| 1 | /* |
| 2 | * xxHash - Fast Hash algorithm |
| 3 | * Copyright (C) 2012-2016, Yann Collet |
| 4 | * |
| 5 | * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions are |
| 9 | * met: |
| 10 | * |
| 11 | * * Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * * Redistributions in binary form must reproduce the above |
| 14 | * copyright notice, this list of conditions and the following disclaimer |
| 15 | * in the documentation and/or other materials provided with the |
| 16 | * distribution. |
| 17 | * |
| 18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | * |
| 30 | * You can contact the author at : |
| 31 | * - xxHash homepage: http://www.xxhash.com |
| 32 | * - xxHash source repository : https://github.com/Cyan4973/xxHash |
| 33 | */ |
| 34 | |
| 35 | |
| 36 | /* ************************************* |
| 37 | * Tuning parameters |
| 38 | ***************************************/ |
| 39 | /*!XXH_FORCE_MEMORY_ACCESS : |
| 40 | * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. |
| 41 | * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. |
| 42 | * The below switch allow to select different access method for improved performance. |
| 43 | * Method 0 (default) : use `memcpy()`. Safe and portable. |
| 44 | * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). |
| 45 | * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. |
| 46 | * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. |
| 47 | * It can generate buggy code on targets which do not support unaligned memory accesses. |
| 48 | * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) |
| 49 | * See http://stackoverflow.com/a/32095106/646947 for details. |
| 50 | * Prefer these methods in priority order (0 > 1 > 2) |
| 51 | */ |
| 52 | #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
| 53 | # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \ |
| 54 | || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \ |
| 55 | || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) |
| 56 | # define XXH_FORCE_MEMORY_ACCESS 2 |
| 57 | # elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ |
| 58 | (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \ |
| 59 | || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \ |
| 60 | || defined(__ARM_ARCH_7S__) )) |
| 61 | # define XXH_FORCE_MEMORY_ACCESS 1 |
| 62 | # endif |
| 63 | #endif |
| 64 | |
| 65 | /*!XXH_ACCEPT_NULL_INPUT_POINTER : |
| 66 | * If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault. |
| 67 | * When this macro is enabled, xxHash actively checks input for null pointer. |
| 68 | * It it is, result for null input pointers is the same as a null-length input. |
| 69 | */ |
| 70 | #ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */ |
| 71 | # define XXH_ACCEPT_NULL_INPUT_POINTER 0 |
| 72 | #endif |
| 73 | |
| 74 | /*!XXH_FORCE_NATIVE_FORMAT : |
| 75 | * By default, xxHash library provides endian-independent Hash values, based on little-endian convention. |
| 76 | * Results are therefore identical for little-endian and big-endian CPU. |
| 77 | * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. |
| 78 | * Should endian-independence be of no importance for your application, you may set the #define below to 1, |
| 79 | * to improve speed for Big-endian CPU. |
| 80 | * This option has no impact on Little_Endian CPU. |
| 81 | */ |
| 82 | #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ |
| 83 | # define XXH_FORCE_NATIVE_FORMAT 0 |
| 84 | #endif |
| 85 | |
| 86 | /*!XXH_FORCE_ALIGN_CHECK : |
| 87 | * This is a minor performance trick, only useful with lots of very small keys. |
| 88 | * It means : check for aligned/unaligned input. |
| 89 | * The check costs one initial branch per hash; |
| 90 | * set it to 0 when the input is guaranteed to be aligned, |
| 91 | * or when alignment doesn't matter for performance. |
| 92 | */ |
| 93 | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
| 94 | # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) |
| 95 | # define XXH_FORCE_ALIGN_CHECK 0 |
| 96 | # else |
| 97 | # define XXH_FORCE_ALIGN_CHECK 1 |
| 98 | # endif |
| 99 | #endif |
| 100 | |
| 101 | |
| 102 | /* ************************************* |
| 103 | * Includes & Memory related functions |
| 104 | ***************************************/ |
| 105 | /*! Modify the local functions below should you wish to use some other memory routines |
| 106 | * for malloc(), free() */ |
| 107 | #include <stdlib.h> |
