS return error */ |
| 1007 | if (ctx->pmeth != NULL |
| 1008 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA |
| 1009 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) |
| 1010 | return -1; |
| 1011 | |
| 1012 | *p++ = OSSL_PARAM_construct_utf8_string(OSSL_ASYM_CIPHER_PARAM_MGF1_DIGEST, |
| 1013 | name, namelen); |
| 1014 | *p++ = OSSL_PARAM_construct_end(); |
| 1015 | |
| 1016 | if (!EVP_PKEY_CTX_get_params(ctx, rsa_params)) |
| 1017 | return -1; |
| 1018 | |
| 1019 | return 1; |
| 1020 | } |
| 1021 | |
| 1022 | int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md) |
| 1023 | { |
| 1024 | /* 80 should be big enough */ |
| 1025 | char name[80] = "" ; |
| 1026 | |
| 1027 | if (ctx == NULL |
| 1028 | || (!EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx) |
| 1029 | && !EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx))) { |
| 1030 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 1031 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 1032 | return -2; |
| 1033 | } |
| 1034 | |
| 1035 | /* If key type not RSA or RSA-PSS return error */ |
| 1036 | if (ctx->pmeth != NULL |
| 1037 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA |
| 1038 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) |
| 1039 | return -1; |
| 1040 | |
| 1041 | /* TODO(3.0): Remove this eventually when no more legacy */ |
| 1042 | if ((EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx) |
| 1043 | && ctx->op.ciph.ciphprovctx == NULL) |
| 1044 | || (EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx) |
| 1045 | && ctx->op.sig.sigprovctx == NULL)) |
| 1046 | return EVP_PKEY_CTX_ctrl(ctx, -1, |
| 1047 | EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, |
| 1048 | EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)md); |
| 1049 | |
| 1050 | if (EVP_PKEY_CTX_get_rsa_mgf1_md_name(ctx, name, sizeof(name)) <= 0) |
| 1051 | return -1; |
| 1052 | |
| 1053 | /* May be NULL meaning "unknown" */ |
| 1054 | *md = EVP_get_digestbyname(name); |
| 1055 | |
| 1056 | return 1; |
| 1057 | } |
| 1058 | |
| 1059 | int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen) |
| 1060 | { |
| 1061 | OSSL_PARAM rsa_params[2], *p = rsa_params; |
| 1062 | |
| 1063 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { |
| 1064 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 1065 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 1066 | return -2; |
| 1067 | } |
| 1068 | |
| 1069 | /* If key type not RSA return error */ |
| 1070 | if (ctx->pmeth != NULL && ctx->pmeth->pkey_id != EVP_PKEY_RSA) |
| 1071 | return -1; |
| 1072 | |
| 1073 | /* TODO(3.0): Remove this eventually when no more legacy */ |
| 1074 | if (ctx->op.ciph.ciphprovctx == NULL) |
| 1075 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| 1076 | EVP_PKEY_CTRL_RSA_OAEP_LABEL, llen, |
| 1077 | (void *)label); |
| 1078 | |
| 1079 | *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, |
| 1080 | /* |
| 1081 | * Cast away the const. This is read |
| 1082 | * only so should be safe |
| 1083 | */ |
| 1084 | (void *)label, |
| 1085 | (size_t)llen); |
| 1086 | *p++ = OSSL_PARAM_construct_end(); |
| 1087 | |
| 1088 | if (!EVP_PKEY_CTX_set_params(ctx, rsa_params)) |
| 1089 | return 0; |
| 1090 | |
| 1091 | OPENSSL_free(label); |
| 1092 | return 1; |
| 1093 | } |
| 1094 | |
| 1095 | int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label) |
| 1096 | { |
| 1097 | OSSL_PARAM rsa_params[3], *p = rsa_params; |
| 1098 | size_t labellen; |
| 1099 | |
| 1100 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { |
| 1101 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| 1102 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
| 1103 | return -2; |
| 1104 | } |
| 1105 | |
| 1106 | /* If key type not RSA return error */ |
| 1107 | if (ctx->pmeth != NULL && ctx->pmeth->pkey_id != EVP_PKEY_RSA) |
| 1108 | return -1; |
| 1109 | |
| 1110 | /* TODO(3.0): Remove this eventually when no more legacy */ |
| 1111 | if (ctx->op.ciph.ciphprovctx == NULL) |
| 1112 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| 1113 | EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, 0, |
| 1114 | (void *)label); |
| 1115 | |
| 1116 | *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, |
| 1117 | (void **)label, 0); |
| 1118 | *p++ = OSSL_PARAM_construct_size_t(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL_LEN, |
| 1119 | &labellen); |
| 1120 | *p++ = OSSL_PARAM_construct_end(); |
| 1121 | |
| 1122 | if (!EVP_PKEY_CTX_get_params(ctx, rsa_params)) |
| 1123 | return -1; |
| 1124 | |
| 1125 | if (labellen > INT_MAX) |
| 1126 | return -1; |
| 1127 | |
| 1128 | return (int)labellen; |
| 1129 | } |
| 1130 | |