| 1 | /* auto-generated on Tue Dec 18 09:42:59 CST 2018. Do not edit! */ |
| 2 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_version.h */ |
| 3 | // /include/roaring/roaring_version.h automatically generated by release.py, do not change by hand |
| 4 | #ifndef ROARING_INCLUDE_ROARING_VERSION |
| 5 | #define ROARING_INCLUDE_ROARING_VERSION |
| 6 | #define ROARING_VERSION = 0.2.57, |
| 7 | enum { |
| 8 | ROARING_VERSION_MAJOR = 0, |
| 9 | ROARING_VERSION_MINOR = 2, |
| 10 | ROARING_VERSION_REVISION = 57 |
| 11 | }; |
| 12 | #endif // ROARING_INCLUDE_ROARING_VERSION |
| 13 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_version.h */ |
| 14 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/portability.h */ |
| 15 | /* |
| 16 | * portability.h |
| 17 | * |
| 18 | */ |
| 19 | |
| 20 | |
| 21 | #if defined(__clang__) |
| 22 | #pragma clang diagnostic ignored "-Wold-style-cast" |
| 23 | #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" |
| 24 | #pragma clang diagnostic ignored "-Wold-style-cast" |
| 25 | #pragma clang diagnostic ignored "-Wcast-align" |
| 26 | #pragma clang diagnostic ignored "-Wcast-qual" |
| 27 | #pragma clang diagnostic ignored "-Wundef" |
| 28 | #endif |
| 29 | |
| 30 | #ifndef INCLUDE_PORTABILITY_H_ |
| 31 | #define INCLUDE_PORTABILITY_H_ |
| 32 | |
| 33 | #ifdef __cplusplus |
| 34 | extern "C" { |
| 35 | #endif |
| 36 | |
| 37 | |
| 38 | #ifndef _GNU_SOURCE |
| 39 | #define _GNU_SOURCE |
| 40 | #endif |
| 41 | //#ifndef __STDC_FORMAT_MACROS |
| 42 | //#define __STDC_FORMAT_MACROS 1 |
| 43 | //#endif |
| 44 | |
| 45 | #if !(defined(_POSIX_C_SOURCE)) || (_POSIX_C_SOURCE < 200809L) |
| 46 | #define _POSIX_C_SOURCE 200809L |
| 47 | #endif |
| 48 | #if !(defined(_XOPEN_SOURCE)) || (_XOPEN_SOURCE < 700) |
| 49 | #define _XOPEN_SOURCE 700 |
| 50 | #endif |
| 51 | |
| 52 | #include <stdbool.h> |
| 53 | #include <stdint.h> |
| 54 | #include <stdlib.h> // will provide posix_memalign with _POSIX_C_SOURCE as defined above |
| 55 | #if !(defined(__APPLE__)) && !(defined(__FreeBSD__)) |
| 56 | #include <malloc.h> // this should never be needed but there are some reports that it is needed. |
| 57 | #endif |
| 58 | |
| 59 | |
| 60 | #if defined(_MSC_VER) && !defined(__clang__) && !defined(_WIN64) |
| 61 | #pragma message( \ |
| 62 | "You appear to be attempting a 32-bit build under Visual Studio. We recommend a 64-bit build instead.") |
| 63 | #endif |
| 64 | |
| 65 | #if defined(__SIZEOF_LONG_LONG__) && __SIZEOF_LONG_LONG__ != 8 |
| 66 | #error This code assumes 64-bit long longs (by use of the GCC intrinsics). Your system is not currently supported. |
| 67 | #endif |
| 68 | |
| 69 | #if defined(_MSC_VER) |
| 70 | #define __restrict__ __restrict |
| 71 | #endif |
| 72 | |
| 73 | #ifndef DISABLE_X64 // some users may want to compile as if they did not have |
| 74 | // an x64 processor |
| 75 | |
| 76 | /////////////////////// |
| 77 | /// We support X64 hardware in the following manner: |
| 78 | /// |
| 79 | /// if IS_X64 is defined then we have at least SSE and SSE2 |
| 80 | /// (All Intel processors sold in the recent past have at least SSE and SSE2 support, |
| 81 | /// going back to the Pentium 4.) |
| 82 | /// |
| 83 | /// if USESSE4 is defined then we assume at least SSE4.2, SSE4.1, |
| 84 | /// SSSE3, SSE3... + IS_X64 |
| 85 | /// if USEAVX is defined, then we assume AVX2, AVX + USESSE4 |
| 86 | /// |
| 87 | /// So if you have hardware that supports AVX but not AVX2, then "USEAVX" |
| 88 | /// won't be enabled. |
| 89 | /// If you have hardware that supports SSE4.1, but not SSE4.2, then USESSE4 |
| 90 | /// won't be defined. |
| 91 | ////////////////////// |
| 92 | |
| 93 | // unless DISABLEAVX was defined, if we have __AVX2__, we enable AVX |
| 94 | #if (!defined(USEAVX)) && (!defined(DISABLEAVX)) && (defined(__AVX2__)) |
| 95 | #define USEAVX |
| 96 | #endif |
| 97 | |
| 98 | // if we have __SSE4_2__, we enable SSE4 |
| 99 | #if (defined(__POPCNT__)) && (defined(__SSE4_2__)) |
| 100 | #define USESSE4 |
| 101 | #endif |
| 102 | |
| 103 | #if defined(USEAVX) || defined(__x86_64__) || defined(_M_X64) |
| 104 | // we have an x64 processor |
| 105 | #define IS_X64 |
| 106 | // we include the intrinsic header |
| 107 | #ifndef _MSC_VER |
| 108 | /* Non-Microsoft C/C++-compatible compiler */ |
| 109 | #include <x86intrin.h> // on some recent GCC, this will declare posix_memalign |
| 110 | #endif |
| 111 | #endif |
| 112 | |
| 113 | #ifndef _MSC_VER |
| 114 | /* Non-Microsoft C/C++-compatible compiler, assumes that it supports inline |
| 115 | * assembly */ |
| 116 | #define ROARING_INLINE_ASM |
| 117 | #endif |
| 118 | |
| 119 | #ifdef USEAVX |
| 120 | #define USESSE4 // if we have AVX, then we have SSE4 |
| 121 | #define USE_BMI // we assume that AVX2 and BMI go hand and hand |
| 122 | #define USEAVX2FORDECODING // optimization |
| 123 | // vector operations should work on not just AVX |
| 124 | #define ROARING_VECTOR_OPERATIONS_ENABLED // vector unions (optimization) |
| 125 | #endif |
| 126 | |
| 127 | #endif // DISABLE_X64 |
| 128 | |
| 129 | #ifdef _MSC_VER |
| 130 | /* Microsoft C/C++-compatible compiler */ |
| 131 | #include <intrin.h> |
| 132 | |
| 133 | #ifndef __clang__ // if one compiles with MSVC *with* clang, then these |
| 134 | // intrinsics are defined!!! |
| 135 | // sadly there is no way to check whether we are missing these intrinsics |
| 136 | // specifically. |
| 137 | |
| 138 | /* wrappers for Visual Studio built-ins that look like gcc built-ins */ |
| 139 | /* result might be undefined when input_num is zero */ |
| 140 | static inline int __builtin_ctzll(unsigned long long input_num) { |
| 141 | unsigned long index; |
| 142 | #ifdef _WIN64 // highly recommended!!! |
| 143 | _BitScanForward64(&index, input_num); |
| 144 | #else // if we must support 32-bit Windows |
| 145 | if ((uint32_t)input_num != 0) { |
| 146 | _BitScanForward(&index, (uint32_t)input_num); |
| 147 | } else { |
| 148 | _BitScanForward(&index, (uint32_t)(input_num >> 32)); |
| 149 | index += 32; |
| 150 | } |
| 151 | #endif |
| 152 | return index; |
| 153 | } |
| 154 | |
| 155 | /* result might be undefined when input_num is zero */ |
| 156 | static inline int __builtin_clzll(unsigned long long input_num) { |
| 157 | unsigned long index; |
| 158 | #ifdef _WIN64 // highly recommended!!! |
| 159 | _BitScanReverse64(&index, input_num); |
| 160 | #else // if we must support 32-bit Windows |
| 161 | if (input_num > 0xFFFFFFFF) { |
| 162 | _BitScanReverse(&index, (uint32_t)(input_num >> 32)); |
| 163 | index += 32; |
| 164 | } else { |
| 165 | _BitScanReverse(&index, (uint32_t)(input_num)); |
| 166 | } |
| 167 | #endif |
| 168 | return 63 - index; |
| 169 | } |
| 170 | |
| 171 | /* result might be undefined when input_num is zero */ |
| 172 | #ifdef USESSE4 |
| 173 | /* POPCNT support was added to processors around the release of SSE4.2 */ |
| 174 | /* USESSE4 flag guarantees POPCNT support */ |
| 175 | static inline int __builtin_popcountll(unsigned long long input_num) { |
| 176 | #ifdef _WIN64 // highly recommended!!! |
| 177 | return (int)__popcnt64(input_num); |
| 178 | #else // if we must support 32-bit Windows |
| 179 | return (int)(__popcnt((uint32_t)input_num) + |
| 180 | __popcnt((uint32_t)(input_num >> 32))); |
| 181 | #endif |
| 182 | } |
| 183 | #else |
| 184 | /* software implementation avoids POPCNT */ |
| 185 | static inline int __builtin_popcountll(unsigned long long input_num) { |
| 186 | const uint64_t m1 = 0x5555555555555555; //binary: 0101... |
| 187 | const uint64_t m2 = 0x3333333333333333; //binary: 00110011.. |
| 188 | const uint64_t m4 = 0x0f0f0f0f0f0f0f0f; //binary: 4 zeros, 4 ones ... |
| 189 | const uint64_t h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3... |
| 190 | |
| 191 | input_num -= (input_num >> 1) & m1; |
| 192 | input_num = (input_num & m2) + ((input_num >> 2) & m2); |
| 193 | input_num = (input_num + (input_num >> 4)) & m4; |
| 194 | return (input_num * h01) >> 56; |
| 195 | } |
| 196 | #endif |
| 197 | |
| 198 | /* Use #define so this is effective even under /Ob0 (no inline) */ |
| 199 | #define __builtin_unreachable() __assume(0) |
| 200 | #endif |
| 201 | |
| 202 | #endif |
| 203 | |
| 204 | // without the following, we get lots of warnings about posix_memalign |
| 205 | #ifndef __cplusplus |
| 206 | extern int posix_memalign(void **__memptr, size_t __alignment, size_t __size); |
| 207 | #endif //__cplusplus // C++ does not have a well defined signature |
| 208 | |
| 209 | // portable version of posix_memalign |
| 210 | static inline void *aligned_malloc(size_t alignment, size_t size) { |
| 211 | void *p; |
| 212 | #ifdef _MSC_VER |
| 213 | p = _aligned_malloc(size, alignment); |
| 214 | #elif defined(__MINGW32__) || defined(__MINGW64__) |
| 215 | p = __mingw_aligned_malloc(size, alignment); |
| 216 | #else |
| 217 | // somehow, if this is used before including "x86intrin.h", it creates an |
| 218 | // implicit defined warning. |
| 219 | if (posix_memalign(&p, alignment, size) != 0) return NULL; |
| 220 | #endif |
| 221 | return p; |
| 222 | } |
| 223 | |
| 224 | static inline void aligned_free(void *memblock) { |
| 225 | #ifdef _MSC_VER |
| 226 | _aligned_free(memblock); |
| 227 | #elif defined(__MINGW32__) || defined(__MINGW64__) |
| 228 | __mingw_aligned_free(memblock); |
| 229 | #else |
| 230 | free(memblock); |
| 231 | #endif |
| 232 | } |
| 233 | |
| 234 | #if defined(_MSC_VER) |
| 235 | #define ALIGNED(x) __declspec(align(x)) |
| 236 | #else |
| 237 | #if defined(__GNUC__) |
| 238 | #define ALIGNED(x) __attribute__((aligned(x))) |
| 239 | #endif |
| 240 | #endif |
| 241 | |
| 242 | #ifdef __GNUC__ |
| 243 | #define WARN_UNUSED __attribute__((warn_unused_result)) |
| 244 | #else |
| 245 | #define WARN_UNUSED |
| 246 | #endif |
| 247 | |
| 248 | #define IS_BIG_ENDIAN (*(uint16_t *)"\0\xff" < 0x100) |
| 249 | |
| 250 | static inline int hamming(uint64_t x) { |
| 251 | #ifdef USESSE4 |
| 252 | return (int) _mm_popcnt_u64(x); |
| 253 | #else |
| 254 | // won't work under visual studio, but hopeful we have _mm_popcnt_u64 in |
| 255 | // many cases |
| 256 | return __builtin_popcountll(x); |
| 257 | #endif |
| 258 | } |
| 259 | |
| 260 | #ifndef UINT64_C |
| 261 | #define UINT64_C(c) (c##ULL) |
| 262 | #endif |
| 263 | |
| 264 | #ifndef UINT32_C |
| 265 | #define UINT32_C(c) (c##UL) |
| 266 | #endif |
| 267 | |
| 268 | #ifdef __cplusplus |
| 269 | } |
| 270 | #endif |
| 271 | |
| 272 | #endif /* INCLUDE_PORTABILITY_H_ */ |
| 273 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/portability.h */ |
| 274 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/perfparameters.h */ |
| 275 | #ifndef PERFPARAMETERS_H_ |
| 276 | #define PERFPARAMETERS_H_ |
| 277 | |
| 278 | #include <stdbool.h> |
| 279 | |
| 280 | /** |
| 281 | During lazy computations, we can transform array containers into bitset |
| 282 | containers as |
| 283 | long as we can expect them to have ARRAY_LAZY_LOWERBOUND values. |
| 284 | */ |
| 285 | enum { ARRAY_LAZY_LOWERBOUND = 1024 }; |
| 286 | |
| 287 | /* default initial size of a run container |
| 288 | setting it to zero delays the malloc.*/ |
| 289 | enum { RUN_DEFAULT_INIT_SIZE = 0 }; |
| 290 | |
| 291 | /* default initial size of an array container |
| 292 | setting it to zero delays the malloc */ |
| 293 | enum { ARRAY_DEFAULT_INIT_SIZE = 0 }; |
| 294 | |
| 295 | /* automatic bitset conversion during lazy or */ |
| 296 | #ifndef LAZY_OR_BITSET_CONVERSION |
| 297 | #define LAZY_OR_BITSET_CONVERSION true |
| 298 | #endif |
| 299 | |
| 300 | /* automatically attempt to convert a bitset to a full run during lazy |
| 301 | * evaluation */ |
| 302 | #ifndef LAZY_OR_BITSET_CONVERSION_TO_FULL |
| 303 | #define LAZY_OR_BITSET_CONVERSION_TO_FULL true |
| 304 | #endif |
| 305 | |
| 306 | /* automatically attempt to convert a bitset to a full run */ |
| 307 | #ifndef OR_BITSET_CONVERSION_TO_FULL |
| 308 | #define OR_BITSET_CONVERSION_TO_FULL true |
| 309 | #endif |
| 310 | |
| 311 | #endif |
| 312 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/perfparameters.h */ |
| 313 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/array_util.h */ |
| 314 | #ifndef ARRAY_UTIL_H |
| 315 | #define ARRAY_UTIL_H |
| 316 | |
| 317 | #include <stddef.h> // for size_t |
| 318 | #include <stdint.h> |
| 319 | |
| 320 | |
| 321 | /* |
| 322 | * Good old binary search. |
| 323 | * Assumes that array is sorted, has logarithmic complexity. |
| 324 | * if the result is x, then: |
| 325 | * if ( x>0 ) you have array[x] = ikey |
| 326 | * if ( x<0 ) then inserting ikey at position -x-1 in array (insuring that array[-x-1]=ikey) |
| 327 | * keys the array sorted. |
| 328 | */ |
| 329 | inline int32_t binarySearch(const uint16_t *array, int32_t lenarray, |
| 330 | uint16_t ikey) { |
| 331 | int32_t low = 0; |
| 332 | int32_t high = lenarray - 1; |
| 333 | while (low <= high) { |
| 334 | int32_t middleIndex = (low + high) >> 1; |
| 335 | uint16_t middleValue = array[middleIndex]; |
| 336 | if (middleValue < ikey) { |
| 337 | low = middleIndex + 1; |
| 338 | } else if (middleValue > ikey) { |
| 339 | high = middleIndex - 1; |
| 340 | } else { |
| 341 | return middleIndex; |
| 342 | } |
| 343 | } |
| 344 | return -(low + 1); |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * Galloping search |
| 349 | * Assumes that array is sorted, has logarithmic complexity. |
| 350 | * if the result is x, then if x = length, you have that all values in array between pos and length |
| 351 | * are smaller than min. |
| 352 | * otherwise returns the first index x such that array[x] >= min. |
| 353 | */ |
| 354 | static inline int32_t advanceUntil(const uint16_t *array, int32_t pos, |
| 355 | int32_t length, uint16_t min) { |
| 356 | int32_t lower = pos + 1; |
| 357 | |
| 358 | if ((lower >= length) || (array[lower] >= min)) { |
| 359 | return lower; |
| 360 | } |
| 361 | |
| 362 | int32_t spansize = 1; |
| 363 | |
| 364 | while ((lower + spansize < length) && (array[lower + spansize] < min)) { |
| 365 | spansize <<= 1; |
| 366 | } |