| 108 | static void* XXH_malloc(size_t s) { return malloc(s); } |
| 109 | static void XXH_free (void* p) { free(p); } |
| 110 | /*! and for memcpy() */ |
| 111 | #include <string.h> |
| 112 | static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } |
| 113 | |
| 114 | #include <assert.h> /* assert */ |
| 115 | |
| 116 | #define XXH_STATIC_LINKING_ONLY |
| 117 | #include "xxhash.h" |
| 118 | |
| 119 | |
| 120 | /* ************************************* |
| 121 | * Compiler Specific Options |
| 122 | ***************************************/ |
| 123 | #ifdef _MSC_VER /* Visual Studio */ |
| 124 | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
| 125 | # define FORCE_INLINE static __forceinline |
| 126 | #else |
| 127 | # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ |
| 128 | # ifdef __GNUC__ |
| 129 | # define FORCE_INLINE static inline __attribute__((always_inline)) |
| 130 | # else |
| 131 | # define FORCE_INLINE static inline |
| 132 | # endif |
| 133 | # else |
| 134 | # define FORCE_INLINE static |
| 135 | # endif /* __STDC_VERSION__ */ |
| 136 | #endif |
| 137 | |
| 138 | |
| 139 | /* ************************************* |
| 140 | * Basic Types |
| 141 | ***************************************/ |
| 142 | #ifndef MEM_MODULE |
| 143 | # if !defined (__VMS) \ |
| 144 | && (defined (__cplusplus) \ |
| 145 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| 146 | # include <stdint.h> |
| 147 | typedef uint8_t BYTE; |
| 148 | typedef uint16_t U16; |
| 149 | typedef uint32_t U32; |
| 150 | # else |
| 151 | typedef unsigned char BYTE; |
| 152 | typedef unsigned short U16; |
| 153 | typedef unsigned int U32; |
| 154 | # endif |
| 155 | #endif |
| 156 | |
| 157 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
| 158 | |
| 159 | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
| 160 | static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } |
| 161 | |
| 162 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
| 163 | |
| 164 | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
| 165 | /* currently only defined for gcc and icc */ |
| 166 | typedef union { U32 u32; } __attribute__((packed)) unalign; |
| 167 | static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } |
| 168 | |
| 169 | #else |
| 170 | |
| 171 | /* portable and safe solution. Generally efficient. |
| 172 | * see : http://stackoverflow.com/a/32095106/646947 |
| 173 | */ |
| 174 | static U32 XXH_read32(const void* memPtr) |
| 175 | { |
| 176 | U32 val; |
| 177 | memcpy(&val, memPtr, sizeof(val)); |
| 178 | return val; |
| 179 | } |
| 180 | |
| 181 | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
| 182 | |
| 183 | |
| 184 | /* **************************************** |
| 185 | * Compiler-specific Functions and Macros |
| 186 | ******************************************/ |
| 187 | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
| 188 | |
| 189 | /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ |
| 190 | #if defined(_MSC_VER) |
| 191 | # define XXH_rotl32(x,r) _rotl(x,r) |
| 192 | # define XXH_rotl64(x,r) _rotl64(x,r) |
| 193 | #else |
| 194 | # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) |
| 195 | # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) |
| 196 | #endif |
| 197 | |
| 198 | #if defined(_MSC_VER) /* Visual Studio */ |
| 199 | # define XXH_swap32 _byteswap_ulong |
| 200 | #elif XXH_GCC_VERSION >= 403 |
| 201 | # define XXH_swap32 __builtin_bswap32 |
| 202 | #else |
| 203 | static U32 XXH_swap32 (U32 x) |
| 204 | { |
| 205 | return ((x << 24) & 0xff000000 ) | |
| 206 | ((x << 8) & 0x00ff0000 ) | |
| 207 | ((x >> 8) & 0x0000ff00 ) | |
| 208 | ((x >> 24) & 0x000000ff ); |
| 209 | } |
| 210 | #endif |
| 211 | |
| 212 | |
| 213 | /* ************************************* |
| 214 | * Architecture Macros |
| 215 | ***************************************/ |
| 216 | typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; |
| 217 | |
| 218 | /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ |
| 219 | #ifndef XXH_CPU_LITTLE_ENDIAN |
| 220 | static int XXH_isLittleEndian(void) |
| 221 | { |
| 222 | const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ |
| 223 | return one.c[0]; |
| 224 | } |
| 225 | # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
| 226 | #endif |
| 227 | |
| 228 | |
| 229 | /* *************************** |
| 230 | * Memory reads |
| 231 | *****************************/ |
