| 1 | /* |
| 2 | * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <string.h> |
| 11 | #include <openssl/err.h> |
| 12 | #include <openssl/evp.h> |
| 13 | #include <openssl/engine.h> |
| 14 | #include <openssl/params.h> |
| 15 | #include <openssl/core_names.h> |
| 16 | #include "crypto/evp.h" |
| 17 | #include "evp_local.h" |
| 18 | |
| 19 | /* MAC PKEY context structure */ |
| 20 | |
| 21 | typedef struct { |
| 22 | EVP_MAC_CTX *ctx; |
| 23 | |
| 24 | /* |
| 25 | * We know of two MAC types: |
| 26 | * |
| 27 | * 1. those who take a secret in raw form, i.e. raw data as a |
| 28 | * ASN1_OCTET_STRING embedded in a EVP_PKEY. So far, that's |
| 29 | * all of them but CMAC. |
| 30 | * 2. those who take a secret with associated cipher in very generic |
| 31 | * form, i.e. a complete EVP_MAC_CTX embedded in a PKEY. So far, |
| 32 | * only CMAC does this. |
| 33 | * |
| 34 | * (one might wonder why the second form isn't used for all) |
| 35 | */ |
| 36 | #define MAC_TYPE_RAW 1 /* HMAC like MAC type (all but CMAC so far) */ |
| 37 | #define MAC_TYPE_MAC 2 /* CMAC like MAC type (only CMAC known so far) */ |
| 38 | int type; |
| 39 | |
| 40 | /* The following is only used for MAC_TYPE_RAW implementations */ |
| 41 | struct { |
| 42 | const EVP_MD *md; /* temp storage of MD */ |
| 43 | ASN1_OCTET_STRING ktmp; /* temp storage for key */ |
| 44 | } raw_data; |
| 45 | } MAC_PKEY_CTX; |
| 46 | |
| 47 | static void pkey_mac_cleanup(EVP_PKEY_CTX *ctx); |
| 48 | |
| 49 | static int pkey_mac_init(EVP_PKEY_CTX *ctx) |
| 50 | { |
| 51 | MAC_PKEY_CTX *hctx; |
| 52 | /* We're being smart and using the same base NIDs for PKEY and for MAC */ |
| 53 | int nid = ctx->pmeth->pkey_id; |
| 54 | EVP_MAC *mac = EVP_MAC_fetch(NULL, OBJ_nid2sn(nid), NULL); |
| 55 | |
| 56 | if ((hctx = OPENSSL_zalloc(sizeof(*hctx))) == NULL) { |
| 57 | EVPerr(EVP_F_PKEY_MAC_INIT, ERR_R_MALLOC_FAILURE); |
| 58 | return 0; |
| 59 | } |
| 60 | |
| 61 | hctx->ctx = EVP_MAC_CTX_new(mac); |
| 62 | if (hctx->ctx == NULL) { |
| 63 | OPENSSL_free(hctx); |
| 64 | return 0; |
| 65 | } |
| 66 | |
| 67 | if (nid == EVP_PKEY_CMAC) { |
| 68 | hctx->type = MAC_TYPE_MAC; |
| 69 | } else { |
| 70 | hctx->type = MAC_TYPE_RAW; |
| 71 | hctx->raw_data.ktmp.type = V_ASN1_OCTET_STRING; |
| 72 | } |
| 73 | |
| 74 | pkey_mac_cleanup(ctx); |
| 75 | EVP_PKEY_CTX_set_data(ctx, hctx); |
| 76 | ctx->keygen_info_count = 0; |
| 77 | |
| 78 | return 1; |
| 79 | } |
| 80 | |
| 81 | static int pkey_mac_copy(EVP_PKEY_CTX *dst, const EVP_PKEY_CTX *src) |
| 82 | { |
| 83 | MAC_PKEY_CTX *sctx, *dctx; |
| 84 | |
| 85 | sctx = EVP_PKEY_CTX_get_data(src); |
| 86 | if (sctx->ctx->data == NULL) |
| 87 | return 0; |
| 88 | |
| 89 | dctx = OPENSSL_zalloc(sizeof(*dctx)); |
| 90 | if (dctx == NULL) { |
| 91 | EVPerr(EVP_F_PKEY_MAC_COPY, ERR_R_MALLOC_FAILURE); |
| 92 | return 0; |
| 93 | } |
| 94 | |
| 95 | EVP_PKEY_CTX_set_data(dst, dctx); |
| 96 | dst->keygen_info_count = 0; |
| 97 | |
| 98 | dctx->ctx = EVP_MAC_CTX_dup(sctx->ctx); |
| 99 | if (dctx->ctx == NULL) |