| 367 | int32_t upper = (lower + spansize < length) ? lower + spansize : length - 1; |
| 368 | |
| 369 | if (array[upper] == min) { |
| 370 | return upper; |
| 371 | } |
| 372 | if (array[upper] < min) { |
| 373 | // means |
| 374 | // array |
| 375 | // has no |
| 376 | // item |
| 377 | // >= min |
| 378 | // pos = array.length; |
| 379 | return length; |
| 380 | } |
| 381 | |
| 382 | // we know that the next-smallest span was too small |
| 383 | lower += (spansize >> 1); |
| 384 | |
| 385 | int32_t mid = 0; |
| 386 | while (lower + 1 != upper) { |
| 387 | mid = (lower + upper) >> 1; |
| 388 | if (array[mid] == min) { |
| 389 | return mid; |
| 390 | } else if (array[mid] < min) { |
| 391 | lower = mid; |
| 392 | } else { |
| 393 | upper = mid; |
| 394 | } |
| 395 | } |
| 396 | return upper; |
| 397 | } |
| 398 | |
| 399 | /** |
| 400 | * Returns number of elements which are less then $ikey. |
| 401 | * Array elements must be unique and sorted. |
| 402 | */ |
| 403 | static inline int32_t count_less(const uint16_t *array, int32_t lenarray, |
| 404 | uint16_t ikey) { |
| 405 | if (lenarray == 0) return 0; |
| 406 | int32_t pos = binarySearch(array, lenarray, ikey); |
| 407 | return pos >= 0 ? pos : -(pos+1); |
| 408 | } |
| 409 | |
| 410 | /** |
| 411 | * Returns number of elements which are greater then $ikey. |
| 412 | * Array elements must be unique and sorted. |
| 413 | */ |
| 414 | static inline int32_t count_greater(const uint16_t *array, int32_t lenarray, |
| 415 | uint16_t ikey) { |
| 416 | if (lenarray == 0) return 0; |
| 417 | int32_t pos = binarySearch(array, lenarray, ikey); |
| 418 | if (pos >= 0) { |
| 419 | return lenarray - (pos+1); |
| 420 | } else { |
| 421 | return lenarray - (-pos-1); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | /** |
| 426 | * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions |
| 427 | * Optimized by D. Lemire on May 3rd 2013 |
| 428 | * |
| 429 | * C should have capacity greater than the minimum of s_1 and s_b + 8 |
| 430 | * where 8 is sizeof(__m128i)/sizeof(uint16_t). |
| 431 | */ |
| 432 | int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a, |
| 433 | const uint16_t *__restrict__ B, size_t s_b, |
| 434 | uint16_t *C); |
| 435 | |
| 436 | /** |
| 437 | * Compute the cardinality of the intersection using SSE4 instructions |
| 438 | */ |
| 439 | int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A, |
| 440 | size_t s_a, |
| 441 | const uint16_t *__restrict__ B, |
| 442 | size_t s_b); |
| 443 | |
| 444 | /* Computes the intersection between one small and one large set of uint16_t. |
| 445 | * Stores the result into buffer and return the number of elements. */ |
| 446 | int32_t intersect_skewed_uint16(const uint16_t *smallarray, size_t size_s, |
| 447 | const uint16_t *largearray, size_t size_l, |
| 448 | uint16_t *buffer); |
| 449 | |
| 450 | /* Computes the size of the intersection between one small and one large set of |
| 451 | * uint16_t. */ |
| 452 | int32_t intersect_skewed_uint16_cardinality(const uint16_t *smallarray, |
| 453 | size_t size_s, |
| 454 | const uint16_t *largearray, |
| 455 | size_t size_l); |
| 456 | |
| 457 | |
| 458 | /* Check whether the size of the intersection between one small and one large set of uint16_t is non-zero. */ |
| 459 | bool intersect_skewed_uint16_nonempty(const uint16_t *smallarray, size_t size_s, |
| 460 | const uint16_t *largearray, size_t size_l); |
| 461 | /** |
| 462 | * Generic intersection function. |
| 463 | */ |
| 464 | int32_t intersect_uint16(const uint16_t *A, const size_t lenA, |
| 465 | const uint16_t *B, const size_t lenB, uint16_t *out); |
| 466 | /** |
| 467 | * Compute the size of the intersection (generic). |
| 468 | */ |
| 469 | int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA, |
| 470 | const uint16_t *B, const size_t lenB); |
| 471 | |
| 472 | /** |
| 473 | * Checking whether the size of the intersection is non-zero. |
| 474 | */ |
| 475 | bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA, |
| 476 | const uint16_t *B, const size_t lenB); |
| 477 | /** |
| 478 | * Generic union function. |
| 479 | */ |
| 480 | size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2, |
| 481 | size_t size_2, uint16_t *buffer); |
| 482 | |
| 483 | /** |
| 484 | * Generic XOR function. |
| 485 | */ |
| 486 | int32_t xor_uint16(const uint16_t *array_1, int32_t card_1, |
| 487 | const uint16_t *array_2, int32_t card_2, uint16_t *out); |
| 488 | |
| 489 | /** |
| 490 | * Generic difference function (ANDNOT). |
| 491 | */ |
| 492 | int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2, |
| 493 | int length2, uint16_t *a_out); |
| 494 | |
| 495 | /** |
| 496 | * Generic intersection function. |
| 497 | */ |
| 498 | size_t intersection_uint32(const uint32_t *A, const size_t lenA, |
| 499 | const uint32_t *B, const size_t lenB, uint32_t *out); |
| 500 | |
| 501 | /** |
| 502 | * Generic intersection function, returns just the cardinality. |
| 503 | */ |
| 504 | size_t intersection_uint32_card(const uint32_t *A, const size_t lenA, |
| 505 | const uint32_t *B, const size_t lenB); |
| 506 | |
| 507 | /** |
| 508 | * Generic union function. |
| 509 | */ |
| 510 | size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t *set_2, |
| 511 | size_t size_2, uint32_t *buffer); |
| 512 | |
| 513 | /** |
| 514 | * A fast SSE-based union function. |
| 515 | */ |
| 516 | uint32_t union_vector16(const uint16_t *__restrict__ set_1, uint32_t size_1, |
| 517 | const uint16_t *__restrict__ set_2, uint32_t size_2, |
| 518 | uint16_t *__restrict__ buffer); |
| 519 | /** |
| 520 | * A fast SSE-based XOR function. |
| 521 | */ |
| 522 | uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1, |
| 523 | const uint16_t *__restrict__ array2, uint32_t length2, |
| 524 | uint16_t *__restrict__ output); |
| 525 | |
| 526 | /** |
| 527 | * A fast SSE-based difference function. |
| 528 | */ |
| 529 | int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a, |
| 530 | const uint16_t *__restrict__ B, size_t s_b, |
| 531 | uint16_t *C); |
| 532 | |
| 533 | /** |
| 534 | * Generic union function, returns just the cardinality. |
| 535 | */ |
| 536 | size_t union_uint32_card(const uint32_t *set_1, size_t size_1, |
| 537 | const uint32_t *set_2, size_t size_2); |
| 538 | |
| 539 | /** |
| 540 | * combines union_uint16 and union_vector16 optimally |
| 541 | */ |
| 542 | size_t fast_union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2, |
| 543 | size_t size_2, uint16_t *buffer); |
| 544 | |
| 545 | |
| 546 | #endif |
| 547 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/array_util.h */ |
| 548 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_types.h */ |
| 549 | /* |
| 550 | Typedefs used by various components |
| 551 | */ |
| 552 | |
| 553 | #ifndef ROARING_TYPES_H |
| 554 | #define ROARING_TYPES_H |
| 555 | |
| 556 | typedef bool (*roaring_iterator)(uint32_t value, void *param); |
| 557 | typedef bool (*roaring_iterator64)(uint64_t value, void *param); |
| 558 | |
| 559 | /** |
| 560 | * (For advanced users.) |
| 561 | * The roaring_statistics_t can be used to collect detailed statistics about |
| 562 | * the composition of a roaring bitmap. |
| 563 | */ |
| 564 | typedef struct roaring_statistics_s { |
| 565 | uint32_t n_containers; /* number of containers */ |
| 566 | |
| 567 | uint32_t n_array_containers; /* number of array containers */ |
| 568 | uint32_t n_run_containers; /* number of run containers */ |
| 569 | uint32_t n_bitset_containers; /* number of bitmap containers */ |
| 570 | |
| 571 | uint32_t |
| 572 | n_values_array_containers; /* number of values in array containers */ |
| 573 | uint32_t n_values_run_containers; /* number of values in run containers */ |
| 574 | uint32_t |
| 575 | n_values_bitset_containers; /* number of values in bitmap containers */ |
| 576 | |
| 577 | uint32_t n_bytes_array_containers; /* number of allocated bytes in array |
| 578 | containers */ |
| 579 | uint32_t n_bytes_run_containers; /* number of allocated bytes in run |
| 580 | containers */ |
| 581 | uint32_t n_bytes_bitset_containers; /* number of allocated bytes in bitmap |
| 582 | containers */ |
| 583 | |
| 584 | uint32_t |
| 585 | max_value; /* the maximal value, undefined if cardinality is zero */ |
| 586 | uint32_t |
| 587 | min_value; /* the minimal value, undefined if cardinality is zero */ |
| 588 | uint64_t sum_value; /* the sum of all values (could be used to compute |
| 589 | average) */ |
| 590 | |
| 591 | uint64_t cardinality; /* total number of values stored in the bitmap */ |
| 592 | |
| 593 | // and n_values_arrays, n_values_rle, n_values_bitmap |
| 594 | } roaring_statistics_t; |
| 595 | |
| 596 | #endif /* ROARING_TYPES_H */ |
| 597 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_types.h */ |
| 598 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/utilasm.h */ |
| 599 | /* |
| 600 | * utilasm.h |
| 601 | * |
| 602 | */ |
| 603 | |
| 604 | #ifndef INCLUDE_UTILASM_H_ |
| 605 | #define INCLUDE_UTILASM_H_ |
| 606 | |
| 607 | |
| 608 | #if defined(USE_BMI) & defined(ROARING_INLINE_ASM) |
| 609 | #define ASMBITMANIPOPTIMIZATION // optimization flag |
| 610 | |
| 611 | #define ASM_SHIFT_RIGHT(srcReg, bitsReg, destReg) \ |
| 612 | __asm volatile("shrx %1, %2, %0" \ |
| 613 | : "=r"(destReg) \ |
| 614 | : /* write */ \ |
| 615 | "r"(bitsReg), /* read only */ \ |
| 616 | "r"(srcReg) /* read only */ \ |
| 617 | ) |
| 618 | |
| 619 | #define ASM_INPLACESHIFT_RIGHT(srcReg, bitsReg) \ |
| 620 | __asm volatile("shrx %1, %0, %0" \ |
| 621 | : "+r"(srcReg) \ |
| 622 | : /* read/write */ \ |
| 623 | "r"(bitsReg) /* read only */ \ |
| 624 | ) |
| 625 | |
| 626 | #define ASM_SHIFT_LEFT(srcReg, bitsReg, destReg) \ |
| 627 | __asm volatile("shlx %1, %2, %0" \ |
| 628 | : "=r"(destReg) \ |
| 629 | : /* write */ \ |
| 630 | "r"(bitsReg), /* read only */ \ |
| 631 | "r"(srcReg) /* read only */ \ |
| 632 | ) |
| 633 | // set bit at position testBit within testByte to 1 and |
| 634 | // copy cmovDst to cmovSrc if that bit was previously clear |
| 635 | #define ASM_SET_BIT_INC_WAS_CLEAR(testByte, testBit, count) \ |
| 636 | __asm volatile( \ |
| 637 | "bts %2, %0\n" \ |
| 638 | "sbb $-1, %1\n" \ |
| 639 | : "+r"(testByte), /* read/write */ \ |
| 640 | "+r"(count) \ |
| 641 | : /* read/write */ \ |
| 642 | "r"(testBit) /* read only */ \ |
| 643 | ) |
| 644 | |
| 645 | #define ASM_CLEAR_BIT_DEC_WAS_SET(testByte, testBit, count) \ |
| 646 | __asm volatile( \ |
| 647 | "btr %2, %0\n" \ |
| 648 | "sbb $0, %1\n" \ |
| 649 | : "+r"(testByte), /* read/write */ \ |
| 650 | "+r"(count) \ |
| 651 | : /* read/write */ \ |
| 652 | "r"(testBit) /* read only */ \ |
| 653 | ) |
| 654 | |
| 655 | #define ASM_BT64(testByte, testBit, count) \ |
| 656 | __asm volatile( \ |
| 657 | "bt %2,%1\n" \ |
| 658 | "sbb %0,%0" /*could use setb */ \ |
| 659 | : "=r"(count) \ |
| 660 | : /* write */ \ |
| 661 | "r"(testByte), /* read only */ \ |
| 662 | "r"(testBit) /* read only */ \ |
| 663 | ) |
| 664 | |
| 665 | #endif // USE_BMI |
| 666 | #endif /* INCLUDE_UTILASM_H_ */ |
| 667 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/utilasm.h */ |
| 668 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/bitset_util.h */ |
| 669 | #ifndef BITSET_UTIL_H |
| 670 | #define BITSET_UTIL_H |
| 671 | |
| 672 | #include <stdint.h> |
| 673 | |
| 674 | |
| 675 | /* |
| 676 | * Set all bits in indexes [begin,end) to true. |
| 677 | */ |
| 678 | static inline void bitset_set_range(uint64_t *bitmap, uint32_t start, |
| 679 | uint32_t end) { |
| 680 | if (start == end) return; |
| 681 | uint32_t firstword = start / 64; |
| 682 | uint32_t endword = (end - 1) / 64; |
| 683 | if (firstword == endword) { |
| 684 | bitmap[firstword] |= ((~UINT64_C(0)) << (start % 64)) & |
| 685 | ((~UINT64_C(0)) >> ((~end + 1) % 64)); |
| 686 | return; |
| 687 | } |
| 688 | bitmap[firstword] |= (~UINT64_C(0)) << (start % 64); |
| 689 | for (uint32_t i = firstword + 1; i < endword; i++) bitmap[i] = ~UINT64_C(0); |
| 690 | bitmap[endword] |= (~UINT64_C(0)) >> ((~end + 1) % 64); |
| 691 | } |
| 692 | |
| 693 | |
| 694 | /* |
| 695 | * Find the cardinality of the bitset in [begin,begin+lenminusone] |
| 696 | */ |
| 697 | static inline int bitset_lenrange_cardinality(uint64_t *bitmap, uint32_t start, |
| 698 | uint32_t lenminusone) { |
| 699 | uint32_t firstword = start / 64; |
| 700 | uint32_t endword = (start + lenminusone) / 64; |
| 701 | if (firstword == endword) { |
| 702 | return hamming(bitmap[firstword] & |
| 703 | ((~UINT64_C(0)) >> ((63 - lenminusone) % 64)) |
| 704 | << (start % 64)); |
| 705 | } |
| 706 | int answer = hamming(bitmap[firstword] & ((~UINT64_C(0)) << (start % 64))); |
| 707 | for (uint32_t i = firstword + 1; i < endword; i++) { |
| 708 | answer += hamming(bitmap[i]); |
| 709 | } |
| 710 | answer += |
| 711 | hamming(bitmap[endword] & |
| 712 | (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64)); |
| 713 | return answer; |
| 714 | } |
| 715 | |
| 716 | /* |
| 717 | * Check whether the cardinality of the bitset in [begin,begin+lenminusone] is 0 |
| 718 | */ |
| 719 | static inline bool bitset_lenrange_empty(uint64_t *bitmap, uint32_t start, |
| 720 | uint32_t lenminusone) { |
| 721 | uint32_t firstword = start / 64; |
| 722 | uint32_t endword = (start + lenminusone) / 64; |
| 723 | if (firstword == endword) { |
| 724 | return (bitmap[firstword] & ((~UINT64_C(0)) >> ((63 - lenminusone) % 64)) |
| 725 | << (start % 64)) == 0; |
| 726 | } |
| 727 | if(((bitmap[firstword] & ((~UINT64_C(0)) << (start%64)))) != 0) return false; |
| 728 | for (uint32_t i = firstword + 1; i < endword; i++) { |
| 729 | if(bitmap[i] != 0) return false; |
| 730 | } |
| 731 | if((bitmap[endword] & (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64)) != 0) return false; |
| 732 | return true; |
| 733 | } |
| 734 | |
| 735 | |
| 736 | /* |
| 737 | * Set all bits in indexes [begin,begin+lenminusone] to true. |
| 738 | */ |
| 739 | static inline void bitset_set_lenrange(uint64_t *bitmap, uint32_t start, |
| 740 | uint32_t lenminusone) { |