| 232 | typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
| 233 | |
| 234 | FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
| 235 | { |
| 236 | if (align==XXH_unaligned) |
| 237 | return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
| 238 | else |
| 239 | return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); |
| 240 | } |
| 241 | |
| 242 | FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) |
| 243 | { |
| 244 | return XXH_readLE32_align(ptr, endian, XXH_unaligned); |
| 245 | } |
| 246 | |
| 247 | static U32 XXH_readBE32(const void* ptr) |
| 248 | { |
| 249 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
| 250 | } |
| 251 | |
| 252 | |
| 253 | /* ************************************* |
| 254 | * Macros |
| 255 | ***************************************/ |
| 256 | #define XXH_STATIC_ASSERT(c) { enum { XXH_sa = 1/(int)(!!(c)) }; } /* use after variable declarations */ |
| 257 | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
| 258 | |
| 259 | |
| 260 | /* ******************************************************************* |
| 261 | * 32-bit hash functions |
| 262 | *********************************************************************/ |
| 263 | static const U32 PRIME32_1 = 2654435761U; |
| 264 | static const U32 PRIME32_2 = 2246822519U; |
| 265 | static const U32 PRIME32_3 = 3266489917U; |
| 266 | static const U32 PRIME32_4 = 668265263U; |
| 267 | static const U32 PRIME32_5 = 374761393U; |
| 268 | |
| 269 | static U32 XXH32_round(U32 seed, U32 input) |
| 270 | { |
| 271 | seed += input * PRIME32_2; |
| 272 | seed = XXH_rotl32(seed, 13); |
| 273 | seed *= PRIME32_1; |
| 274 | return seed; |
| 275 | } |
| 276 | |
| 277 | /* mix all bits */ |
| 278 | static U32 XXH32_avalanche(U32 h32) |
| 279 | { |
| 280 | h32 ^= h32 >> 15; |
| 281 | h32 *= PRIME32_2; |
| 282 | h32 ^= h32 >> 13; |
| 283 | h32 *= PRIME32_3; |
| 284 | h32 ^= h32 >> 16; |
| 285 | return(h32); |
| 286 | } |
| 287 | |
| 288 | #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) |
| 289 | |
| 290 | static U32 |
| 291 | XXH32_finalize(U32 h32, const void* ptr, size_t len, |
| 292 | XXH_endianess endian, XXH_alignment align) |
| 293 | |
| 294 | { |
| 295 | const BYTE* p = (const BYTE*)ptr; |
| 296 | |
| 297 | #define PROCESS1 \ |
| 298 | h32 += (*p++) * PRIME32_5; \ |
| 299 | h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; |
| 300 | |
| 301 | #define PROCESS4 \ |
| 302 | h32 += XXH_get32bits(p) * PRIME32_3; \ |
| 303 | p+=4; \ |
| 304 | h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; |
| 305 | |
| 306 | switch(len&15) /* or switch(bEnd - p) */ |
| 307 | { |
| 308 | case 12: PROCESS4; |
| 309 | /* fallthrough */ |
| 310 | case 8: PROCESS4; |
| 311 | /* fallthrough */ |
| 312 | case 4: PROCESS4; |
| 313 | return XXH32_avalanche(h32); |
| 314 | |
| 315 | case 13: PROCESS4; |
| 316 | /* fallthrough */ |
| 317 | case 9: PROCESS4; |
| 318 | /* fallthrough */ |
| 319 | case 5: PROCESS4; |
| 320 | PROCESS1; |
| 321 | return XXH32_avalanche(h32); |
| 322 | |
| 323 | case 14: PROCESS4; |
| 324 | /* fallthrough */ |
| 325 | case 10: PROCESS4; |
| 326 | /* fallthrough */ |
| 327 | case 6: PROCESS4; |
| 328 | PROCESS1; |
| 329 | PROCESS1; |
| 330 | return XXH32_avalanche(h32); |
| 331 | |
| 332 | case 15: PROCESS4; |
| 333 | /* fallthrough */ |
| 334 | case 11: PROCESS4; |
| 335 | /* fallthrough */ |
| 336 | case 7: PROCESS4; |
| 337 | /* fallthrough */ |
| 338 | case 3: PROCESS1; |
| 339 | /* fallthrough */ |
| 340 | case 2: PROCESS1; |
| 341 | /* fallthrough */ |
| 342 | case 1: PROCESS1; |
| 343 | /* fallthrough */ |
| 344 | case 0: return XXH32_avalanche(h32); |
| 345 | } |
| 346 | assert(0); |
| 347 | return h32; /* reaching this point is deemed impossible */ |
| 348 | } |
| 349 | |
| 350 | |
| 351 | FORCE_INLINE U32 |
| 352 | XXH32_endian_align(const void* input, size_t len, U32 seed, |
| 353 | XXH_endianess endian, XXH_alignment align) |
| 354 | { |
| 355 | const BYTE* p = (const BYTE*)input; |
| 356 | const BYTE* bEnd = p + len; |
| 357 | U32 h32; |
| 358 | |
| 359 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| 360 | if (p==NULL) { |
| 361 | len=0; |
| 362 | bEnd=p=(const BYTE*)(size_t)16; |
| 363 | } |
| 364 | #endif |
| 365 | |
| 366 | if (len>=16) { |
| 367 | const BYTE* const limit = bEnd - 15; |
| 368 | U32 v1 = seed + PRIME32_1 + PRIME32_2; |
| 369 | U32 v2 = seed + PRIME32_2; |
| 370 | U32 v3 = seed + 0; |
| 371 | U32 v4 = seed - PRIME32_1; |
| 372 | |