| 100 | goto err; |
| 101 | |
| 102 | /* |
| 103 | * Normally, nothing special would be done with the MAC method. In |
| 104 | * this particular case, though, the MAC method was fetched internally |
| 105 | * by pkey_mac_init() above or by EVP_PKEY_new_CMAC_key() and passed |
| 106 | * via the EVP_MAC_CTX, so it is effectively like every new EVP_MAC_CTX |
| 107 | * fetches the MAC method anew in this case. Therefore, its reference |
| 108 | * count must be adjusted here. |
| 109 | */ |
| 110 | if (!EVP_MAC_up_ref(EVP_MAC_CTX_mac(dctx->ctx))) |
| 111 | goto err; |
| 112 | |
| 113 | dctx->type = sctx->type; |
| 114 | |
| 115 | switch (dctx->type) { |
| 116 | case MAC_TYPE_RAW: |
| 117 | dctx->raw_data.md = sctx->raw_data.md; |
| 118 | if (ASN1_STRING_get0_data(&sctx->raw_data.ktmp) != NULL && |
| 119 | !ASN1_STRING_copy(&dctx->raw_data.ktmp, &sctx->raw_data.ktmp)) |
| 120 | goto err; |
| 121 | break; |
| 122 | case MAC_TYPE_MAC: |
| 123 | /* Nothing more to do */ |
| 124 | break; |
| 125 | default: |
| 126 | /* This should be dead code */ |
| 127 | return 0; |
| 128 | } |
| 129 | return 1; |
| 130 | err: |
| 131 | pkey_mac_cleanup(dst); |
| 132 | return 0; |
| 133 | } |
| 134 | |
| 135 | static void pkey_mac_cleanup(EVP_PKEY_CTX *ctx) |
| 136 | { |
| 137 | /* |
| 138 | * For the exact same reasons the MAC reference count is incremented |
| 139 | * in pkey_mac_copy() above, it must be explicitly freed here. |
| 140 | */ |
| 141 | |
| 142 | MAC_PKEY_CTX *hctx = ctx == NULL ? NULL : EVP_PKEY_CTX_get_data(ctx); |
| 143 | |
| 144 | if (hctx != NULL) { |
| 145 | EVP_MAC *mac = EVP_MAC_CTX_mac(hctx->ctx); |
| 146 | |
| 147 | switch (hctx->type) { |
| 148 | case MAC_TYPE_RAW: |
| 149 | OPENSSL_clear_free(hctx->raw_data.ktmp.data, |
| 150 | hctx->raw_data.ktmp.length); |
| 151 | break; |
| 152 | } |
| 153 | EVP_MAC_CTX_free(hctx->ctx); |
| 154 | EVP_MAC_free(mac); |
| 155 | OPENSSL_free(hctx); |
| 156 | EVP_PKEY_CTX_set_data(ctx, NULL); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | static int pkey_mac_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) |
| 161 | { |
| 162 | MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| 163 | int nid = ctx->pmeth->pkey_id; |
| 164 | |
| 165 | switch (hctx->type) { |
| 166 | case MAC_TYPE_RAW: |
| 167 | { |
| 168 | ASN1_OCTET_STRING *hkey = NULL; |
| 169 | |
| 170 | if (!hctx->raw_data.ktmp.data) |
| 171 | return 0; |
| 172 | hkey = ASN1_OCTET_STRING_dup(&hctx->raw_data.ktmp); |
| 173 | if (!hkey) |
| 174 | return 0; |
| 175 | EVP_PKEY_assign(pkey, nid, hkey); |
| 176 | } |
| 177 | break; |
| 178 | case MAC_TYPE_MAC: |
| 179 | { |
| 180 | EVP_MAC_CTX *cmkey = EVP_MAC_CTX_dup(hctx->ctx); |
| 181 | |
| 182 | if (cmkey == NULL) |
| 183 | return 0; |
| 184 | if (!EVP_MAC_up_ref(EVP_MAC_CTX_mac(hctx->ctx))) |
| 185 | return 0; |
| 186 | EVP_PKEY_assign(pkey, nid, cmkey); |
| 187 | } |
| 188 | break; |
| 189 | default: |
| 190 | /* This should be dead code */ |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | return 1; |