| 741 | uint32_t firstword = start / 64; |
| 742 | uint32_t endword = (start + lenminusone) / 64; |
| 743 | if (firstword == endword) { |
| 744 | bitmap[firstword] |= ((~UINT64_C(0)) >> ((63 - lenminusone) % 64)) |
| 745 | << (start % 64); |
| 746 | return; |
| 747 | } |
| 748 | uint64_t temp = bitmap[endword]; |
| 749 | bitmap[firstword] |= (~UINT64_C(0)) << (start % 64); |
| 750 | for (uint32_t i = firstword + 1; i < endword; i += 2) |
| 751 | bitmap[i] = bitmap[i + 1] = ~UINT64_C(0); |
| 752 | bitmap[endword] = |
| 753 | temp | (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64); |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * Flip all the bits in indexes [begin,end). |
| 758 | */ |
| 759 | static inline void bitset_flip_range(uint64_t *bitmap, uint32_t start, |
| 760 | uint32_t end) { |
| 761 | if (start == end) return; |
| 762 | uint32_t firstword = start / 64; |
| 763 | uint32_t endword = (end - 1) / 64; |
| 764 | bitmap[firstword] ^= ~((~UINT64_C(0)) << (start % 64)); |
| 765 | for (uint32_t i = firstword; i < endword; i++) bitmap[i] = ~bitmap[i]; |
| 766 | bitmap[endword] ^= ((~UINT64_C(0)) >> ((~end + 1) % 64)); |
| 767 | } |
| 768 | |
| 769 | /* |
| 770 | * Set all bits in indexes [begin,end) to false. |
| 771 | */ |
| 772 | static inline void bitset_reset_range(uint64_t *bitmap, uint32_t start, |
| 773 | uint32_t end) { |
| 774 | if (start == end) return; |
| 775 | uint32_t firstword = start / 64; |
| 776 | uint32_t endword = (end - 1) / 64; |
| 777 | if (firstword == endword) { |
| 778 | bitmap[firstword] &= ~(((~UINT64_C(0)) << (start % 64)) & |
| 779 | ((~UINT64_C(0)) >> ((~end + 1) % 64))); |
| 780 | return; |
| 781 | } |
| 782 | bitmap[firstword] &= ~((~UINT64_C(0)) << (start % 64)); |
| 783 | for (uint32_t i = firstword + 1; i < endword; i++) bitmap[i] = UINT64_C(0); |
| 784 | bitmap[endword] &= ~((~UINT64_C(0)) >> ((~end + 1) % 64)); |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * Given a bitset containing "length" 64-bit words, write out the position |
| 789 | * of all the set bits to "out", values start at "base". |
| 790 | * |
| 791 | * The "out" pointer should be sufficient to store the actual number of bits |
| 792 | * set. |
| 793 | * |
| 794 | * Returns how many values were actually decoded. |
| 795 | * |
| 796 | * This function should only be expected to be faster than |
| 797 | * bitset_extract_setbits |
| 798 | * when the density of the bitset is high. |
| 799 | * |
| 800 | * This function uses AVX2 decoding. |
| 801 | */ |
| 802 | size_t (uint64_t *bitset, size_t length, void *vout, |
| 803 | size_t outcapacity, uint32_t base); |
| 804 | |
| 805 | /* |
| 806 | * Given a bitset containing "length" 64-bit words, write out the position |
| 807 | * of all the set bits to "out", values start at "base". |
| 808 | * |
| 809 | * The "out" pointer should be sufficient to store the actual number of bits |
| 810 | *set. |
| 811 | * |
| 812 | * Returns how many values were actually decoded. |
| 813 | */ |
| 814 | size_t (uint64_t *bitset, size_t length, void *vout, |
| 815 | uint32_t base); |
| 816 | |
| 817 | /* |
| 818 | * Given a bitset containing "length" 64-bit words, write out the position |
| 819 | * of all the set bits to "out" as 16-bit integers, values start at "base" (can |
| 820 | *be set to zero) |
| 821 | * |
| 822 | * The "out" pointer should be sufficient to store the actual number of bits |
| 823 | *set. |
| 824 | * |
| 825 | * Returns how many values were actually decoded. |
| 826 | * |
| 827 | * This function should only be expected to be faster than |
| 828 | *bitset_extract_setbits_uint16 |
| 829 | * when the density of the bitset is high. |
| 830 | * |
| 831 | * This function uses SSE decoding. |
| 832 | */ |
| 833 | size_t (const uint64_t *bitset, size_t length, |
| 834 | uint16_t *out, size_t outcapacity, |
| 835 | uint16_t base); |
| 836 | |
| 837 | /* |
| 838 | * Given a bitset containing "length" 64-bit words, write out the position |
| 839 | * of all the set bits to "out", values start at "base" |
| 840 | * (can be set to zero) |
| 841 | * |
| 842 | * The "out" pointer should be sufficient to store the actual number of bits |
| 843 | *set. |
| 844 | * |
| 845 | * Returns how many values were actually decoded. |
| 846 | */ |
| 847 | size_t (const uint64_t *bitset, size_t length, |
| 848 | uint16_t *out, uint16_t base); |
| 849 | |
| 850 | /* |
| 851 | * Given two bitsets containing "length" 64-bit words, write out the position |
| 852 | * of all the common set bits to "out", values start at "base" |
| 853 | * (can be set to zero) |
| 854 | * |
| 855 | * The "out" pointer should be sufficient to store the actual number of bits |
| 856 | * set. |
| 857 | * |
| 858 | * Returns how many values were actually decoded. |
| 859 | */ |
| 860 | size_t (const uint64_t * __restrict__ bitset1, |
| 861 | const uint64_t * __restrict__ bitset2, |
| 862 | size_t length, uint16_t *out, |
| 863 | uint16_t base); |
| 864 | |
| 865 | /* |
| 866 | * Given a bitset having cardinality card, set all bit values in the list (there |
| 867 | * are length of them) |
| 868 | * and return the updated cardinality. This evidently assumes that the bitset |
| 869 | * already contained data. |
| 870 | */ |
| 871 | uint64_t bitset_set_list_withcard(void *bitset, uint64_t card, |
| 872 | const uint16_t *list, uint64_t length); |
| 873 | /* |
| 874 | * Given a bitset, set all bit values in the list (there |
| 875 | * are length of them). |
| 876 | */ |
| 877 | void bitset_set_list(void *bitset, const uint16_t *list, uint64_t length); |
| 878 | |
| 879 | /* |
| 880 | * Given a bitset having cardinality card, unset all bit values in the list |
| 881 | * (there are length of them) |
| 882 | * and return the updated cardinality. This evidently assumes that the bitset |
| 883 | * already contained data. |
| 884 | */ |
| 885 | uint64_t bitset_clear_list(void *bitset, uint64_t card, const uint16_t *list, |
| 886 | uint64_t length); |
| 887 | |
| 888 | /* |
| 889 | * Given a bitset having cardinality card, toggle all bit values in the list |
| 890 | * (there are length of them) |
| 891 | * and return the updated cardinality. This evidently assumes that the bitset |
| 892 | * already contained data. |
| 893 | */ |
| 894 | |
| 895 | uint64_t bitset_flip_list_withcard(void *bitset, uint64_t card, |
| 896 | const uint16_t *list, uint64_t length); |
| 897 | |
| 898 | void bitset_flip_list(void *bitset, const uint16_t *list, uint64_t length); |
| 899 | |
| 900 | #ifdef USEAVX |
| 901 | /*** |
| 902 | * BEGIN Harley-Seal popcount functions. |
| 903 | */ |
| 904 | |
| 905 | /** |
| 906 | * Compute the population count of a 256-bit word |
| 907 | * This is not especially fast, but it is convenient as part of other functions. |
| 908 | */ |
| 909 | static inline __m256i popcount256(__m256i v) { |
| 910 | const __m256i lookuppos = _mm256_setr_epi8( |
| 911 | /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2, |
| 912 | /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3, |
| 913 | /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3, |
| 914 | /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4, |
| 915 | |
| 916 | /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2, |
| 917 | /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3, |
| 918 | /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3, |
| 919 | /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4); |
| 920 | const __m256i lookupneg = _mm256_setr_epi8( |
| 921 | /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2, |
| 922 | /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3, |
| 923 | /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3, |
| 924 | /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4, |
| 925 | |
| 926 | /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2, |
| 927 | /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3, |
| 928 | /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3, |
| 929 | /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4); |
| 930 | const __m256i low_mask = _mm256_set1_epi8(0x0f); |
| 931 | |
| 932 | const __m256i lo = _mm256_and_si256(v, low_mask); |
| 933 | const __m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask); |
| 934 | const __m256i popcnt1 = _mm256_shuffle_epi8(lookuppos, lo); |
| 935 | const __m256i popcnt2 = _mm256_shuffle_epi8(lookupneg, hi); |
| 936 | return _mm256_sad_epu8(popcnt1, popcnt2); |
| 937 | } |
| 938 | |
| 939 | /** |
| 940 | * Simple CSA over 256 bits |
| 941 | */ |
| 942 | static inline void CSA(__m256i *h, __m256i *l, __m256i a, __m256i b, |
| 943 | __m256i c) { |
| 944 | const __m256i u = _mm256_xor_si256(a, b); |
| 945 | *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c)); |
| 946 | *l = _mm256_xor_si256(u, c); |
| 947 | } |
| 948 | |
| 949 | /** |
| 950 | * Fast Harley-Seal AVX population count function |
| 951 | */ |
| 952 | inline static uint64_t avx2_harley_seal_popcount256(const __m256i *data, |
| 953 | const uint64_t size) { |
| 954 | __m256i total = _mm256_setzero_si256(); |
| 955 | __m256i ones = _mm256_setzero_si256(); |
| 956 | __m256i twos = _mm256_setzero_si256(); |
| 957 | __m256i fours = _mm256_setzero_si256(); |
| 958 | __m256i eights = _mm256_setzero_si256(); |
| 959 | __m256i sixteens = _mm256_setzero_si256(); |
| 960 | __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; |
| 961 | |
| 962 | const uint64_t limit = size - size % 16; |
| 963 | uint64_t i = 0; |
| 964 | |
| 965 | for (; i < limit; i += 16) { |
| 966 | CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i), |
| 967 | _mm256_lddqu_si256(data + i + 1)); |
| 968 | CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 2), |
| 969 | _mm256_lddqu_si256(data + i + 3)); |
| 970 | CSA(&foursA, &twos, twos, twosA, twosB); |
| 971 | CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 4), |
| 972 | _mm256_lddqu_si256(data + i + 5)); |
| 973 | CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 6), |
| 974 | _mm256_lddqu_si256(data + i + 7)); |
| 975 | CSA(&foursB, &twos, twos, twosA, twosB); |
| 976 | CSA(&eightsA, &fours, fours, foursA, foursB); |
| 977 | CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 8), |
| 978 | _mm256_lddqu_si256(data + i + 9)); |
| 979 | CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 10), |
| 980 | _mm256_lddqu_si256(data + i + 11)); |
| 981 | CSA(&foursA, &twos, twos, twosA, twosB); |
| 982 | CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 12), |
| 983 | _mm256_lddqu_si256(data + i + 13)); |
| 984 | CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 14), |
| 985 | _mm256_lddqu_si256(data + i + 15)); |
| 986 | CSA(&foursB, &twos, twos, twosA, twosB); |
| 987 | CSA(&eightsB, &fours, fours, foursA, foursB); |
| 988 | CSA(&sixteens, &eights, eights, eightsA, eightsB); |
| 989 | |
| 990 | total = _mm256_add_epi64(total, popcount256(sixteens)); |
| 991 | } |
| 992 | |
| 993 | total = _mm256_slli_epi64(total, 4); // * 16 |
| 994 | total = _mm256_add_epi64( |
| 995 | total, _mm256_slli_epi64(popcount256(eights), 3)); // += 8 * ... |
| 996 | total = _mm256_add_epi64( |
| 997 | total, _mm256_slli_epi64(popcount256(fours), 2)); // += 4 * ... |
| 998 | total = _mm256_add_epi64( |
| 999 | total, _mm256_slli_epi64(popcount256(twos), 1)); // += 2 * ... |
| 1000 | total = _mm256_add_epi64(total, popcount256(ones)); |
| 1001 | for (; i < size; i++) |
| 1002 | total = |
| 1003 | _mm256_add_epi64(total, popcount256(_mm256_lddqu_si256(data + i))); |
| 1004 | |
| 1005 | return (uint64_t)(_mm256_extract_epi64(total, 0)) + |
| 1006 | (uint64_t)(_mm256_extract_epi64(total, 1)) + |
| 1007 | (uint64_t)(_mm256_extract_epi64(total, 2)) + |
| 1008 | (uint64_t)(_mm256_extract_epi64(total, 3)); |
| 1009 | } |
| 1010 | |
| 1011 | #define AVXPOPCNTFNC(opname, avx_intrinsic) \ |
| 1012 | static inline uint64_t avx2_harley_seal_popcount256_##opname( \ |
| 1013 | const __m256i *data1, const __m256i *data2, const uint64_t size) { \ |
| 1014 | __m256i total = _mm256_setzero_si256(); \ |
| 1015 | __m256i ones = _mm256_setzero_si256(); \ |
| 1016 | __m256i twos = _mm256_setzero_si256(); \ |
| 1017 | __m256i fours = _mm256_setzero_si256(); \ |
| 1018 | __m256i eights = _mm256_setzero_si256(); \ |
| 1019 | __m256i sixteens = _mm256_setzero_si256(); \ |
| 1020 | __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; \ |
| 1021 | __m256i A1, A2; \ |
| 1022 | const uint64_t limit = size - size % 16; \ |
| 1023 | uint64_t i = 0; \ |
| 1024 | for (; i < limit; i += 16) { \ |
| 1025 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ |
| 1026 | _mm256_lddqu_si256(data2 + i)); \ |
| 1027 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1), \ |
| 1028 | _mm256_lddqu_si256(data2 + i + 1)); \ |
| 1029 | CSA(&twosA, &ones, ones, A1, A2); \ |
| 1030 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2), \ |
| 1031 | _mm256_lddqu_si256(data2 + i + 2)); \ |
| 1032 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3), \ |
| 1033 | _mm256_lddqu_si256(data2 + i + 3)); \ |
| 1034 | CSA(&twosB, &ones, ones, A1, A2); \ |
| 1035 | CSA(&foursA, &twos, twos, twosA, twosB); \ |
| 1036 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4), \ |
| 1037 | _mm256_lddqu_si256(data2 + i + 4)); \ |
| 1038 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5), \ |
| 1039 | _mm256_lddqu_si256(data2 + i + 5)); \ |
| 1040 | CSA(&twosA, &ones, ones, A1, A2); \ |
| 1041 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6), \ |
| 1042 | _mm256_lddqu_si256(data2 + i + 6)); \ |
| 1043 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7), \ |
| 1044 | _mm256_lddqu_si256(data2 + i + 7)); \ |
| 1045 | CSA(&twosB, &ones, ones, A1, A2); \ |
| 1046 | CSA(&foursB, &twos, twos, twosA, twosB); \ |
| 1047 | CSA(&eightsA, &fours, fours, foursA, foursB); \ |
| 1048 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8), \ |
| 1049 | _mm256_lddqu_si256(data2 + i + 8)); \ |
| 1050 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9), \ |
| 1051 | _mm256_lddqu_si256(data2 + i + 9)); \ |