| 373 | do { |
| 374 | v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; |
| 375 | v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; |
| 376 | v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; |
| 377 | v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; |
| 378 | } while (p < limit); |
| 379 | |
| 380 | h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) |
| 381 | + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
| 382 | } else { |
| 383 | h32 = seed + PRIME32_5; |
| 384 | } |
| 385 | |
| 386 | h32 += (U32)len; |
| 387 | |
| 388 | return XXH32_finalize(h32, p, len&15, endian, align); |
| 389 | } |
| 390 | |
| 391 | |
| 392 | XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) |
| 393 | { |
| 394 | #if 0 |
| 395 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| 396 | XXH32_state_t state; |
| 397 | XXH32_reset(&state, seed); |
| 398 | XXH32_update(&state, input, len); |
| 399 | return XXH32_digest(&state); |
| 400 | #else |
| 401 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| 402 | |
| 403 | if (XXH_FORCE_ALIGN_CHECK) { |
| 404 | if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
| 405 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| 406 | return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
| 407 | else |
| 408 | return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
| 409 | } } |
| 410 | |
| 411 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| 412 | return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
| 413 | else |
| 414 | return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
| 415 | #endif |
| 416 | } |
| 417 | |
| 418 | |
| 419 | |
| 420 | /*====== Hash streaming ======*/ |
| 421 | |
| 422 | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
| 423 | { |
| 424 | return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
| 425 | } |
| 426 | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
| 427 | { |
| 428 | XXH_free(statePtr); |
| 429 | return XXH_OK; |
| 430 | } |
| 431 | |
| 432 | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
| 433 | { |
| 434 | memcpy(dstState, srcState, sizeof(*dstState)); |
| 435 | } |
| 436 | |
| 437 | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) |
| 438 | { |
| 439 | XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
| 440 | memset(&state, 0, sizeof(state)); |
| 441 | state.v1 = seed + PRIME32_1 + PRIME32_2; |
| 442 | state.v2 = seed + PRIME32_2; |
| 443 | state.v3 = seed + 0; |
| 444 | state.v4 = seed - PRIME32_1; |
| 445 | /* do not write into reserved, planned to be removed in a future version */ |
| 446 | memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
| 447 | return XXH_OK; |
| 448 | } |
| 449 | |
| 450 | |
| 451 | FORCE_INLINE XXH_errorcode |
| 452 | XXH32_update_endian(XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) |
| 453 | { |
| 454 | if (input==NULL) |
| 455 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| 456 | return XXH_OK; |
| 457 | #else |
| 458 | return XXH_ERROR; |
| 459 | #endif |
| 460 | |
| 461 | { const BYTE* p = (const BYTE*)input; |
| 462 | const BYTE* const bEnd = p + len; |
| 463 | |
| 464 | state->total_len_32 += (unsigned)len; |
| 465 | state->large_len |= (len>=16) | (state->total_len_32>=16); |
| 466 | |
| 467 | if (state->memsize + len < 16) { /* fill in tmp buffer */ |
| 468 | XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); |
| 469 | state->memsize += (unsigned)len; |
| 470 | return XXH_OK; |
| 471 | } |
| 472 | |
| 473 | if (state->memsize) { /* some data left from previous update */ |
| 474 | XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); |
| 475 | { const U32* p32 = state->mem32; |
| 476 | state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; |
| 477 | state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; |
| 478 | state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; |
| 479 | state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); |
| 480 | } |
| 481 | p += 16-state->memsize; |
| 482 | state->memsize = 0; |
| 483 | } |
| 484 | |
| 485 | if (p <= bEnd-16) { |
| 486 | const BYTE* const limit = bEnd - 16; |
| 487 | U32 v1 = state->v1; |
| 488 | U32 v2 = state->v2; |
| 489 | U32 v3 = state->v3; |
| 490 | U32 v4 = state->v4; |
| 491 | |
| 492 | do { |
| 493 | v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; |
| 494 | v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; |
| 495 | v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; |