| 195 | } |
| 196 | |
| 197 | static int int_update(EVP_MD_CTX *ctx, const void *data, size_t count) |
| 198 | { |
| 199 | MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(EVP_MD_CTX_pkey_ctx(ctx)); |
| 200 | |
| 201 | if (!EVP_MAC_update(hctx->ctx, data, count)) |
| 202 | return 0; |
| 203 | return 1; |
| 204 | } |
| 205 | |
| 206 | static int pkey_mac_signctx_init(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx) |
| 207 | { |
| 208 | MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| 209 | ASN1_OCTET_STRING *key = NULL; |
| 210 | int rv = 1; |
| 211 | /* |
| 212 | * For MACs with the EVP_PKEY_FLAG_SIGCTX_CUSTOM flag set and that |
| 213 | * gets the key passed as an ASN.1 OCTET STRING, we set the key here, |
| 214 | * as this may be only time it's set during a DigestSign. |
| 215 | * |
| 216 | * MACs that pass around the key in form of EVP_MAC_CTX are setting |
| 217 | * the key through other mechanisms. (this is only CMAC for now) |
| 218 | */ |
| 219 | int set_key = |
| 220 | hctx->type == MAC_TYPE_RAW |
| 221 | && (ctx->pmeth->flags & EVP_PKEY_FLAG_SIGCTX_CUSTOM) != 0; |
| 222 | |
| 223 | if (set_key) { |
| 224 | if (!EVP_MAC_is_a(EVP_MAC_CTX_mac(hctx->ctx), |
| 225 | OBJ_nid2sn(EVP_PKEY_id(EVP_PKEY_CTX_get0_pkey(ctx))))) |
| 226 | return 0; |
| 227 | key = EVP_PKEY_get0(EVP_PKEY_CTX_get0_pkey(ctx)); |
| 228 | if (key == NULL) |
| 229 | return 0; |
| 230 | } |
| 231 | |
| 232 | EVP_MD_CTX_set_flags(mctx, EVP_MD_CTX_FLAG_NO_INIT); |
| 233 | EVP_MD_CTX_set_update_fn(mctx, int_update); |
| 234 | |
| 235 | /* Some MACs don't support this control... that's fine */ |
| 236 | { |
| 237 | OSSL_PARAM params[3]; |
| 238 | size_t params_n = 0; |
| 239 | int flags = EVP_MD_CTX_test_flags(mctx, ~EVP_MD_CTX_FLAG_NO_INIT); |
| 240 | |
| 241 | /* TODO(3.0) "flags" isn't quite right, i.e. a quick hack for now */ |
| 242 | params[params_n++] = |
| 243 | OSSL_PARAM_construct_int(OSSL_MAC_PARAM_FLAGS, &flags); |
| 244 | if (set_key) |
| 245 | params[params_n++] = |
| 246 | OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, |
| 247 | key->data, key->length); |
| 248 | params[params_n++] = OSSL_PARAM_construct_end(); |
| 249 | rv = EVP_MAC_CTX_set_params(hctx->ctx, params); |
| 250 | } |
| 251 | return rv; |
| 252 | } |
| 253 | |
| 254 | static int pkey_mac_signctx(EVP_PKEY_CTX *ctx, unsigned char *sig, |
| 255 | size_t *siglen, EVP_MD_CTX *mctx) |
| 256 | { |
| 257 | MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| 258 | |
| 259 | return EVP_MAC_final(hctx->ctx, sig, siglen, EVP_MAC_size(hctx->ctx)); |
| 260 | } |
| 261 | |
| 262 | static int pkey_mac_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) |
| 263 | { |
| 264 | MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| 265 | |
| 266 | switch (type) { |
| 267 | |
| 268 | case EVP_PKEY_CTRL_CIPHER: |
| 269 | switch (hctx->type) { |
| 270 | case MAC_TYPE_RAW: |
| 271 | return -2; /* The raw types don't support ciphers */ |
| 272 | case MAC_TYPE_MAC: |
| 273 | { |
| 274 | OSSL_PARAM params[3]; |