| 1052 | CSA(&twosA, &ones, ones, A1, A2); \ |
| 1053 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10), \ |
| 1054 | _mm256_lddqu_si256(data2 + i + 10)); \ |
| 1055 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11), \ |
| 1056 | _mm256_lddqu_si256(data2 + i + 11)); \ |
| 1057 | CSA(&twosB, &ones, ones, A1, A2); \ |
| 1058 | CSA(&foursA, &twos, twos, twosA, twosB); \ |
| 1059 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12), \ |
| 1060 | _mm256_lddqu_si256(data2 + i + 12)); \ |
| 1061 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13), \ |
| 1062 | _mm256_lddqu_si256(data2 + i + 13)); \ |
| 1063 | CSA(&twosA, &ones, ones, A1, A2); \ |
| 1064 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14), \ |
| 1065 | _mm256_lddqu_si256(data2 + i + 14)); \ |
| 1066 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15), \ |
| 1067 | _mm256_lddqu_si256(data2 + i + 15)); \ |
| 1068 | CSA(&twosB, &ones, ones, A1, A2); \ |
| 1069 | CSA(&foursB, &twos, twos, twosA, twosB); \ |
| 1070 | CSA(&eightsB, &fours, fours, foursA, foursB); \ |
| 1071 | CSA(&sixteens, &eights, eights, eightsA, eightsB); \ |
| 1072 | total = _mm256_add_epi64(total, popcount256(sixteens)); \ |
| 1073 | } \ |
| 1074 | total = _mm256_slli_epi64(total, 4); \ |
| 1075 | total = _mm256_add_epi64(total, \ |
| 1076 | _mm256_slli_epi64(popcount256(eights), 3)); \ |
| 1077 | total = \ |
| 1078 | _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); \ |
| 1079 | total = \ |
| 1080 | _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1)); \ |
| 1081 | total = _mm256_add_epi64(total, popcount256(ones)); \ |
| 1082 | for (; i < size; i++) { \ |
| 1083 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ |
| 1084 | _mm256_lddqu_si256(data2 + i)); \ |
| 1085 | total = _mm256_add_epi64(total, popcount256(A1)); \ |
| 1086 | } \ |
| 1087 | return (uint64_t)(_mm256_extract_epi64(total, 0)) + \ |
| 1088 | (uint64_t)(_mm256_extract_epi64(total, 1)) + \ |
| 1089 | (uint64_t)(_mm256_extract_epi64(total, 2)) + \ |
| 1090 | (uint64_t)(_mm256_extract_epi64(total, 3)); \ |
| 1091 | } \ |
| 1092 | static inline uint64_t avx2_harley_seal_popcount256andstore_##opname( \ |
| 1093 | const __m256i *__restrict__ data1, const __m256i *__restrict__ data2, \ |
| 1094 | __m256i *__restrict__ out, const uint64_t size) { \ |
| 1095 | __m256i total = _mm256_setzero_si256(); \ |
| 1096 | __m256i ones = _mm256_setzero_si256(); \ |
| 1097 | __m256i twos = _mm256_setzero_si256(); \ |
| 1098 | __m256i fours = _mm256_setzero_si256(); \ |
| 1099 | __m256i eights = _mm256_setzero_si256(); \ |
| 1100 | __m256i sixteens = _mm256_setzero_si256(); \ |
| 1101 | __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; \ |
| 1102 | __m256i A1, A2; \ |
| 1103 | const uint64_t limit = size - size % 16; \ |
| 1104 | uint64_t i = 0; \ |
| 1105 | for (; i < limit; i += 16) { \ |
| 1106 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ |
| 1107 | _mm256_lddqu_si256(data2 + i)); \ |
| 1108 | _mm256_storeu_si256(out + i, A1); \ |
| 1109 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1), \ |
| 1110 | _mm256_lddqu_si256(data2 + i + 1)); \ |
| 1111 | _mm256_storeu_si256(out + i + 1, A2); \ |
| 1112 | CSA(&twosA, &ones, ones, A1, A2); \ |
| 1113 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2), \ |
| 1114 | _mm256_lddqu_si256(data2 + i + 2)); \ |
| 1115 | _mm256_storeu_si256(out + i + 2, A1); \ |
| 1116 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3), \ |
| 1117 | _mm256_lddqu_si256(data2 + i + 3)); \ |
| 1118 | _mm256_storeu_si256(out + i + 3, A2); \ |
| 1119 | CSA(&twosB, &ones, ones, A1, A2); \ |
| 1120 | CSA(&foursA, &twos, twos, twosA, twosB); \ |
| 1121 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4), \ |
| 1122 | _mm256_lddqu_si256(data2 + i + 4)); \ |
| 1123 | _mm256_storeu_si256(out + i + 4, A1); \ |
| 1124 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5), \ |
| 1125 | _mm256_lddqu_si256(data2 + i + 5)); \ |
| 1126 | _mm256_storeu_si256(out + i + 5, A2); \ |
| 1127 | CSA(&twosA, &ones, ones, A1, A2); \ |
| 1128 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6), \ |
| 1129 | _mm256_lddqu_si256(data2 + i + 6)); \ |
| 1130 | _mm256_storeu_si256(out + i + 6, A1); \ |
| 1131 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7), \ |
| 1132 | _mm256_lddqu_si256(data2 + i + 7)); \ |
| 1133 | _mm256_storeu_si256(out + i + 7, A2); \ |
| 1134 | CSA(&twosB, &ones, ones, A1, A2); \ |
| 1135 | CSA(&foursB, &twos, twos, twosA, twosB); \ |
| 1136 | CSA(&eightsA, &fours, fours, foursA, foursB); \ |
| 1137 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8), \ |
| 1138 | _mm256_lddqu_si256(data2 + i + 8)); \ |
| 1139 | _mm256_storeu_si256(out + i + 8, A1); \ |
| 1140 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9), \ |
| 1141 | _mm256_lddqu_si256(data2 + i + 9)); \ |
| 1142 | _mm256_storeu_si256(out + i + 9, A2); \ |
| 1143 | CSA(&twosA, &ones, ones, A1, A2); \ |
| 1144 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10), \ |
| 1145 | _mm256_lddqu_si256(data2 + i + 10)); \ |
| 1146 | _mm256_storeu_si256(out + i + 10, A1); \ |
| 1147 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11), \ |
| 1148 | _mm256_lddqu_si256(data2 + i + 11)); \ |
| 1149 | _mm256_storeu_si256(out + i + 11, A2); \ |
| 1150 | CSA(&twosB, &ones, ones, A1, A2); \ |
| 1151 | CSA(&foursA, &twos, twos, twosA, twosB); \ |
| 1152 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12), \ |
| 1153 | _mm256_lddqu_si256(data2 + i + 12)); \ |
| 1154 | _mm256_storeu_si256(out + i + 12, A1); \ |
| 1155 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13), \ |
| 1156 | _mm256_lddqu_si256(data2 + i + 13)); \ |
| 1157 | _mm256_storeu_si256(out + i + 13, A2); \ |
| 1158 | CSA(&twosA, &ones, ones, A1, A2); \ |
| 1159 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14), \ |
| 1160 | _mm256_lddqu_si256(data2 + i + 14)); \ |
| 1161 | _mm256_storeu_si256(out + i + 14, A1); \ |
| 1162 | A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15), \ |
| 1163 | _mm256_lddqu_si256(data2 + i + 15)); \ |
| 1164 | _mm256_storeu_si256(out + i + 15, A2); \ |
| 1165 | CSA(&twosB, &ones, ones, A1, A2); \ |
| 1166 | CSA(&foursB, &twos, twos, twosA, twosB); \ |
| 1167 | CSA(&eightsB, &fours, fours, foursA, foursB); \ |
| 1168 | CSA(&sixteens, &eights, eights, eightsA, eightsB); \ |
| 1169 | total = _mm256_add_epi64(total, popcount256(sixteens)); \ |
| 1170 | } \ |
| 1171 | total = _mm256_slli_epi64(total, 4); \ |
| 1172 | total = _mm256_add_epi64(total, \ |
| 1173 | _mm256_slli_epi64(popcount256(eights), 3)); \ |
| 1174 | total = \ |
| 1175 | _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); \ |
| 1176 | total = \ |
| 1177 | _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1)); \ |
| 1178 | total = _mm256_add_epi64(total, popcount256(ones)); \ |
| 1179 | for (; i < size; i++) { \ |
| 1180 | A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ |
| 1181 | _mm256_lddqu_si256(data2 + i)); \ |
| 1182 | _mm256_storeu_si256(out + i, A1); \ |
| 1183 | total = _mm256_add_epi64(total, popcount256(A1)); \ |
| 1184 | } \ |
| 1185 | return (uint64_t)(_mm256_extract_epi64(total, 0)) + \ |
| 1186 | (uint64_t)(_mm256_extract_epi64(total, 1)) + \ |
| 1187 | (uint64_t)(_mm256_extract_epi64(total, 2)) + \ |
| 1188 | (uint64_t)(_mm256_extract_epi64(total, 3)); \ |
| 1189 | } |
| 1190 | |
| 1191 | AVXPOPCNTFNC(or, _mm256_or_si256) |
| 1192 | AVXPOPCNTFNC(union, _mm256_or_si256) |
| 1193 | AVXPOPCNTFNC(and, _mm256_and_si256) |
| 1194 | AVXPOPCNTFNC(intersection, _mm256_and_si256) |
| 1195 | AVXPOPCNTFNC (xor, _mm256_xor_si256) |
| 1196 | AVXPOPCNTFNC(andnot, _mm256_andnot_si256) |
| 1197 | |
| 1198 | /*** |
| 1199 | * END Harley-Seal popcount functions. |
| 1200 | */ |
| 1201 | |
| 1202 | #endif // USEAVX |
| 1203 | |
| 1204 | #endif |
| 1205 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/bitset_util.h */ |
| 1206 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/array.h */ |
| 1207 | /* |
| 1208 | * array.h |
| 1209 | * |
| 1210 | */ |
| 1211 | |
| 1212 | #ifndef INCLUDE_CONTAINERS_ARRAY_H_ |
| 1213 | #define INCLUDE_CONTAINERS_ARRAY_H_ |
| 1214 | |
| 1215 | #ifdef __cplusplus |
| 1216 | extern "C" { |
| 1217 | #endif |
| 1218 | |
| 1219 | #include <string.h> |
| 1220 | |
| 1221 | |
| 1222 | /* Containers with DEFAULT_MAX_SIZE or less integers should be arrays */ |
| 1223 | enum { DEFAULT_MAX_SIZE = 4096 }; |
| 1224 | |
| 1225 | /* struct array_container - sparse representation of a bitmap |
| 1226 | * |
| 1227 | * @cardinality: number of indices in `array` (and the bitmap) |
| 1228 | * @capacity: allocated size of `array` |
| 1229 | * @array: sorted list of integers |
| 1230 | */ |
| 1231 | struct array_container_s { |
| 1232 | int32_t cardinality; |
| 1233 | int32_t capacity; |
| 1234 | uint16_t *array; |
| 1235 | }; |
| 1236 | |
| 1237 | typedef struct array_container_s array_container_t; |
| 1238 | |
| 1239 | /* Create a new array with default. Return NULL in case of failure. See also |
| 1240 | * array_container_create_given_capacity. */ |
| 1241 | array_container_t *array_container_create(void); |
| 1242 | |
| 1243 | /* Create a new array with a specified capacity size. Return NULL in case of |
| 1244 | * failure. */ |
| 1245 | array_container_t *array_container_create_given_capacity(int32_t size); |
| 1246 | |
| 1247 | /* Create a new array containing all values in [min,max). */ |
| 1248 | array_container_t * array_container_create_range(uint32_t min, uint32_t max); |
| 1249 | |
| 1250 | /* |
| 1251 | * Shrink the capacity to the actual size, return the number of bytes saved. |
| 1252 | */ |
| 1253 | int array_container_shrink_to_fit(array_container_t *src); |
| 1254 | |
| 1255 | /* Free memory owned by `array'. */ |
| 1256 | void array_container_free(array_container_t *array); |
| 1257 | |
| 1258 | /* Duplicate container */ |
| 1259 | array_container_t *array_container_clone(const array_container_t *src); |
| 1260 | |
| 1261 | int32_t array_container_serialize(const array_container_t *container, |
| 1262 | char *buf) WARN_UNUSED; |
| 1263 | |
| 1264 | uint32_t array_container_serialization_len(const array_container_t *container); |
| 1265 | |
| 1266 | void *array_container_deserialize(const char *buf, size_t buf_len); |
| 1267 | |
| 1268 | /* Get the cardinality of `array'. */ |
| 1269 | static inline int array_container_cardinality(const array_container_t *array) { |
| 1270 | return array->cardinality; |
| 1271 | } |
| 1272 | |
| 1273 | static inline bool array_container_nonzero_cardinality( |
| 1274 | const array_container_t *array) { |
| 1275 | return array->cardinality > 0; |
| 1276 | } |
| 1277 | |
| 1278 | /* Copy one container into another. We assume that they are distinct. */ |
| 1279 | void array_container_copy(const array_container_t *src, array_container_t *dst); |
| 1280 | |
| 1281 | /* Add all the values in [min,max) (included) at a distance k*step from min. |
| 1282 | The container must have a size less or equal to DEFAULT_MAX_SIZE after this |
| 1283 | addition. */ |
| 1284 | void array_container_add_from_range(array_container_t *arr, uint32_t min, |
| 1285 | uint32_t max, uint16_t step); |
| 1286 | |
| 1287 | /* Set the cardinality to zero (does not release memory). */ |
| 1288 | static inline void array_container_clear(array_container_t *array) { |
| 1289 | array->cardinality = 0; |
| 1290 | } |
| 1291 | |
| 1292 | static inline bool array_container_empty(const array_container_t *array) { |
| 1293 | return array->cardinality == 0; |
| 1294 | } |
| 1295 | |
| 1296 | /* check whether the cardinality is equal to the capacity (this does not mean |
| 1297 | * that it contains 1<<16 elements) */ |
| 1298 | static inline bool array_container_full(const array_container_t *array) { |
| 1299 | return array->cardinality == array->capacity; |
| 1300 | } |
| 1301 | |
| 1302 | |
| 1303 | /* Compute the union of `src_1' and `src_2' and write the result to `dst' |
| 1304 | * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ |
| 1305 | void array_container_union(const array_container_t *src_1, |
| 1306 | const array_container_t *src_2, |
| 1307 | array_container_t *dst); |
| 1308 | |
| 1309 | /* symmetric difference, see array_container_union */ |
| 1310 | void array_container_xor(const array_container_t *array_1, |
| 1311 | const array_container_t *array_2, |
| 1312 | array_container_t *out); |
| 1313 | |
| 1314 | /* Computes the intersection of src_1 and src_2 and write the result to |
| 1315 | * dst. It is assumed that dst is distinct from both src_1 and src_2. */ |
| 1316 | void array_container_intersection(const array_container_t *src_1, |
| 1317 | const array_container_t *src_2, |
| 1318 | array_container_t *dst); |
| 1319 | |
| 1320 | /* Check whether src_1 and src_2 intersect. */ |
| 1321 | bool array_container_intersect(const array_container_t *src_1, |
| 1322 | const array_container_t *src_2); |
| 1323 | |
| 1324 | |
| 1325 | /* computers the size of the intersection between two arrays. |
| 1326 | */ |
| 1327 | int array_container_intersection_cardinality(const array_container_t *src_1, |
| 1328 | const array_container_t *src_2); |
| 1329 | |
| 1330 | /* computes the intersection of array1 and array2 and write the result to |
| 1331 | * array1. |
| 1332 | * */ |
| 1333 | void array_container_intersection_inplace(array_container_t *src_1, |
| 1334 | const array_container_t *src_2); |
| 1335 | |
| 1336 | /* |
| 1337 | * Write out the 16-bit integers contained in this container as a list of 32-bit |
| 1338 | * integers using base |
| 1339 | * as the starting value (it might be expected that base has zeros in its 16 |
| 1340 | * least significant bits). |
| 1341 | * The function returns the number of values written. |
| 1342 | * The caller is responsible for allocating enough memory in out. |
| 1343 | */ |
| 1344 | int array_container_to_uint32_array(void *vout, const array_container_t *cont, |
| 1345 | uint32_t base); |
| 1346 | |
| 1347 | /* Compute the number of runs */ |
| 1348 | int32_t array_container_number_of_runs(const array_container_t *a); |