| 496 | v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; |
| 497 | } while (p<=limit); |
| 498 | |
| 499 | state->v1 = v1; |
| 500 | state->v2 = v2; |
| 501 | state->v3 = v3; |
| 502 | state->v4 = v4; |
| 503 | } |
| 504 | |
| 505 | if (p < bEnd) { |
| 506 | XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
| 507 | state->memsize = (unsigned)(bEnd-p); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | return XXH_OK; |
| 512 | } |
| 513 | |
| 514 | |
| 515 | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) |
| 516 | { |
| 517 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| 518 | |
| 519 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| 520 | return XXH32_update_endian(state_in, input, len, XXH_littleEndian); |
| 521 | else |
| 522 | return XXH32_update_endian(state_in, input, len, XXH_bigEndian); |
| 523 | } |
| 524 | |
| 525 | |
| 526 | FORCE_INLINE U32 |
| 527 | XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) |
| 528 | { |
| 529 | U32 h32; |
| 530 | |
| 531 | if (state->large_len) { |
| 532 | h32 = XXH_rotl32(state->v1, 1) |
| 533 | + XXH_rotl32(state->v2, 7) |
| 534 | + XXH_rotl32(state->v3, 12) |
| 535 | + XXH_rotl32(state->v4, 18); |
| 536 | } else { |
| 537 | h32 = state->v3 /* == seed */ + PRIME32_5; |
| 538 | } |
| 539 | |
| 540 | h32 += state->total_len_32; |
| 541 | |
| 542 | return XXH32_finalize(h32, state->mem32, state->memsize, endian, XXH_aligned); |
| 543 | } |
| 544 | |
| 545 | |
| 546 | XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) |
| 547 | { |
| 548 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| 549 | |
| 550 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| 551 | return XXH32_digest_endian(state_in, XXH_littleEndian); |
| 552 | else |
| 553 | return XXH32_digest_endian(state_in, XXH_bigEndian); |
| 554 | } |
| 555 | |
| 556 | |
| 557 | /*====== Canonical representation ======*/ |
| 558 | |
| 559 | /*! Default XXH result types are basic unsigned 32 and 64 bits. |
| 560 | * The canonical representation follows human-readable write convention, aka big-endian (large digits first). |
| 561 | * These functions allow transformation of hash result into and from its canonical format. |
| 562 | * This way, hash values can be written into a file or buffer, remaining comparable across different systems. |
| 563 | */ |
| 564 | |
| 565 | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
| 566 | { |
| 567 | XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
| 568 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
| 569 | memcpy(dst, &hash, sizeof(*dst)); |
| 570 | } |
| 571 | |
| 572 | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
| 573 | { |
| 574 | return XXH_readBE32(src); |
| 575 | } |
| 576 | |
| 577 | |
| 578 | #ifndef XXH_NO_LONG_LONG |
| 579 | |
| 580 | /* ******************************************************************* |
| 581 | * 64-bit hash functions |
| 582 | *********************************************************************/ |
| 583 | |
| 584 | /*====== Memory access ======*/ |
| 585 | |
| 586 | #ifndef MEM_MODULE |
| 587 | # define MEM_MODULE |
| 588 | # if !defined (__VMS) \ |
| 589 | && (defined (__cplusplus) \ |
| 590 | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| 591 | # include <stdint.h> |
| 592 | typedef uint64_t U64; |
| 593 | # else |
| 594 | /* if compiler doesn't support unsigned long long, replace by another 64-bit type */ |
| 595 | typedef unsigned long long U64; |
| 596 | # endif |
| 597 | #endif |
| 598 | |
| 599 | |
| 600 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
| 601 | |
| 602 | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
| 603 | static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } |
| 604 | |
| 605 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
| 606 | |
| 607 | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
| 608 | /* currently only defined for gcc and icc */ |
| 609 | typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64; |
| 610 | static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; } |
| 611 | |
| 612 | #else |
| 613 | |
| 614 | /* portable and safe solution. Generally efficient. |
| 615 | * see : http://stackoverflow.com/a/32095106/646947 |
| 616 | */ |
| 617 | |
| 618 | static U64 XXH_read64(const void* memPtr) |
| 619 | { |
| 620 | U64 val; |
| 621 | memcpy(&val, memPtr, sizeof(val)); |
| 622 | return val; |
| 623 | } |
| 624 | |