| 275 | size_t params_n = 0; |
| 276 | char *ciphname = (char *)OBJ_nid2sn(EVP_CIPHER_nid(p2)); |
| 277 | #ifndef OPENSSL_NO_ENGINE |
| 278 | char *engineid = (char *)ENGINE_get_id(ctx->engine); |
| 279 | |
| 280 | params[params_n++] = |
| 281 | OSSL_PARAM_construct_utf8_string("engine" , engineid, 0); |
| 282 | #endif |
| 283 | params[params_n++] = |
| 284 | OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER, |
| 285 | ciphname, 0); |
| 286 | params[params_n] = OSSL_PARAM_construct_end(); |
| 287 | |
| 288 | if (!EVP_MAC_CTX_set_params(hctx->ctx, params) |
| 289 | || !EVP_MAC_init(hctx->ctx)) |
| 290 | return 0; |
| 291 | } |
| 292 | break; |
| 293 | default: |
| 294 | /* This should be dead code */ |
| 295 | return 0; |
| 296 | } |
| 297 | break; |
| 298 | |
| 299 | case EVP_PKEY_CTRL_MD: |
| 300 | switch (hctx->type) { |
| 301 | case MAC_TYPE_RAW: |
| 302 | hctx->raw_data.md = p2; |
| 303 | break; |
| 304 | case MAC_TYPE_MAC: { |
| 305 | EVP_MAC_CTX *new_mac_ctx; |
| 306 | |
| 307 | if (ctx->pkey == NULL) |
| 308 | return 0; |
| 309 | new_mac_ctx = EVP_MAC_CTX_dup((EVP_MAC_CTX *)ctx->pkey |
| 310 | ->pkey.ptr); |
| 311 | if (new_mac_ctx == NULL) |
| 312 | return 0; |
| 313 | EVP_MAC_CTX_free(hctx->ctx); |
| 314 | hctx->ctx = new_mac_ctx; |
| 315 | } |
| 316 | break; |
| 317 | default: |
| 318 | /* This should be dead code */ |
| 319 | return 0; |
| 320 | } |
| 321 | break; |
| 322 | |
| 323 | case EVP_PKEY_CTRL_SET_DIGEST_SIZE: |
| 324 | { |
| 325 | OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; |
| 326 | size_t size = (size_t)p1; |
| 327 | size_t verify = 0; |
| 328 | |
| 329 | /* |
| 330 | * We verify that the length is actually set by getting back |
| 331 | * the same parameter and checking that it matches what we |
| 332 | * tried to set. |
| 333 | * TODO(3.0) when we have a more direct mechanism to check if |
| 334 | * a parameter was used, we must refactor this to use that. |
| 335 | */ |
| 336 | |
| 337 | params[0] = |
| 338 | OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, &size); |
| 339 | |
| 340 | if (!EVP_MAC_CTX_set_params(hctx->ctx, params)) |
| 341 | return 0; |
| 342 | |
| 343 | params[0] = |
| 344 | OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, &verify); |
| 345 | |
| 346 | if (!EVP_MAC_CTX_get_params(hctx->ctx, params)) |
| 347 | return 0; |
| 348 | |
| 349 | /* |
| 350 | * Since EVP_MAC_CTX_{get,set}_params() returned successfully, |
| 351 | * we can only assume that the size was ignored, i.e. this |
| 352 | * control is unsupported. |
| 353 | */ |
| 354 | if (verify != size) |
| 355 | return -2; |
| 356 | } |
| 357 | break; |
| 358 | case EVP_PKEY_CTRL_SET_MAC_KEY: |
| 359 | switch (hctx->type) { |
| 360 | case MAC_TYPE_RAW: |
| 361 | if ((!p2 && p1 > 0) || (p1 < -1)) |
| 362 | return 0; |
| 363 | if (!ASN1_OCTET_STRING_set(&hctx->raw_data.ktmp, p2, p1)) |
| 364 | return 0; |
| 365 | break; |
| 366 | case MAC_TYPE_MAC: |
| 367 | { |
| 368 | OSSL_PARAM params[2]; |
| 369 | size_t params_n = 0; |