| 1349 | |
| 1350 | /* |
| 1351 | * Print this container using printf (useful for debugging). |
| 1352 | */ |
| 1353 | void array_container_printf(const array_container_t *v); |
| 1354 | |
| 1355 | /* |
| 1356 | * Print this container using printf as a comma-separated list of 32-bit |
| 1357 | * integers starting at base. |
| 1358 | */ |
| 1359 | void array_container_printf_as_uint32_array(const array_container_t *v, |
| 1360 | uint32_t base); |
| 1361 | |
| 1362 | /** |
| 1363 | * Return the serialized size in bytes of a container having cardinality "card". |
| 1364 | */ |
| 1365 | static inline int32_t array_container_serialized_size_in_bytes(int32_t card) { |
| 1366 | return card * 2 + 2; |
| 1367 | } |
| 1368 | |
| 1369 | /** |
| 1370 | * Increase capacity to at least min. |
| 1371 | * Whether the existing data needs to be copied over depends on the "preserve" |
| 1372 | * parameter. If preserve is false, then the new content will be uninitialized, |
| 1373 | * otherwise the old content is copied. |
| 1374 | */ |
| 1375 | void array_container_grow(array_container_t *container, int32_t min, |
| 1376 | bool preserve); |
| 1377 | |
| 1378 | bool array_container_iterate(const array_container_t *cont, uint32_t base, |
| 1379 | roaring_iterator iterator, void *ptr); |
| 1380 | bool array_container_iterate64(const array_container_t *cont, uint32_t base, |
| 1381 | roaring_iterator64 iterator, uint64_t high_bits, |
| 1382 | void *ptr); |
| 1383 | |
| 1384 | /** |
| 1385 | * Writes the underlying array to buf, outputs how many bytes were written. |
| 1386 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
| 1387 | * Roaring. |
| 1388 | * The number of bytes written should be |
| 1389 | * array_container_size_in_bytes(container). |
| 1390 | * |
| 1391 | */ |
| 1392 | int32_t array_container_write(const array_container_t *container, char *buf); |
| 1393 | /** |
| 1394 | * Reads the instance from buf, outputs how many bytes were read. |
| 1395 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
| 1396 | * Roaring. |
| 1397 | * The number of bytes read should be array_container_size_in_bytes(container). |
| 1398 | * You need to provide the (known) cardinality. |
| 1399 | */ |
| 1400 | int32_t array_container_read(int32_t cardinality, array_container_t *container, |
| 1401 | const char *buf); |
| 1402 | |
| 1403 | /** |
| 1404 | * Return the serialized size in bytes of a container (see |
| 1405 | * bitset_container_write) |
| 1406 | * This is meant to be compatible with the Java and Go versions of Roaring and |
| 1407 | * assumes |
| 1408 | * that the cardinality of the container is already known. |
| 1409 | * |
| 1410 | */ |
| 1411 | static inline int32_t array_container_size_in_bytes( |
| 1412 | const array_container_t *container) { |
| 1413 | return container->cardinality * sizeof(uint16_t); |
| 1414 | } |
| 1415 | |
| 1416 | /** |
| 1417 | * Return true if the two arrays have the same content. |
| 1418 | */ |
| 1419 | bool array_container_equals(const array_container_t *container1, |
| 1420 | const array_container_t *container2); |
| 1421 | |
| 1422 | /** |
| 1423 | * Return true if container1 is a subset of container2. |
| 1424 | */ |
| 1425 | bool array_container_is_subset(const array_container_t *container1, |
| 1426 | const array_container_t *container2); |
| 1427 | |
| 1428 | /** |
| 1429 | * If the element of given rank is in this container, supposing that the first |
| 1430 | * element has rank start_rank, then the function returns true and sets element |
| 1431 | * accordingly. |
| 1432 | * Otherwise, it returns false and update start_rank. |
| 1433 | */ |
| 1434 | static inline bool array_container_select(const array_container_t *container, |
| 1435 | uint32_t *start_rank, uint32_t rank, |
| 1436 | uint32_t *element) { |
| 1437 | int card = array_container_cardinality(container); |
| 1438 | if (*start_rank + card <= rank) { |
| 1439 | *start_rank += card; |
| 1440 | return false; |
| 1441 | } else { |
| 1442 | *element = container->array[rank - *start_rank]; |
| 1443 | return true; |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | /* Computes the difference of array1 and array2 and write the result |
| 1448 | * to array out. |
| 1449 | * Array out does not need to be distinct from array_1 |
| 1450 | */ |
| 1451 | void array_container_andnot(const array_container_t *array_1, |
| 1452 | const array_container_t *array_2, |
| 1453 | array_container_t *out); |
| 1454 | |
| 1455 | /* Append x to the set. Assumes that the value is larger than any preceding |
| 1456 | * values. */ |
| 1457 | static inline void array_container_append(array_container_t *arr, |
| 1458 | uint16_t pos) { |
| 1459 | const int32_t capacity = arr->capacity; |
| 1460 | |
| 1461 | if (array_container_full(arr)) { |
| 1462 | array_container_grow(arr, capacity + 1, true); |
| 1463 | } |
| 1464 | |
| 1465 | arr->array[arr->cardinality++] = pos; |
| 1466 | } |
| 1467 | |
| 1468 | /** |
| 1469 | * Add value to the set if final cardinality doesn't exceed max_cardinality. |
| 1470 | * Return code: |
| 1471 | * 1 -- value was added |
| 1472 | * 0 -- value was already present |
| 1473 | * -1 -- value was not added because cardinality would exceed max_cardinality |
| 1474 | */ |
| 1475 | static inline int array_container_try_add(array_container_t *arr, uint16_t value, |
| 1476 | int32_t max_cardinality) { |
| 1477 | const int32_t cardinality = arr->cardinality; |
| 1478 | |
| 1479 | // best case, we can append. |
| 1480 | if ((array_container_empty(arr) || arr->array[cardinality - 1] < value) && |
| 1481 | cardinality < max_cardinality) { |
| 1482 | array_container_append(arr, value); |
| 1483 | return 1; |
| 1484 | } |
| 1485 | |
| 1486 | const int32_t loc = binarySearch(arr->array, cardinality, value); |
| 1487 | |
| 1488 | if (loc >= 0) { |
| 1489 | return 0; |
| 1490 | } else if (cardinality < max_cardinality) { |
| 1491 | if (array_container_full(arr)) { |
| 1492 | array_container_grow(arr, arr->capacity + 1, true); |
| 1493 | } |
| 1494 | const int32_t insert_idx = -loc - 1; |
| 1495 | memmove(arr->array + insert_idx + 1, arr->array + insert_idx, |
| 1496 | (cardinality - insert_idx) * sizeof(uint16_t)); |
| 1497 | arr->array[insert_idx] = value; |
| 1498 | arr->cardinality++; |
| 1499 | return 1; |
| 1500 | } else { |
| 1501 | return -1; |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | /* Add value to the set. Returns true if x was not already present. */ |
| 1506 | static inline bool array_container_add(array_container_t *arr, uint16_t value) { |
| 1507 | return array_container_try_add(arr, value, INT32_MAX) == 1; |
| 1508 | } |
| 1509 | |
| 1510 | /* Remove x from the set. Returns true if x was present. */ |
| 1511 | static inline bool array_container_remove(array_container_t *arr, |
| 1512 | uint16_t pos) { |
| 1513 | const int32_t idx = binarySearch(arr->array, arr->cardinality, pos); |
| 1514 | const bool is_present = idx >= 0; |
| 1515 | if (is_present) { |
| 1516 | memmove(arr->array + idx, arr->array + idx + 1, |
| 1517 | (arr->cardinality - idx - 1) * sizeof(uint16_t)); |
| 1518 | arr->cardinality--; |
| 1519 | } |
| 1520 | |
| 1521 | return is_present; |
| 1522 | } |
| 1523 | |
| 1524 | /* Check whether x is present. */ |
| 1525 | inline bool array_container_contains(const array_container_t *arr, |
| 1526 | uint16_t pos) { |
| 1527 | // return binarySearch(arr->array, arr->cardinality, pos) >= 0; |
| 1528 | // binary search with fallback to linear search for short ranges |
| 1529 | int32_t low = 0; |
| 1530 | const uint16_t * carr = (const uint16_t *) arr->array; |
| 1531 | int32_t high = arr->cardinality - 1; |
| 1532 | // while (high - low >= 0) { |
| 1533 | while(high >= low + 16) { |
| 1534 | int32_t middleIndex = (low + high)>>1; |
| 1535 | uint16_t middleValue = carr[middleIndex]; |
| 1536 | if (middleValue < pos) { |
| 1537 | low = middleIndex + 1; |
| 1538 | } else if (middleValue > pos) { |
| 1539 | high = middleIndex - 1; |
| 1540 | } else { |
| 1541 | return true; |
| 1542 | } |
| 1543 | } |
| 1544 | |
| 1545 | for (int i=low; i <= high; i++) { |
| 1546 | uint16_t v = carr[i]; |
| 1547 | if (v == pos) { |
| 1548 | return true; |
| 1549 | } |
| 1550 | if ( v > pos ) return false; |
| 1551 | } |
| 1552 | return false; |
| 1553 | |
| 1554 | } |
| 1555 | |
| 1556 | |
| 1557 | //* Check whether a range of values from range_start (included) to range_end (excluded) is present. */ |
| 1558 | static inline bool array_container_contains_range(const array_container_t *arr, |
| 1559 | uint32_t range_start, uint32_t range_end) { |
| 1560 | |
| 1561 | const uint16_t rs_included = range_start; |
| 1562 | const uint16_t re_included = range_end - 1; |
| 1563 | |
| 1564 | const uint16_t *carr = (const uint16_t *) arr->array; |
| 1565 | |
| 1566 | const int32_t start = advanceUntil(carr, -1, arr->cardinality, rs_included); |
| 1567 | const int32_t end = advanceUntil(carr, start - 1, arr->cardinality, re_included); |
| 1568 | |
| 1569 | return (start < arr->cardinality) && (end < arr->cardinality) |
| 1570 | && (((uint16_t)(end - start)) == re_included - rs_included) |
| 1571 | && (carr[start] == rs_included) && (carr[end] == re_included); |
| 1572 | } |
| 1573 | |
| 1574 | /* Returns the smallest value (assumes not empty) */ |
| 1575 | inline uint16_t array_container_minimum(const array_container_t *arr) { |
| 1576 | if (arr->cardinality == 0) return 0; |
| 1577 | return arr->array[0]; |
| 1578 | } |
| 1579 | |
| 1580 | /* Returns the largest value (assumes not empty) */ |
| 1581 | inline uint16_t array_container_maximum(const array_container_t *arr) { |
| 1582 | if (arr->cardinality == 0) return 0; |
| 1583 | return arr->array[arr->cardinality - 1]; |
| 1584 | } |
| 1585 | |
| 1586 | /* Returns the number of values equal or smaller than x */ |
| 1587 | inline int array_container_rank(const array_container_t *arr, uint16_t x) { |
| 1588 | const int32_t idx = binarySearch(arr->array, arr->cardinality, x); |
| 1589 | const bool is_present = idx >= 0; |
| 1590 | if (is_present) { |
| 1591 | return idx + 1; |
| 1592 | } else { |
| 1593 | return -idx - 1; |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | /* Returns the index of the first value equal or smaller than x, or -1 */ |
| 1598 | inline int array_container_index_equalorlarger(const array_container_t *arr, uint16_t x) { |
| 1599 | const int32_t idx = binarySearch(arr->array, arr->cardinality, x); |
| 1600 | const bool is_present = idx >= 0; |
| 1601 | if (is_present) { |
| 1602 | return idx; |
| 1603 | } else { |
| 1604 | int32_t candidate = - idx - 1; |
| 1605 | if(candidate < arr->cardinality) return candidate; |
| 1606 | return -1; |
| 1607 | } |
| 1608 | } |
| 1609 | |
| 1610 | /* |
| 1611 | * Adds all values in range [min,max] using hint: |
| 1612 | * nvals_less is the number of array values less than $min |
| 1613 | * nvals_greater is the number of array values greater than $max |
| 1614 | */ |
| 1615 | static inline void array_container_add_range_nvals(array_container_t *array, |
| 1616 | uint32_t min, uint32_t max, |
| 1617 | int32_t nvals_less, |
| 1618 | int32_t nvals_greater) { |
| 1619 | int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater; |
| 1620 | if (union_cardinality > array->capacity) { |
| 1621 | array_container_grow(array, union_cardinality, true); |
| 1622 | } |
| 1623 | memmove(&(array->array[union_cardinality - nvals_greater]), |
| 1624 | &(array->array[array->cardinality - nvals_greater]), |
| 1625 | nvals_greater * sizeof(uint16_t)); |
| 1626 | for (uint32_t i = 0; i <= max - min; i++) { |
| 1627 | array->array[nvals_less + i] = min + i; |
| 1628 | } |
| 1629 | array->cardinality = union_cardinality; |
| 1630 | } |
| 1631 | |
| 1632 | /** |
| 1633 | * Adds all values in range [min,max]. |
| 1634 | */ |
| 1635 | static inline void array_container_add_range(array_container_t *array, |
| 1636 | uint32_t min, uint32_t max) { |
| 1637 | int32_t nvals_greater = count_greater(array->array, array->cardinality, max); |
| 1638 | int32_t nvals_less = count_less(array->array, array->cardinality - nvals_greater, min); |
| 1639 | array_container_add_range_nvals(array, min, max, nvals_less, nvals_greater); |
| 1640 | } |
| 1641 | |
| 1642 | /* |
| 1643 | * Removes all elements array[pos] .. array[pos+count-1] |
| 1644 | */ |
| 1645 | static inline void array_container_remove_range(array_container_t *array, |
| 1646 | uint32_t pos, uint32_t count) { |
| 1647 | if (count != 0) { |
| 1648 | memmove(&(array->array[pos]), &(array->array[pos+count]), |
| 1649 | (array->cardinality - pos - count) * sizeof(uint16_t)); |
| 1650 | array->cardinality -= count; |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | #ifdef __cplusplus |
| 1655 | } |
| 1656 | #endif |
| 1657 | |
| 1658 | #endif /* INCLUDE_CONTAINERS_ARRAY_H_ */ |
| 1659 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/array.h */ |
| 1660 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/bitset.h */ |
| 1661 | /* |
| 1662 | * bitset.h |
| 1663 | * |
| 1664 | */ |
| 1665 | |
| 1666 | #ifndef INCLUDE_CONTAINERS_BITSET_H_ |
| 1667 | #define INCLUDE_CONTAINERS_BITSET_H_ |
| 1668 | |
| 1669 | #include <stdbool.h> |
| 1670 | #include <stdint.h> |
| 1671 | |
| 1672 | #ifdef USEAVX |
| 1673 | #define ALIGN_AVX __attribute__((aligned(sizeof(__m256i)))) |
| 1674 | #else |
| 1675 | #define ALIGN_AVX |
| 1676 | #endif |
| 1677 | |
| 1678 | enum { |
| 1679 | BITSET_CONTAINER_SIZE_IN_WORDS = (1 << 16) / 64, |
| 1680 | BITSET_UNKNOWN_CARDINALITY = -1 |
| 1681 | }; |
| 1682 | |
| 1683 | struct bitset_container_s { |
| 1684 | int32_t cardinality; |
| 1685 | uint64_t *array; |
| 1686 | }; |
| 1687 | |
| 1688 | typedef struct bitset_container_s bitset_container_t; |
| 1689 | |
| 1690 | /* Create a new bitset. Return NULL in case of failure. */ |
| 1691 | bitset_container_t *bitset_container_create(void); |
| 1692 | |
| 1693 | /* Free memory. */ |
| 1694 | void bitset_container_free(bitset_container_t *bitset); |
| 1695 | |
| 1696 | /* Clear bitset (sets bits to 0). */ |