| 625 | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
| 626 | |
| 627 | #if defined(_MSC_VER) /* Visual Studio */ |
| 628 | # define XXH_swap64 _byteswap_uint64 |
| 629 | #elif XXH_GCC_VERSION >= 403 |
| 630 | # define XXH_swap64 __builtin_bswap64 |
| 631 | #else |
| 632 | static U64 XXH_swap64 (U64 x) |
| 633 | { |
| 634 | return ((x << 56) & 0xff00000000000000ULL) | |
| 635 | ((x << 40) & 0x00ff000000000000ULL) | |
| 636 | ((x << 24) & 0x0000ff0000000000ULL) | |
| 637 | ((x << 8) & 0x000000ff00000000ULL) | |
| 638 | ((x >> 8) & 0x00000000ff000000ULL) | |
| 639 | ((x >> 24) & 0x0000000000ff0000ULL) | |
| 640 | ((x >> 40) & 0x000000000000ff00ULL) | |
| 641 | ((x >> 56) & 0x00000000000000ffULL); |
| 642 | } |
| 643 | #endif |
| 644 | |
| 645 | FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
| 646 | { |
| 647 | if (align==XXH_unaligned) |
| 648 | return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
| 649 | else |
| 650 | return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); |
| 651 | } |
| 652 | |
| 653 | FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) |
| 654 | { |
| 655 | return XXH_readLE64_align(ptr, endian, XXH_unaligned); |
| 656 | } |
| 657 | |
| 658 | static U64 XXH_readBE64(const void* ptr) |
| 659 | { |
| 660 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
| 661 | } |
| 662 | |
| 663 | |
| 664 | /*====== xxh64 ======*/ |
| 665 | |
| 666 | static const U64 PRIME64_1 = 11400714785074694791ULL; |
| 667 | static const U64 PRIME64_2 = 14029467366897019727ULL; |
| 668 | static const U64 PRIME64_3 = 1609587929392839161ULL; |
| 669 | static const U64 PRIME64_4 = 9650029242287828579ULL; |
| 670 | static const U64 PRIME64_5 = 2870177450012600261ULL; |
| 671 | |
| 672 | static U64 XXH64_round(U64 acc, U64 input) |
| 673 | { |
| 674 | acc += input * PRIME64_2; |
| 675 | acc = XXH_rotl64(acc, 31); |
| 676 | acc *= PRIME64_1; |
| 677 | return acc; |
| 678 | } |
| 679 | |
| 680 | static U64 XXH64_mergeRound(U64 acc, U64 val) |
| 681 | { |
| 682 | val = XXH64_round(0, val); |
| 683 | acc ^= val; |
| 684 | acc = acc * PRIME64_1 + PRIME64_4; |
| 685 | return acc; |
| 686 | } |
| 687 | |
| 688 | static U64 XXH64_avalanche(U64 h64) |
| 689 | { |
| 690 | h64 ^= h64 >> 33; |
| 691 | h64 *= PRIME64_2; |
| 692 | h64 ^= h64 >> 29; |
| 693 | h64 *= PRIME64_3; |
| 694 | h64 ^= h64 >> 32; |
| 695 | return h64; |
| 696 | } |
| 697 | |
| 698 | |
| 699 | #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) |
| 700 | |
| 701 | static U64 |
| 702 | XXH64_finalize(U64 h64, const void* ptr, size_t len, |
| 703 | XXH_endianess endian, XXH_alignment align) |
| 704 | { |
| 705 | const BYTE* p = (const BYTE*)ptr; |
| 706 | |
| 707 | #define PROCESS1_64 \ |
| 708 | h64 ^= (*p++) * PRIME64_5; \ |
| 709 | h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
| 710 | |
| 711 | #define PROCESS4_64 \ |
| 712 | h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \ |
| 713 | p+=4; \ |
| 714 | h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
| 715 | |
| 716 | #define PROCESS8_64 { \ |
| 717 | U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \ |
| 718 | p+=8; \ |
| 719 | h64 ^= k1; \ |
| 720 | h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \ |
| 721 | } |
| 722 | |
| 723 | switch(len&31) { |
| 724 | case 24: PROCESS8_64; |
| 725 | /* fallthrough */ |
| 726 | case 16: PROCESS8_64; |
| 727 | /* fallthrough */ |
| 728 | case 8: PROCESS8_64; |
| 729 | return XXH64_avalanche(h64); |
| 730 | |
| 731 | case 28: PROCESS8_64; |
| 732 | /* fallthrough */ |
| 733 | case 20: PROCESS8_64; |
| 734 | /* fallthrough */ |
| 735 | case 12: PROCESS8_64; |
| 736 | /* fallthrough */ |
| 737 | case 4: PROCESS4_64; |
| 738 | return XXH64_avalanche(h64); |
| 739 | |
| 740 | case 25: PROCESS8_64; |
| 741 | /* fallthrough */ |
| 742 | case 17: PROCESS8_64; |
| 743 | /* fallthrough */ |
| 744 | case 9: PROCESS8_64; |
| 745 | PROCESS1_64; |
| 746 | return XXH64_avalanche(h64); |
| 747 | |
| 748 | case 29: PROCESS8_64; |
| 749 | /* fallthrough */ |
| 750 | case 21: PROCESS8_64; |
| 751 | /* fallthrough */ |
| 752 | case 13: PROCESS8_64; |
| 753 | /* fallthrough */ |
| 754 | case 5: PROCESS4_64; |
| 755 | PROCESS1_64; |
| 756 | return XXH64_avalanche(h64); |
| 757 | |
| 758 | case 26: PROCESS8_64; |
| 759 | /* fallthrough */ |
| 760 | case 18: PROCESS8_64; |
| 761 | /* fallthrough */ |
| 762 | case 10: PROCESS8_64; |
| 763 | PROCESS1_64; |
| 764 | PROCESS1_64; |