| 370 | |
| 371 | params[params_n++] = |
| 372 | OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, |
| 373 | p2, p1); |
| 374 | params[params_n] = OSSL_PARAM_construct_end(); |
| 375 | |
| 376 | return EVP_MAC_CTX_set_params(hctx->ctx, params); |
| 377 | } |
| 378 | break; |
| 379 | default: |
| 380 | /* This should be dead code */ |
| 381 | return 0; |
| 382 | } |
| 383 | break; |
| 384 | |
| 385 | case EVP_PKEY_CTRL_DIGESTINIT: |
| 386 | switch (hctx->type) { |
| 387 | case MAC_TYPE_RAW: |
| 388 | /* Ensure that we have attached the implementation */ |
| 389 | if (!EVP_MAC_init(hctx->ctx)) |
| 390 | return 0; |
| 391 | { |
| 392 | ASN1_OCTET_STRING *key = |
| 393 | (ASN1_OCTET_STRING *)ctx->pkey->pkey.ptr; |
| 394 | OSSL_PARAM params[4]; |
| 395 | size_t params_n = 0; |
| 396 | char *mdname = |
| 397 | (char *)OBJ_nid2sn(EVP_MD_nid(hctx->raw_data.md)); |
| 398 | #ifndef OPENSSL_NO_ENGINE |
| 399 | char *engineid = ctx->engine == NULL |
| 400 | ? NULL : (char *)ENGINE_get_id(ctx->engine); |
| 401 | |
| 402 | if (engineid != NULL) |
| 403 | params[params_n++] = |
| 404 | OSSL_PARAM_construct_utf8_string("engine" , engineid, 0); |
| 405 | #endif |
| 406 | params[params_n++] = |
| 407 | OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, |
| 408 | mdname, 0); |
| 409 | params[params_n++] = |
| 410 | OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, |
| 411 | key->data, key->length); |
| 412 | params[params_n] = OSSL_PARAM_construct_end(); |
| 413 | |
| 414 | return EVP_MAC_CTX_set_params(hctx->ctx, params); |
| 415 | } |
| 416 | break; |
| 417 | case MAC_TYPE_MAC: |
| 418 | return -2; /* The mac types don't support ciphers */ |
| 419 | default: |
| 420 | /* This should be dead code */ |
| 421 | return 0; |
| 422 | } |
| 423 | break; |
| 424 | |
| 425 | default: |
| 426 | return -2; |
| 427 | |
| 428 | } |
| 429 | return 1; |
| 430 | } |
| 431 | |
| 432 | static int pkey_mac_ctrl_str(EVP_PKEY_CTX *ctx, |
| 433 | const char *type, const char *value) |
| 434 | { |
| 435 | MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| 436 | const EVP_MAC *mac = EVP_MAC_CTX_mac(hctx->ctx); |
| 437 | OSSL_PARAM params[2]; |
| 438 | int ok = 0; |
| 439 | |
| 440 | /* |
| 441 | * Translation of some control names that are equivalent to a single |
| 442 | * parameter name. |
| 443 | * |
| 444 | * "md" and "digest" are the same thing, we use the single "digest" |
| 445 | * |
| 446 | * "digestsize" was a setting control in siphash, but naming wise, |
| 447 | * it's really the same as "size". |
| 448 | */ |
| 449 | if (strcmp(type, "md" ) == 0) |
| 450 | type = OSSL_MAC_PARAM_DIGEST; |
| 451 | else if (strcmp(type, "digestsize" ) == 0) |
| 452 | type = OSSL_MAC_PARAM_SIZE; |
| 453 | |
| 454 | if (!OSSL_PARAM_allocate_from_text(¶ms[0], |
| 455 | EVP_MAC_settable_ctx_params(mac), |
| 456 | type, value, strlen(value) + 1)) |
| 457 | return 0; |
| 458 | params[1] = OSSL_PARAM_construct_end(); |
| 459 | ok = EVP_MAC_CTX_set_params(hctx->ctx, params); |
| 460 | OPENSSL_free(params[0].data); |