| 1697 | void bitset_container_clear(bitset_container_t *bitset); |
| 1698 | |
| 1699 | /* Set all bits to 1. */ |
| 1700 | void bitset_container_set_all(bitset_container_t *bitset); |
| 1701 | |
| 1702 | /* Duplicate bitset */ |
| 1703 | bitset_container_t *bitset_container_clone(const bitset_container_t *src); |
| 1704 | |
| 1705 | int32_t bitset_container_serialize(const bitset_container_t *container, |
| 1706 | char *buf) WARN_UNUSED; |
| 1707 | |
| 1708 | uint32_t bitset_container_serialization_len(void); |
| 1709 | |
| 1710 | void *bitset_container_deserialize(const char *buf, size_t buf_len); |
| 1711 | |
| 1712 | /* Set the bit in [begin,end). WARNING: as of April 2016, this method is slow |
| 1713 | * and |
| 1714 | * should not be used in performance-sensitive code. Ever. */ |
| 1715 | void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin, |
| 1716 | uint32_t end); |
| 1717 | |
| 1718 | #ifdef ASMBITMANIPOPTIMIZATION |
| 1719 | /* Set the ith bit. */ |
| 1720 | static inline void bitset_container_set(bitset_container_t *bitset, |
| 1721 | uint16_t pos) { |
| 1722 | uint64_t shift = 6; |
| 1723 | uint64_t offset; |
| 1724 | uint64_t p = pos; |
| 1725 | ASM_SHIFT_RIGHT(p, shift, offset); |
| 1726 | uint64_t load = bitset->array[offset]; |
| 1727 | ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality); |
| 1728 | bitset->array[offset] = load; |
| 1729 | } |
| 1730 | |
| 1731 | /* Unset the ith bit. */ |
| 1732 | static inline void bitset_container_unset(bitset_container_t *bitset, |
| 1733 | uint16_t pos) { |
| 1734 | uint64_t shift = 6; |
| 1735 | uint64_t offset; |
| 1736 | uint64_t p = pos; |
| 1737 | ASM_SHIFT_RIGHT(p, shift, offset); |
| 1738 | uint64_t load = bitset->array[offset]; |
| 1739 | ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality); |
| 1740 | bitset->array[offset] = load; |
| 1741 | } |
| 1742 | |
| 1743 | /* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be slower |
| 1744 | * than bitset_container_set. */ |
| 1745 | static inline bool bitset_container_add(bitset_container_t *bitset, |
| 1746 | uint16_t pos) { |
| 1747 | uint64_t shift = 6; |
| 1748 | uint64_t offset; |
| 1749 | uint64_t p = pos; |
| 1750 | ASM_SHIFT_RIGHT(p, shift, offset); |
| 1751 | uint64_t load = bitset->array[offset]; |
| 1752 | // could be possibly slightly further optimized |
| 1753 | const int32_t oldcard = bitset->cardinality; |
| 1754 | ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality); |
| 1755 | bitset->array[offset] = load; |
| 1756 | return bitset->cardinality - oldcard; |
| 1757 | } |
| 1758 | |
| 1759 | /* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be |
| 1760 | * slower than bitset_container_unset. */ |
| 1761 | static inline bool bitset_container_remove(bitset_container_t *bitset, |
| 1762 | uint16_t pos) { |
| 1763 | uint64_t shift = 6; |
| 1764 | uint64_t offset; |
| 1765 | uint64_t p = pos; |
| 1766 | ASM_SHIFT_RIGHT(p, shift, offset); |
| 1767 | uint64_t load = bitset->array[offset]; |
| 1768 | // could be possibly slightly further optimized |
| 1769 | const int32_t oldcard = bitset->cardinality; |
| 1770 | ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality); |
| 1771 | bitset->array[offset] = load; |
| 1772 | return oldcard - bitset->cardinality; |
| 1773 | } |
| 1774 | |
| 1775 | /* Get the value of the ith bit. */ |
| 1776 | inline bool bitset_container_get(const bitset_container_t *bitset, |
| 1777 | uint16_t pos) { |
| 1778 | uint64_t word = bitset->array[pos >> 6]; |
| 1779 | const uint64_t p = pos; |
| 1780 | ASM_INPLACESHIFT_RIGHT(word, p); |
| 1781 | return word & 1; |
| 1782 | } |
| 1783 | |
| 1784 | #else |
| 1785 | |
| 1786 | /* Set the ith bit. */ |
| 1787 | static inline void bitset_container_set(bitset_container_t *bitset, |
| 1788 | uint16_t pos) { |
| 1789 | const uint64_t old_word = bitset->array[pos >> 6]; |
| 1790 | const int index = pos & 63; |
| 1791 | const uint64_t new_word = old_word | (UINT64_C(1) << index); |
| 1792 | bitset->cardinality += (uint32_t)((old_word ^ new_word) >> index); |
| 1793 | bitset->array[pos >> 6] = new_word; |
| 1794 | } |
| 1795 | |
| 1796 | /* Unset the ith bit. */ |
| 1797 | static inline void bitset_container_unset(bitset_container_t *bitset, |
| 1798 | uint16_t pos) { |
| 1799 | const uint64_t old_word = bitset->array[pos >> 6]; |
| 1800 | const int index = pos & 63; |
| 1801 | const uint64_t new_word = old_word & (~(UINT64_C(1) << index)); |
| 1802 | bitset->cardinality -= (uint32_t)((old_word ^ new_word) >> index); |
| 1803 | bitset->array[pos >> 6] = new_word; |
| 1804 | } |
| 1805 | |
| 1806 | /* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be slower |
| 1807 | * than bitset_container_set. */ |
| 1808 | static inline bool bitset_container_add(bitset_container_t *bitset, |
| 1809 | uint16_t pos) { |
| 1810 | const uint64_t old_word = bitset->array[pos >> 6]; |
| 1811 | const int index = pos & 63; |
| 1812 | const uint64_t new_word = old_word | (UINT64_C(1) << index); |
| 1813 | const uint64_t increment = (old_word ^ new_word) >> index; |
| 1814 | bitset->cardinality += (uint32_t)increment; |
| 1815 | bitset->array[pos >> 6] = new_word; |
| 1816 | return increment > 0; |
| 1817 | } |
| 1818 | |
| 1819 | /* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be |
| 1820 | * slower than bitset_container_unset. */ |
| 1821 | static inline bool bitset_container_remove(bitset_container_t *bitset, |
| 1822 | uint16_t pos) { |
| 1823 | const uint64_t old_word = bitset->array[pos >> 6]; |
| 1824 | const int index = pos & 63; |
| 1825 | const uint64_t new_word = old_word & (~(UINT64_C(1) << index)); |
| 1826 | const uint64_t increment = (old_word ^ new_word) >> index; |
| 1827 | bitset->cardinality -= (uint32_t)increment; |
| 1828 | bitset->array[pos >> 6] = new_word; |
| 1829 | return increment > 0; |
| 1830 | } |
| 1831 | |
| 1832 | /* Get the value of the ith bit. */ |
| 1833 | inline bool bitset_container_get(const bitset_container_t *bitset, |
| 1834 | uint16_t pos) { |
| 1835 | const uint64_t word = bitset->array[pos >> 6]; |
| 1836 | return (word >> (pos & 63)) & 1; |
| 1837 | } |
| 1838 | |
| 1839 | #endif |
| 1840 | |
| 1841 | /* |
| 1842 | * Check if all bits are set in a range of positions from pos_start (included) to |
| 1843 | * pos_end (excluded). |
| 1844 | */ |
| 1845 | static inline bool bitset_container_get_range(const bitset_container_t *bitset, |
| 1846 | uint32_t pos_start, uint32_t pos_end) { |
| 1847 | |
| 1848 | const uint32_t start = pos_start >> 6; |
| 1849 | const uint32_t end = pos_end >> 6; |
| 1850 | |
| 1851 | const uint64_t first = ~((1ULL << (pos_start & 0x3F)) - 1); |
| 1852 | const uint64_t last = (1ULL << (pos_end & 0x3F)) - 1; |
| 1853 | |
| 1854 | if (start == end) return ((bitset->array[end] & first & last) == (first & last)); |
| 1855 | if ((bitset->array[start] & first) != first) return false; |
| 1856 | |
| 1857 | if ((end < BITSET_CONTAINER_SIZE_IN_WORDS) && ((bitset->array[end] & last) != last)){ |
| 1858 | |
| 1859 | return false; |
| 1860 | } |
| 1861 | |
| 1862 | for (uint16_t i = start + 1; (i < BITSET_CONTAINER_SIZE_IN_WORDS) && (i < end); ++i){ |
| 1863 | |
| 1864 | if (bitset->array[i] != UINT64_C(0xFFFFFFFFFFFFFFFF)) return false; |
| 1865 | } |
| 1866 | |
| 1867 | return true; |
| 1868 | } |
| 1869 | |
| 1870 | /* Check whether `bitset' is present in `array'. Calls bitset_container_get. */ |
| 1871 | inline bool bitset_container_contains(const bitset_container_t *bitset, |
| 1872 | uint16_t pos) { |
| 1873 | return bitset_container_get(bitset, pos); |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * Check whether a range of bits from position `pos_start' (included) to `pos_end' (excluded) |
| 1878 | * is present in `bitset'. Calls bitset_container_get_all. |
| 1879 | */ |
| 1880 | static inline bool bitset_container_contains_range(const bitset_container_t *bitset, |
| 1881 | uint32_t pos_start, uint32_t pos_end) { |
| 1882 | return bitset_container_get_range(bitset, pos_start, pos_end); |
| 1883 | } |
| 1884 | |
| 1885 | /* Get the number of bits set */ |
| 1886 | static inline int bitset_container_cardinality( |
| 1887 | const bitset_container_t *bitset) { |
| 1888 | return bitset->cardinality; |
| 1889 | } |
| 1890 | |
| 1891 | |
| 1892 | |
| 1893 | |
| 1894 | /* Copy one container into another. We assume that they are distinct. */ |
| 1895 | void bitset_container_copy(const bitset_container_t *source, |
| 1896 | bitset_container_t *dest); |
| 1897 | |
| 1898 | /* Add all the values [min,max) at a distance k*step from min: min, |
| 1899 | * min+step,.... */ |
| 1900 | void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min, |
| 1901 | uint32_t max, uint16_t step); |
| 1902 | |
| 1903 | /* Get the number of bits set (force computation). This does not modify bitset. |
| 1904 | * To update the cardinality, you should do |
| 1905 | * bitset->cardinality = bitset_container_compute_cardinality(bitset).*/ |
| 1906 | int bitset_container_compute_cardinality(const bitset_container_t *bitset); |
| 1907 | |
| 1908 | /* Get whether there is at least one bit set (see bitset_container_empty for the reverse), |
| 1909 | when the cardinality is unknown, it is computed and stored in the struct */ |
| 1910 | static inline bool bitset_container_nonzero_cardinality( |
| 1911 | bitset_container_t *bitset) { |
| 1912 | // account for laziness |
| 1913 | if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) { |
| 1914 | // could bail early instead with a nonzero result |
| 1915 | bitset->cardinality = bitset_container_compute_cardinality(bitset); |
| 1916 | } |
| 1917 | return bitset->cardinality > 0; |
| 1918 | } |
| 1919 | |
| 1920 | /* Check whether this bitset is empty (see bitset_container_nonzero_cardinality for the reverse), |
| 1921 | * it never modifies the bitset struct. */ |
| 1922 | static inline bool bitset_container_empty( |
| 1923 | const bitset_container_t *bitset) { |
| 1924 | if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) { |
| 1925 | for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i ++) { |
| 1926 | if((bitset->array[i]) != 0) return false; |
| 1927 | } |
| 1928 | return true; |
| 1929 | } |
| 1930 | return bitset->cardinality == 0; |
| 1931 | } |
| 1932 | |
| 1933 | |
| 1934 | /* Get whether there is at least one bit set (see bitset_container_empty for the reverse), |
| 1935 | the bitset is never modified */ |
| 1936 | static inline bool bitset_container_const_nonzero_cardinality( |
| 1937 | const bitset_container_t *bitset) { |
| 1938 | return !bitset_container_empty(bitset); |
| 1939 | } |
| 1940 | |
| 1941 | /* |
| 1942 | * Check whether the two bitsets intersect |
| 1943 | */ |
| 1944 | bool bitset_container_intersect(const bitset_container_t *src_1, |
| 1945 | const bitset_container_t *src_2); |
| 1946 | |
| 1947 | /* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the |
| 1948 | * cardinality. */ |
| 1949 | int bitset_container_or(const bitset_container_t *src_1, |
| 1950 | const bitset_container_t *src_2, |
| 1951 | bitset_container_t *dst); |
| 1952 | |
| 1953 | /* Computes the union of bitsets `src_1' and `src_2' and return the cardinality. |
| 1954 | */ |
| 1955 | int bitset_container_or_justcard(const bitset_container_t *src_1, |
| 1956 | const bitset_container_t *src_2); |
| 1957 | |
| 1958 | /* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the |
| 1959 | * cardinality. Same as bitset_container_or. */ |
| 1960 | int bitset_container_union(const bitset_container_t *src_1, |
| 1961 | const bitset_container_t *src_2, |
| 1962 | bitset_container_t *dst); |
| 1963 | |
| 1964 | /* Computes the union of bitsets `src_1' and `src_2' and return the |
| 1965 | * cardinality. Same as bitset_container_or_justcard. */ |
| 1966 | int bitset_container_union_justcard(const bitset_container_t *src_1, |
| 1967 | const bitset_container_t *src_2); |
| 1968 | |
| 1969 | /* Computes the union of bitsets `src_1' and `src_2' into `dst', but does not |
| 1970 | * update the cardinality. Provided to optimize chained operations. */ |
| 1971 | int bitset_container_or_nocard(const bitset_container_t *src_1, |
| 1972 | const bitset_container_t *src_2, |
| 1973 | bitset_container_t *dst); |
| 1974 | |
| 1975 | /* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and |
| 1976 | * return the cardinality. */ |
| 1977 | int bitset_container_and(const bitset_container_t *src_1, |
| 1978 | const bitset_container_t *src_2, |
| 1979 | bitset_container_t *dst); |
| 1980 | |
| 1981 | /* Computes the intersection of bitsets `src_1' and `src_2' and return the |
| 1982 | * cardinality. */ |
| 1983 | int bitset_container_and_justcard(const bitset_container_t *src_1, |
| 1984 | const bitset_container_t *src_2); |
| 1985 | |
| 1986 | /* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and |
| 1987 | * return the cardinality. Same as bitset_container_and. */ |
| 1988 | int bitset_container_intersection(const bitset_container_t *src_1, |
| 1989 | const bitset_container_t *src_2, |
| 1990 | bitset_container_t *dst); |
| 1991 | |
| 1992 | /* Computes the intersection of bitsets `src_1' and `src_2' and return the |
| 1993 | * cardinality. Same as bitset_container_and_justcard. */ |
| 1994 | int bitset_container_intersection_justcard(const bitset_container_t *src_1, |
| 1995 | const bitset_container_t *src_2); |
| 1996 | |
| 1997 | /* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but does |
| 1998 | * not update the cardinality. Provided to optimize chained operations. */ |
| 1999 | int bitset_container_and_nocard(const bitset_container_t *src_1, |
| 2000 | const bitset_container_t *src_2, |
| 2001 | bitset_container_t *dst); |
| 2002 | |
| 2003 | /* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst' and |
| 2004 | * return the cardinality. */ |
| 2005 | int bitset_container_xor(const bitset_container_t *src_1, |
| 2006 | const bitset_container_t *src_2, |
| 2007 | bitset_container_t *dst); |
| 2008 | |
| 2009 | /* Computes the exclusive or of bitsets `src_1' and `src_2' and return the |