| 765 | return XXH64_avalanche(h64); |
| 766 | |
| 767 | case 30: PROCESS8_64; |
| 768 | /* fallthrough */ |
| 769 | case 22: PROCESS8_64; |
| 770 | /* fallthrough */ |
| 771 | case 14: PROCESS8_64; |
| 772 | /* fallthrough */ |
| 773 | case 6: PROCESS4_64; |
| 774 | PROCESS1_64; |
| 775 | PROCESS1_64; |
| 776 | return XXH64_avalanche(h64); |
| 777 | |
| 778 | case 27: PROCESS8_64; |
| 779 | /* fallthrough */ |
| 780 | case 19: PROCESS8_64; |
| 781 | /* fallthrough */ |
| 782 | case 11: PROCESS8_64; |
| 783 | PROCESS1_64; |
| 784 | PROCESS1_64; |
| 785 | PROCESS1_64; |
| 786 | return XXH64_avalanche(h64); |
| 787 | |
| 788 | case 31: PROCESS8_64; |
| 789 | /* fallthrough */ |
| 790 | case 23: PROCESS8_64; |
| 791 | /* fallthrough */ |
| 792 | case 15: PROCESS8_64; |
| 793 | /* fallthrough */ |
| 794 | case 7: PROCESS4_64; |
| 795 | /* fallthrough */ |
| 796 | case 3: PROCESS1_64; |
| 797 | /* fallthrough */ |
| 798 | case 2: PROCESS1_64; |
| 799 | /* fallthrough */ |
| 800 | case 1: PROCESS1_64; |
| 801 | /* fallthrough */ |
| 802 | case 0: return XXH64_avalanche(h64); |
| 803 | } |
| 804 | |
| 805 | /* impossible to reach */ |
| 806 | assert(0); |
| 807 | return 0; /* unreachable, but some compilers complain without it */ |
| 808 | } |
| 809 | |
| 810 | FORCE_INLINE U64 |
| 811 | XXH64_endian_align(const void* input, size_t len, U64 seed, |
| 812 | XXH_endianess endian, XXH_alignment align) |
| 813 | { |
| 814 | const BYTE* p = (const BYTE*)input; |
| 815 | const BYTE* bEnd = p + len; |
| 816 | U64 h64; |
| 817 | |
| 818 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| 819 | if (p==NULL) { |
| 820 | len=0; |
| 821 | bEnd=p=(const BYTE*)(size_t)32; |
| 822 | } |
| 823 | #endif |
| 824 | |
| 825 | if (len>=32) { |
| 826 | const BYTE* const limit = bEnd - 32; |
| 827 | U64 v1 = seed + PRIME64_1 + PRIME64_2; |
| 828 | U64 v2 = seed + PRIME64_2; |
| 829 | U64 v3 = seed + 0; |
| 830 | U64 v4 = seed - PRIME64_1; |
| 831 | |
| 832 | do { |
| 833 | v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; |
| 834 | v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; |
| 835 | v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; |
| 836 | v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; |
| 837 | } while (p<=limit); |
| 838 | |
| 839 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| 840 | h64 = XXH64_mergeRound(h64, v1); |
| 841 | h64 = XXH64_mergeRound(h64, v2); |
| 842 | h64 = XXH64_mergeRound(h64, v3); |
| 843 | h64 = XXH64_mergeRound(h64, v4); |
| 844 | |
| 845 | } else { |
| 846 | h64 = seed + PRIME64_5; |
| 847 | } |
| 848 | |
| 849 | h64 += (U64) len; |
| 850 | |
| 851 | return XXH64_finalize(h64, p, len, endian, align); |
| 852 | } |
| 853 | |
| 854 | |
| 855 | XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) |
| 856 | { |
| 857 | #if 0 |
| 858 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| 859 | XXH64_state_t state; |
| 860 | XXH64_reset(&state, seed); |
| 861 | XXH64_update(&state, input, len); |
| 862 | return XXH64_digest(&state); |
| 863 | #else |
| 864 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| 865 | |
| 866 | if (XXH_FORCE_ALIGN_CHECK) { |
| 867 | if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
| 868 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| 869 | return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
| 870 | else |
| 871 | return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
| 872 | } } |
| 873 | |
| 874 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| 875 | return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
| 876 | else |
| 877 | return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
| 878 | #endif |
| 879 | } |
| 880 | |
| 881 | /*====== Hash Streaming ======*/ |
| 882 | |
| 883 | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
| 884 | { |
| 885 | return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
| 886 | } |
| 887 | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
| 888 | { |
| 889 | XXH_free(statePtr); |
| 890 | return XXH_OK; |
| 891 | } |
| 892 | |
| 893 | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) |
| 894 | { |
| 895 | memcpy(dstState, srcState, sizeof(*dstState)); |
| 896 | } |
| 897 | |
| 898 | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) |
| 899 | { |
| 900 | XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
| 901 | memset(&state, 0, sizeof(state)); |
| 902 | state.v1 = seed + PRIME64_1 + PRIME64_2; |