| 461 | return ok; |
| 462 | } |
| 463 | |
| 464 | static const EVP_PKEY_METHOD cmac_pkey_meth = { |
| 465 | EVP_PKEY_CMAC, |
| 466 | EVP_PKEY_FLAG_SIGCTX_CUSTOM, |
| 467 | pkey_mac_init, |
| 468 | pkey_mac_copy, |
| 469 | pkey_mac_cleanup, |
| 470 | |
| 471 | 0, 0, |
| 472 | |
| 473 | 0, |
| 474 | pkey_mac_keygen, |
| 475 | |
| 476 | 0, 0, |
| 477 | |
| 478 | 0, 0, |
| 479 | |
| 480 | 0, 0, |
| 481 | |
| 482 | pkey_mac_signctx_init, |
| 483 | pkey_mac_signctx, |
| 484 | |
| 485 | 0, 0, |
| 486 | |
| 487 | 0, 0, |
| 488 | |
| 489 | 0, 0, |
| 490 | |
| 491 | 0, 0, |
| 492 | |
| 493 | pkey_mac_ctrl, |
| 494 | pkey_mac_ctrl_str |
| 495 | }; |
| 496 | |
| 497 | const EVP_PKEY_METHOD *cmac_pkey_method(void) |
| 498 | { |
| 499 | return &cmac_pkey_meth; |
| 500 | } |
| 501 | |
| 502 | static const EVP_PKEY_METHOD hmac_pkey_meth = { |
| 503 | EVP_PKEY_HMAC, |
| 504 | 0, |
| 505 | pkey_mac_init, |
| 506 | pkey_mac_copy, |
| 507 | pkey_mac_cleanup, |
| 508 | |
| 509 | 0, 0, |
| 510 | |
| 511 | 0, |
| 512 | pkey_mac_keygen, |
| 513 | |
| 514 | 0, 0, |
| 515 | |
| 516 | 0, 0, |
| 517 | |
| 518 | 0, 0, |
| 519 | |
| 520 | pkey_mac_signctx_init, |
| 521 | pkey_mac_signctx, |
| 522 | |
| 523 | 0, 0, |
| 524 | |
| 525 | 0, 0, |
| 526 | |
| 527 | 0, 0, |
| 528 | |
| 529 | 0, 0, |
| 530 | |
| 531 | pkey_mac_ctrl, |
| 532 | pkey_mac_ctrl_str |
| 533 | }; |
| 534 | |
| 535 | const EVP_PKEY_METHOD *hmac_pkey_method(void) |
| 536 | { |
| 537 | return &hmac_pkey_meth; |
| 538 | } |
| 539 | |
| 540 | static const EVP_PKEY_METHOD siphash_pkey_meth = { |
| 541 | EVP_PKEY_SIPHASH, |
| 542 | EVP_PKEY_FLAG_SIGCTX_CUSTOM, |
| 543 | pkey_mac_init, |
| 544 | pkey_mac_copy, |
| 545 | pkey_mac_cleanup, |
| 546 | |
| 547 | 0, 0, |
| 548 | |
| 549 | 0, |
| 550 | pkey_mac_keygen, |
| 551 | |
| 552 | 0, 0, |
| 553 | |
| 554 | 0, 0, |
| 555 | |
| 556 | 0, 0, |
| 557 | |
| 558 | pkey_mac_signctx_init, |
| 559 | pkey_mac_signctx, |
| 560 | |
| 561 | 0, 0, |
| 562 | |
| 563 | 0, 0, |
| 564 | |
| 565 | 0, 0, |
| 566 | |
| 567 | 0, 0, |
| 568 | |
| 569 | pkey_mac_ctrl, |
| 570 | pkey_mac_ctrl_str |
| 571 | }; |
| 572 | |
| 573 | const EVP_PKEY_METHOD *siphash_pkey_method(void) |
| 574 | { |
| 575 | return &siphash_pkey_meth; |
| 576 | } |
| 577 | |
| 578 | static const EVP_PKEY_METHOD poly1305_pkey_meth = { |
| 579 | EVP_PKEY_POLY1305, |
| 580 | EVP_PKEY_FLAG_SIGCTX_CUSTOM, |
| 581 | pkey_mac_init, |
| 582 | pkey_mac_copy, |
| 583 | pkey_mac_cleanup, |
| 584 | |
| 585 | 0, 0, |
| 586 | |
| 587 | 0, |
| 588 | pkey_mac_keygen, |
| 589 | |
| 590 | 0, 0, |
| 591 | |
| 592 | 0, 0, |
| 593 | |
| 594 | 0, 0, |
| 595 | |
| 596 | pkey_mac_signctx_init, |
| 597 | pkey_mac_signctx, |
| 598 | |
| 599 | 0, 0, |
| 600 | |
| 601 | 0, 0, |
| 602 | |
| 603 | 0, 0, |
| 604 | |
| 605 | 0, 0, |
| 606 | |
| 607 | pkey_mac_ctrl, |
| 608 | pkey_mac_ctrl_str |
| 609 | }; |
| 610 | |
| 611 | const EVP_PKEY_METHOD *poly1305_pkey_method(void) |
| 612 | { |
| 613 | return &poly1305_pkey_meth; |
| 614 | } |
| 615 | |