| 2010 | * cardinality. */ |
| 2011 | int bitset_container_xor_justcard(const bitset_container_t *src_1, |
| 2012 | const bitset_container_t *src_2); |
| 2013 | |
| 2014 | /* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst', but does |
| 2015 | * not update the cardinality. Provided to optimize chained operations. */ |
| 2016 | int bitset_container_xor_nocard(const bitset_container_t *src_1, |
| 2017 | const bitset_container_t *src_2, |
| 2018 | bitset_container_t *dst); |
| 2019 | |
| 2020 | /* Computes the and not of bitsets `src_1' and `src_2' into `dst' and return the |
| 2021 | * cardinality. */ |
| 2022 | int bitset_container_andnot(const bitset_container_t *src_1, |
| 2023 | const bitset_container_t *src_2, |
| 2024 | bitset_container_t *dst); |
| 2025 | |
| 2026 | /* Computes the and not of bitsets `src_1' and `src_2' and return the |
| 2027 | * cardinality. */ |
| 2028 | int bitset_container_andnot_justcard(const bitset_container_t *src_1, |
| 2029 | const bitset_container_t *src_2); |
| 2030 | |
| 2031 | /* Computes the and not or of bitsets `src_1' and `src_2' into `dst', but does |
| 2032 | * not update the cardinality. Provided to optimize chained operations. */ |
| 2033 | int bitset_container_andnot_nocard(const bitset_container_t *src_1, |
| 2034 | const bitset_container_t *src_2, |
| 2035 | bitset_container_t *dst); |
| 2036 | |
| 2037 | /* |
| 2038 | * Write out the 16-bit integers contained in this container as a list of 32-bit |
| 2039 | * integers using base |
| 2040 | * as the starting value (it might be expected that base has zeros in its 16 |
| 2041 | * least significant bits). |
| 2042 | * The function returns the number of values written. |
| 2043 | * The caller is responsible for allocating enough memory in out. |
| 2044 | * The out pointer should point to enough memory (the cardinality times 32 |
| 2045 | * bits). |
| 2046 | */ |
| 2047 | int bitset_container_to_uint32_array(void *out, const bitset_container_t *cont, |
| 2048 | uint32_t base); |
| 2049 | |
| 2050 | /* |
| 2051 | * Print this container using printf (useful for debugging). |
| 2052 | */ |
| 2053 | void bitset_container_printf(const bitset_container_t *v); |
| 2054 | |
| 2055 | /* |
| 2056 | * Print this container using printf as a comma-separated list of 32-bit |
| 2057 | * integers starting at base. |
| 2058 | */ |
| 2059 | void bitset_container_printf_as_uint32_array(const bitset_container_t *v, |
| 2060 | uint32_t base); |
| 2061 | |
| 2062 | /** |
| 2063 | * Return the serialized size in bytes of a container. |
| 2064 | */ |
| 2065 | static inline int32_t bitset_container_serialized_size_in_bytes(void) { |
| 2066 | return BITSET_CONTAINER_SIZE_IN_WORDS * 8; |
| 2067 | } |
| 2068 | |
| 2069 | /** |
| 2070 | * Return the the number of runs. |
| 2071 | */ |
| 2072 | int bitset_container_number_of_runs(bitset_container_t *b); |
| 2073 | |
| 2074 | bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base, |
| 2075 | roaring_iterator iterator, void *ptr); |
| 2076 | bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base, |
| 2077 | roaring_iterator64 iterator, uint64_t high_bits, |
| 2078 | void *ptr); |
| 2079 | |
| 2080 | /** |
| 2081 | * Writes the underlying array to buf, outputs how many bytes were written. |
| 2082 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
| 2083 | * Roaring. |
| 2084 | * The number of bytes written should be |
| 2085 | * bitset_container_size_in_bytes(container). |
| 2086 | */ |
| 2087 | int32_t bitset_container_write(const bitset_container_t *container, char *buf); |
| 2088 | |
| 2089 | /** |
| 2090 | * Reads the instance from buf, outputs how many bytes were read. |
| 2091 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
| 2092 | * Roaring. |
| 2093 | * The number of bytes read should be bitset_container_size_in_bytes(container). |
| 2094 | * You need to provide the (known) cardinality. |
| 2095 | */ |
| 2096 | int32_t bitset_container_read(int32_t cardinality, |
| 2097 | bitset_container_t *container, const char *buf); |
| 2098 | /** |
| 2099 | * Return the serialized size in bytes of a container (see |
| 2100 | * bitset_container_write). |
| 2101 | * This is meant to be compatible with the Java and Go versions of Roaring and |
| 2102 | * assumes |
| 2103 | * that the cardinality of the container is already known or can be computed. |
| 2104 | */ |
| 2105 | static inline int32_t bitset_container_size_in_bytes( |
| 2106 | const bitset_container_t *container) { |
| 2107 | (void)container; |
| 2108 | return BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); |
| 2109 | } |
| 2110 | |
| 2111 | /** |
| 2112 | * Return true if the two containers have the same content. |
| 2113 | */ |
| 2114 | bool bitset_container_equals(const bitset_container_t *container1, |
| 2115 | const bitset_container_t *container2); |
| 2116 | |
| 2117 | /** |
| 2118 | * Return true if container1 is a subset of container2. |
| 2119 | */ |
| 2120 | bool bitset_container_is_subset(const bitset_container_t *container1, |
| 2121 | const bitset_container_t *container2); |
| 2122 | |
| 2123 | /** |
| 2124 | * If the element of given rank is in this container, supposing that the first |
| 2125 | * element has rank start_rank, then the function returns true and sets element |
| 2126 | * accordingly. |
| 2127 | * Otherwise, it returns false and update start_rank. |
| 2128 | */ |
| 2129 | bool bitset_container_select(const bitset_container_t *container, |
| 2130 | uint32_t *start_rank, uint32_t rank, |
| 2131 | uint32_t *element); |
| 2132 | |
| 2133 | /* Returns the smallest value (assumes not empty) */ |
| 2134 | uint16_t bitset_container_minimum(const bitset_container_t *container); |
| 2135 | |
| 2136 | /* Returns the largest value (assumes not empty) */ |
| 2137 | uint16_t bitset_container_maximum(const bitset_container_t *container); |
| 2138 | |
| 2139 | /* Returns the number of values equal or smaller than x */ |
| 2140 | int bitset_container_rank(const bitset_container_t *container, uint16_t x); |
| 2141 | |
| 2142 | /* Returns the index of the first value equal or larger than x, or -1 */ |
| 2143 | int bitset_container_index_equalorlarger(const bitset_container_t *container, uint16_t x); |
| 2144 | #endif /* INCLUDE_CONTAINERS_BITSET_H_ */ |
| 2145 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/bitset.h */ |
| 2146 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/run.h */ |
| 2147 | /* |
| 2148 | * run.h |
| 2149 | * |
| 2150 | */ |
| 2151 | |
| 2152 | #ifndef INCLUDE_CONTAINERS_RUN_H_ |
| 2153 | #define INCLUDE_CONTAINERS_RUN_H_ |
| 2154 | |
| 2155 | #ifdef __cplusplus |
| 2156 | extern "C" { |
| 2157 | #endif |
| 2158 | |
| 2159 | #include <assert.h> |
| 2160 | #include <stdbool.h> |
| 2161 | #include <stdint.h> |
| 2162 | #include <string.h> |
| 2163 | |
| 2164 | |
| 2165 | /* struct rle16_s - run length pair |
| 2166 | * |
| 2167 | * @value: start position of the run |
| 2168 | * @length: length of the run is `length + 1` |
| 2169 | * |
| 2170 | * An RLE pair {v, l} would represent the integers between the interval |
| 2171 | * [v, v+l+1], e.g. {3, 2} = [3, 4, 5]. |
| 2172 | */ |
| 2173 | struct rle16_s { |
| 2174 | uint16_t value; |
| 2175 | uint16_t length; |
| 2176 | }; |
| 2177 | |
| 2178 | typedef struct rle16_s rle16_t; |
| 2179 | |
| 2180 | /* struct run_container_s - run container bitmap |
| 2181 | * |
| 2182 | * @n_runs: number of rle_t pairs in `runs`. |
| 2183 | * @capacity: capacity in rle_t pairs `runs` can hold. |
| 2184 | * @runs: pairs of rle_t. |
| 2185 | * |
| 2186 | */ |
| 2187 | struct run_container_s { |
| 2188 | int32_t n_runs; |
| 2189 | int32_t capacity; |
| 2190 | rle16_t *runs; |
| 2191 | }; |
| 2192 | |
| 2193 | typedef struct run_container_s run_container_t; |
| 2194 | |
| 2195 | /* Create a new run container. Return NULL in case of failure. */ |
| 2196 | run_container_t *run_container_create(void); |
| 2197 | |
| 2198 | /* Create a new run container with given capacity. Return NULL in case of |
| 2199 | * failure. */ |
| 2200 | run_container_t *run_container_create_given_capacity(int32_t size); |
| 2201 | |
| 2202 | /* |
| 2203 | * Shrink the capacity to the actual size, return the number of bytes saved. |
| 2204 | */ |
| 2205 | int run_container_shrink_to_fit(run_container_t *src); |
| 2206 | |
| 2207 | /* Free memory owned by `run'. */ |
| 2208 | void run_container_free(run_container_t *run); |
| 2209 | |
| 2210 | /* Duplicate container */ |
| 2211 | run_container_t *run_container_clone(const run_container_t *src); |
| 2212 | |
| 2213 | int32_t run_container_serialize(const run_container_t *container, |
| 2214 | char *buf) WARN_UNUSED; |
| 2215 | |
| 2216 | uint32_t run_container_serialization_len(const run_container_t *container); |
| 2217 | |
| 2218 | void *run_container_deserialize(const char *buf, size_t buf_len); |
| 2219 | |
| 2220 | /* |
| 2221 | * Effectively deletes the value at index index, repacking data. |
| 2222 | */ |
| 2223 | static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) { |
| 2224 | memmove(run->runs + index, run->runs + (1 + index), |
| 2225 | (run->n_runs - index - 1) * sizeof(rle16_t)); |
| 2226 | run->n_runs--; |
| 2227 | } |
| 2228 | |
| 2229 | /** |
| 2230 | * Good old binary search through rle data |
| 2231 | */ |
| 2232 | inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray, |
| 2233 | uint16_t ikey) { |
| 2234 | int32_t low = 0; |
| 2235 | int32_t high = lenarray - 1; |
| 2236 | while (low <= high) { |
| 2237 | int32_t middleIndex = (low + high) >> 1; |
| 2238 | uint16_t middleValue = array[middleIndex].value; |
| 2239 | if (middleValue < ikey) { |
| 2240 | low = middleIndex + 1; |
| 2241 | } else if (middleValue > ikey) { |
| 2242 | high = middleIndex - 1; |
| 2243 | } else { |
| 2244 | return middleIndex; |
| 2245 | } |
| 2246 | } |
| 2247 | return -(low + 1); |
| 2248 | } |
| 2249 | |
| 2250 | /* |
| 2251 | * Returns index of the run which contains $ikey |
| 2252 | */ |
| 2253 | static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray, |
| 2254 | uint16_t ikey) { |
| 2255 | int32_t low = 0; |
| 2256 | int32_t high = lenarray - 1; |
| 2257 | while (low <= high) { |
| 2258 | int32_t middleIndex = (low + high) >> 1; |
| 2259 | uint16_t min = array[middleIndex].value; |
| 2260 | uint16_t max = array[middleIndex].value + array[middleIndex].length; |
| 2261 | if (ikey > max) { |
| 2262 | low = middleIndex + 1; |
| 2263 | } else if (ikey < min) { |
| 2264 | high = middleIndex - 1; |
| 2265 | } else { |
| 2266 | return middleIndex; |
| 2267 | } |
| 2268 | } |
| 2269 | return -(low + 1); |
| 2270 | } |
| 2271 | |
| 2272 | |
| 2273 | /** |
| 2274 | * Returns number of runs which can'be be merged with the key because they |
| 2275 | * are less than the key. |
| 2276 | * Note that [5,6,7,8] can be merged with the key 9 and won't be counted. |
| 2277 | */ |
| 2278 | static inline int32_t rle16_count_less(const rle16_t* array, int32_t lenarray, |
| 2279 | uint16_t key) { |
| 2280 | if (lenarray == 0) return 0; |
| 2281 | int32_t low = 0; |
| 2282 | int32_t high = lenarray - 1; |
| 2283 | while (low <= high) { |
| 2284 | int32_t middleIndex = (low + high) >> 1; |
| 2285 | uint16_t min_value = array[middleIndex].value; |
| 2286 | uint16_t max_value = array[middleIndex].value + array[middleIndex].length; |
| 2287 | if (max_value + UINT32_C(1) < key) { // uint32 arithmetic |
| 2288 | low = middleIndex + 1; |
| 2289 | } else if (key < min_value) { |
| 2290 | high = middleIndex - 1; |
| 2291 | } else { |
| 2292 | return middleIndex; |
| 2293 | } |
| 2294 | } |
| 2295 | return low; |
| 2296 | } |
| 2297 | |
| 2298 | static inline int32_t rle16_count_greater(const rle16_t* array, int32_t lenarray, |
| 2299 | uint16_t key) { |
| 2300 | if (lenarray == 0) return 0; |
| 2301 | int32_t low = 0; |
| 2302 | int32_t high = lenarray - 1; |
| 2303 | while (low <= high) { |
| 2304 | int32_t middleIndex = (low + high) >> 1; |
| 2305 | uint16_t min_value = array[middleIndex].value; |
| 2306 | uint16_t max_value = array[middleIndex].value + array[middleIndex].length; |
| 2307 | if (max_value < key) { |
| 2308 | low = middleIndex + 1; |
| 2309 | } else if (key + UINT32_C(1) < min_value) { // uint32 arithmetic |
| 2310 | high = middleIndex - 1; |
| 2311 | } else { |
| 2312 | return lenarray - (middleIndex + 1); |
| 2313 | } |
| 2314 | } |
| 2315 | return lenarray - low; |
| 2316 | } |
| 2317 | |
| 2318 | /** |
| 2319 | * increase capacity to at least min. Whether the |
| 2320 | * existing data needs to be copied over depends on copy. If "copy" is false, |
| 2321 | * then the new content will be uninitialized, otherwise a copy is made. |
| 2322 | */ |
| 2323 | void run_container_grow(run_container_t *run, int32_t min, bool copy); |
| 2324 | |
| 2325 | /** |
| 2326 | * Moves the data so that we can write data at index |
| 2327 | */ |
| 2328 | static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) { |
| 2329 | /* This function calls realloc + memmove sequentially to move by one index. |
| 2330 | * Potentially copying twice the array. |
| 2331 | */ |
| 2332 | if (run->n_runs + 1 > run->capacity) |
| 2333 | run_container_grow(run, run->n_runs + 1, true); |
| 2334 | memmove(run->runs + 1 + index, run->runs + index, |
| 2335 | (run->n_runs - index) * sizeof(rle16_t)); |
| 2336 | run->n_runs++; |
| 2337 | } |
| 2338 | |
| 2339 | /* Add `pos' to `run'. Returns true if `pos' was not present. */ |
| 2340 | bool run_container_add(run_container_t *run, uint16_t pos); |
| 2341 | |
| 2342 | /* Remove `pos' from `run'. Returns true if `pos' was present. */ |
| 2343 | static inline bool run_container_remove(run_container_t *run, uint16_t pos) { |
| 2344 | int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); |
| 2345 | if (index >= 0) { |
| 2346 | int32_t le = run->runs[index].length; |
| 2347 | if (le == 0) { |
| 2348 | recoverRoomAtIndex(run, (uint16_t)index); |
| 2349 | } else { |
| 2350 | run->runs[index].value++; |
| 2351 | run->runs[index].length--; |
| 2352 | } |
| 2353 | return true; |