| 903 | state.v2 = seed + PRIME64_2; |
| 904 | state.v3 = seed + 0; |
| 905 | state.v4 = seed - PRIME64_1; |
| 906 | /* do not write into reserved, planned to be removed in a future version */ |
| 907 | memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
| 908 | return XXH_OK; |
| 909 | } |
| 910 | |
| 911 | FORCE_INLINE XXH_errorcode |
| 912 | XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) |
| 913 | { |
| 914 | if (input==NULL) |
| 915 | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| 916 | return XXH_OK; |
| 917 | #else |
| 918 | return XXH_ERROR; |
| 919 | #endif |
| 920 | |
| 921 | { const BYTE* p = (const BYTE*)input; |
| 922 | const BYTE* const bEnd = p + len; |
| 923 | |
| 924 | state->total_len += len; |
| 925 | |
| 926 | if (state->memsize + len < 32) { /* fill in tmp buffer */ |
| 927 | XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); |
| 928 | state->memsize += (U32)len; |
| 929 | return XXH_OK; |
| 930 | } |
| 931 | |
| 932 | if (state->memsize) { /* tmp buffer is full */ |
| 933 | XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); |
| 934 | state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); |
| 935 | state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); |
| 936 | state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); |
| 937 | state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); |
| 938 | p += 32-state->memsize; |
| 939 | state->memsize = 0; |
| 940 | } |
| 941 | |
| 942 | if (p+32 <= bEnd) { |
| 943 | const BYTE* const limit = bEnd - 32; |
| 944 | U64 v1 = state->v1; |
| 945 | U64 v2 = state->v2; |
| 946 | U64 v3 = state->v3; |
| 947 | U64 v4 = state->v4; |
| 948 | |
| 949 | do { |
| 950 | v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; |
| 951 | v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; |
| 952 | v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; |
| 953 | v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; |
| 954 | } while (p<=limit); |
| 955 | |
| 956 | state->v1 = v1; |
| 957 | state->v2 = v2; |
| 958 | state->v3 = v3; |
| 959 | state->v4 = v4; |
| 960 | } |
| 961 | |
| 962 | if (p < bEnd) { |
| 963 | XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
| 964 | state->memsize = (unsigned)(bEnd-p); |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | return XXH_OK; |
| 969 | } |
| 970 | |
| 971 | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) |
| 972 | { |
| 973 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| 974 | |
| 975 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| 976 | return XXH64_update_endian(state_in, input, len, XXH_littleEndian); |
| 977 | else |
| 978 | return XXH64_update_endian(state_in, input, len, XXH_bigEndian); |
| 979 | } |
| 980 | |
| 981 | FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) |
| 982 | { |
| 983 | U64 h64; |
| 984 | |
| 985 | if (state->total_len >= 32) { |
| 986 | U64 const v1 = state->v1; |
| 987 | U64 const v2 = state->v2; |
| 988 | U64 const v3 = state->v3; |
| 989 | U64 const v4 = state->v4; |
| 990 | |
| 991 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| 992 | h64 = XXH64_mergeRound(h64, v1); |
| 993 | h64 = XXH64_mergeRound(h64, v2); |
| 994 | h64 = XXH64_mergeRound(h64, v3); |
| 995 | h64 = XXH64_mergeRound(h64, v4); |
| 996 | } else { |
| 997 | h64 = state->v3 /*seed*/ + PRIME64_5; |
| 998 | } |
| 999 | |
| 1000 | h64 += (U64) state->total_len; |
| 1001 | |
| 1002 | return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, endian, XXH_aligned); |
| 1003 | } |
| 1004 | |
| 1005 | XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) |
| 1006 | { |
| 1007 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| 1008 | |
| 1009 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| 1010 | return XXH64_digest_endian(state_in, XXH_littleEndian); |
| 1011 | else |
| 1012 | return XXH64_digest_endian(state_in, XXH_bigEndian); |
| 1013 | } |
| 1014 | |
| 1015 | |
| 1016 | /*====== Canonical representation ======*/ |
| 1017 | |
| 1018 | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
| 1019 | { |
| 1020 | XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
| 1021 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
| 1022 | memcpy(dst, &hash, sizeof(*dst)); |
| 1023 | } |
| 1024 | |
| 1025 | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
| 1026 | { |
| 1027 | return XXH_readBE64(src); |
| 1028 | } |
| 1029 | |
| 1030 | #endif /* XXH_NO_LONG_LONG */ |
| 1031 | |