| 2354 | } |
| 2355 | index = -index - 2; // points to preceding value, possibly -1 |
| 2356 | if (index >= 0) { // possible match |
| 2357 | int32_t offset = pos - run->runs[index].value; |
| 2358 | int32_t le = run->runs[index].length; |
| 2359 | if (offset < le) { |
| 2360 | // need to break in two |
| 2361 | run->runs[index].length = (uint16_t)(offset - 1); |
| 2362 | // need to insert |
| 2363 | uint16_t newvalue = pos + 1; |
| 2364 | int32_t newlength = le - offset - 1; |
| 2365 | makeRoomAtIndex(run, (uint16_t)(index + 1)); |
| 2366 | run->runs[index + 1].value = newvalue; |
| 2367 | run->runs[index + 1].length = (uint16_t)newlength; |
| 2368 | return true; |
| 2369 | |
| 2370 | } else if (offset == le) { |
| 2371 | run->runs[index].length--; |
| 2372 | return true; |
| 2373 | } |
| 2374 | } |
| 2375 | // no match |
| 2376 | return false; |
| 2377 | } |
| 2378 | |
| 2379 | /* Check whether `pos' is present in `run'. */ |
| 2380 | inline bool run_container_contains(const run_container_t *run, uint16_t pos) { |
| 2381 | int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); |
| 2382 | if (index >= 0) return true; |
| 2383 | index = -index - 2; // points to preceding value, possibly -1 |
| 2384 | if (index != -1) { // possible match |
| 2385 | int32_t offset = pos - run->runs[index].value; |
| 2386 | int32_t le = run->runs[index].length; |
| 2387 | if (offset <= le) return true; |
| 2388 | } |
| 2389 | return false; |
| 2390 | } |
| 2391 | |
| 2392 | /* |
| 2393 | * Check whether all positions in a range of positions from pos_start (included) |
| 2394 | * to pos_end (excluded) is present in `run'. |
| 2395 | */ |
| 2396 | static inline bool run_container_contains_range(const run_container_t *run, |
| 2397 | uint32_t pos_start, uint32_t pos_end) { |
| 2398 | uint32_t count = 0; |
| 2399 | int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos_start); |
| 2400 | if (index < 0) { |
| 2401 | index = -index - 2; |
| 2402 | if ((index == -1) || ((pos_start - run->runs[index].value) > run->runs[index].length)){ |
| 2403 | return false; |
| 2404 | } |
| 2405 | } |
| 2406 | for (int32_t i = index; i < run->n_runs; ++i) { |
| 2407 | const uint32_t stop = run->runs[i].value + run->runs[i].length; |
| 2408 | if (run->runs[i].value >= pos_end) break; |
| 2409 | if (stop >= pos_end) { |
| 2410 | count += (((pos_end - run->runs[i].value) > 0) ? (pos_end - run->runs[i].value) : 0); |
| 2411 | break; |
| 2412 | } |
| 2413 | const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0; |
| 2414 | count += (min < run->runs[i].length) ? min : run->runs[i].length; |
| 2415 | } |
| 2416 | return count >= (pos_end - pos_start - 1); |
| 2417 | } |
| 2418 | |
| 2419 | #ifdef USEAVX |
| 2420 | |
| 2421 | /* Get the cardinality of `run'. Requires an actual computation. */ |
| 2422 | static inline int run_container_cardinality(const run_container_t *run) { |
| 2423 | const int32_t n_runs = run->n_runs; |
| 2424 | const rle16_t *runs = run->runs; |
| 2425 | |
| 2426 | /* by initializing with n_runs, we omit counting the +1 for each pair. */ |
| 2427 | int sum = n_runs; |
| 2428 | int32_t k = 0; |
| 2429 | const int32_t step = sizeof(__m256i) / sizeof(rle16_t); |
| 2430 | if (n_runs > step) { |
| 2431 | __m256i total = _mm256_setzero_si256(); |
| 2432 | for (; k + step <= n_runs; k += step) { |
| 2433 | __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k)); |
| 2434 | __m256i justlengths = _mm256_srli_epi32(ymm1, 16); |
| 2435 | total = _mm256_add_epi32(total, justlengths); |
| 2436 | } |
| 2437 | // a store might be faster than extract? |
| 2438 | uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)]; |
| 2439 | _mm256_storeu_si256((__m256i *)buffer, total); |
| 2440 | sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) + |
| 2441 | (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]); |
| 2442 | } |
| 2443 | for (; k < n_runs; ++k) { |
| 2444 | sum += runs[k].length; |
| 2445 | } |
| 2446 | |
| 2447 | return sum; |
| 2448 | } |
| 2449 | |
| 2450 | #else |
| 2451 | |
| 2452 | /* Get the cardinality of `run'. Requires an actual computation. */ |
| 2453 | static inline int run_container_cardinality(const run_container_t *run) { |
| 2454 | const int32_t n_runs = run->n_runs; |
| 2455 | const rle16_t *runs = run->runs; |
| 2456 | |
| 2457 | /* by initializing with n_runs, we omit counting the +1 for each pair. */ |
| 2458 | int sum = n_runs; |
| 2459 | for (int k = 0; k < n_runs; ++k) { |
| 2460 | sum += runs[k].length; |
| 2461 | } |
| 2462 | |
| 2463 | return sum; |
| 2464 | } |
| 2465 | #endif |
| 2466 | |
| 2467 | /* Card > 0?, see run_container_empty for the reverse */ |
| 2468 | static inline bool run_container_nonzero_cardinality( |
| 2469 | const run_container_t *run) { |
| 2470 | return run->n_runs > 0; // runs never empty |
| 2471 | } |
| 2472 | |
| 2473 | /* Card == 0?, see run_container_nonzero_cardinality for the reverse */ |
| 2474 | static inline bool run_container_empty( |
| 2475 | const run_container_t *run) { |
| 2476 | return run->n_runs == 0; // runs never empty |
| 2477 | } |
| 2478 | |
| 2479 | |
| 2480 | |
| 2481 | /* Copy one container into another. We assume that they are distinct. */ |
| 2482 | void run_container_copy(const run_container_t *src, run_container_t *dst); |
| 2483 | |
| 2484 | /* Set the cardinality to zero (does not release memory). */ |
| 2485 | static inline void run_container_clear(run_container_t *run) { |
| 2486 | run->n_runs = 0; |
| 2487 | } |
| 2488 | |
| 2489 | /** |
| 2490 | * Append run described by vl to the run container, possibly merging. |
| 2491 | * It is assumed that the run would be inserted at the end of the container, no |
| 2492 | * check is made. |
| 2493 | * It is assumed that the run container has the necessary capacity: caller is |
| 2494 | * responsible for checking memory capacity. |
| 2495 | * |
| 2496 | * |
| 2497 | * This is not a safe function, it is meant for performance: use with care. |
| 2498 | */ |
| 2499 | static inline void run_container_append(run_container_t *run, rle16_t vl, |
| 2500 | rle16_t *previousrl) { |
| 2501 | const uint32_t previousend = previousrl->value + previousrl->length; |
| 2502 | if (vl.value > previousend + 1) { // we add a new one |
| 2503 | run->runs[run->n_runs] = vl; |
| 2504 | run->n_runs++; |
| 2505 | *previousrl = vl; |
| 2506 | } else { |
| 2507 | uint32_t newend = vl.value + vl.length + UINT32_C(1); |
| 2508 | if (newend > previousend) { // we merge |
| 2509 | previousrl->length = (uint16_t)(newend - 1 - previousrl->value); |
| 2510 | run->runs[run->n_runs - 1] = *previousrl; |
| 2511 | } |
| 2512 | } |
| 2513 | } |
| 2514 | |
| 2515 | /** |
| 2516 | * Like run_container_append but it is assumed that the content of run is empty. |
| 2517 | */ |
| 2518 | static inline rle16_t run_container_append_first(run_container_t *run, |
| 2519 | rle16_t vl) { |
| 2520 | run->runs[run->n_runs] = vl; |
| 2521 | run->n_runs++; |
| 2522 | return vl; |
| 2523 | } |
| 2524 | |
| 2525 | /** |
| 2526 | * append a single value given by val to the run container, possibly merging. |
| 2527 | * It is assumed that the value would be inserted at the end of the container, |
| 2528 | * no check is made. |
| 2529 | * It is assumed that the run container has the necessary capacity: caller is |
| 2530 | * responsible for checking memory capacity. |
| 2531 | * |
| 2532 | * This is not a safe function, it is meant for performance: use with care. |
| 2533 | */ |
| 2534 | static inline void run_container_append_value(run_container_t *run, |
| 2535 | uint16_t val, |
| 2536 | rle16_t *previousrl) { |
| 2537 | const uint32_t previousend = previousrl->value + previousrl->length; |
| 2538 | if (val > previousend + 1) { // we add a new one |
| 2539 | //*previousrl = (rle16_t){.value = val, .length = 0};// requires C99 |
| 2540 | previousrl->value = val; |
| 2541 | previousrl->length = 0; |
| 2542 | |
| 2543 | run->runs[run->n_runs] = *previousrl; |
| 2544 | run->n_runs++; |
| 2545 | } else if (val == previousend + 1) { // we merge |
| 2546 | previousrl->length++; |
| 2547 | run->runs[run->n_runs - 1] = *previousrl; |
| 2548 | } |
| 2549 | } |
| 2550 | |
| 2551 | /** |
| 2552 | * Like run_container_append_value but it is assumed that the content of run is |
| 2553 | * empty. |
| 2554 | */ |
| 2555 | static inline rle16_t run_container_append_value_first(run_container_t *run, |
| 2556 | uint16_t val) { |
| 2557 | // rle16_t newrle = (rle16_t){.value = val, .length = 0};// requires C99 |
| 2558 | rle16_t newrle; |
| 2559 | newrle.value = val; |
| 2560 | newrle.length = 0; |
| 2561 | |
| 2562 | run->runs[run->n_runs] = newrle; |
| 2563 | run->n_runs++; |
| 2564 | return newrle; |
| 2565 | } |
| 2566 | |
| 2567 | /* Check whether the container spans the whole chunk (cardinality = 1<<16). |
| 2568 | * This check can be done in constant time (inexpensive). */ |
| 2569 | static inline bool run_container_is_full(const run_container_t *run) { |
| 2570 | rle16_t vl = run->runs[0]; |
| 2571 | return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF); |
| 2572 | } |
| 2573 | |
| 2574 | /* Compute the union of `src_1' and `src_2' and write the result to `dst' |
| 2575 | * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ |
| 2576 | void run_container_union(const run_container_t *src_1, |
| 2577 | const run_container_t *src_2, run_container_t *dst); |
| 2578 | |
| 2579 | /* Compute the union of `src_1' and `src_2' and write the result to `src_1' */ |
| 2580 | void run_container_union_inplace(run_container_t *src_1, |
| 2581 | const run_container_t *src_2); |
| 2582 | |
| 2583 | /* Compute the intersection of src_1 and src_2 and write the result to |
| 2584 | * dst. It is assumed that dst is distinct from both src_1 and src_2. */ |
| 2585 | void run_container_intersection(const run_container_t *src_1, |
| 2586 | const run_container_t *src_2, |
| 2587 | run_container_t *dst); |
| 2588 | |
| 2589 | /* Compute the size of the intersection of src_1 and src_2 . */ |
| 2590 | int run_container_intersection_cardinality(const run_container_t *src_1, |
| 2591 | const run_container_t *src_2); |
| 2592 | |
| 2593 | /* Check whether src_1 and src_2 intersect. */ |
| 2594 | bool run_container_intersect(const run_container_t *src_1, |
| 2595 | const run_container_t *src_2); |
| 2596 | |
| 2597 | /* Compute the symmetric difference of `src_1' and `src_2' and write the result |
| 2598 | * to `dst' |
| 2599 | * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ |
| 2600 | void run_container_xor(const run_container_t *src_1, |
| 2601 | const run_container_t *src_2, run_container_t *dst); |
| 2602 | |
| 2603 | /* |
| 2604 | * Write out the 16-bit integers contained in this container as a list of 32-bit |
| 2605 | * integers using base |
| 2606 | * as the starting value (it might be expected that base has zeros in its 16 |
| 2607 | * least significant bits). |
| 2608 | * The function returns the number of values written. |
| 2609 | * The caller is responsible for allocating enough memory in out. |
| 2610 | */ |
| 2611 | int run_container_to_uint32_array(void *vout, const run_container_t *cont, |
| 2612 | uint32_t base); |
| 2613 | |
| 2614 | /* |
| 2615 | * Print this container using printf (useful for debugging). |
| 2616 | */ |
| 2617 | void run_container_printf(const run_container_t *v); |
| 2618 | |
| 2619 | /* |
| 2620 | * Print this container using printf as a comma-separated list of 32-bit |
| 2621 | * integers starting at base. |
| 2622 | */ |
| 2623 | void run_container_printf_as_uint32_array(const run_container_t *v, |
| 2624 | uint32_t base); |
| 2625 | |
| 2626 | /** |
| 2627 | * Return the serialized size in bytes of a container having "num_runs" runs. |
| 2628 | */ |
| 2629 | static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs) { |
| 2630 | return sizeof(uint16_t) + |
| 2631 | sizeof(rle16_t) * num_runs; // each run requires 2 2-byte entries. |
| 2632 | } |
| 2633 | |
| 2634 | bool run_container_iterate(const run_container_t *cont, uint32_t base, |
| 2635 | roaring_iterator iterator, void *ptr); |
| 2636 | bool run_container_iterate64(const run_container_t *cont, uint32_t base, |
| 2637 | roaring_iterator64 iterator, uint64_t high_bits, |
| 2638 | void *ptr); |
| 2639 | |
| 2640 | /** |
| 2641 | * Writes the underlying array to buf, outputs how many bytes were written. |
| 2642 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
| 2643 | * Roaring. |
| 2644 | * The number of bytes written should be run_container_size_in_bytes(container). |
| 2645 | */ |
| 2646 | int32_t run_container_write(const run_container_t *container, char *buf); |
| 2647 | |
| 2648 | /** |
| 2649 | * Reads the instance from buf, outputs how many bytes were read. |
| 2650 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
| 2651 | * Roaring. |
| 2652 | * The number of bytes read should be bitset_container_size_in_bytes(container). |
| 2653 | * The cardinality parameter is provided for consistency with other containers, |
| 2654 | * but |
| 2655 | * it might be effectively ignored.. |
| 2656 | */ |
| 2657 | int32_t run_container_read(int32_t cardinality, run_container_t *container, |
| 2658 | const char *buf); |
| 2659 | |
| 2660 | /** |
| 2661 | * Return the serialized size in bytes of a container (see run_container_write). |
| 2662 | * This is meant to be compatible with the Java and Go versions of Roaring. |
| 2663 | */ |
| 2664 | static inline int32_t run_container_size_in_bytes( |
| 2665 | const run_container_t *container) { |
| 2666 | return run_container_serialized_size_in_bytes(container->n_runs); |
| 2667 | } |
| 2668 | |
| 2669 | /** |
| 2670 | * Return true if the two containers have the same content. |
| 2671 | */ |
| 2672 | bool run_container_equals(const run_container_t *container1, |
| 2673 | const run_container_t *container2); |
| 2674 | |
| 2675 | /** |
| 2676 | * Return true if container1 is a subset of container2. |
| 2677 | */ |
| 2678 | bool run_container_is_subset(const run_container_t *container1, |
| 2679 | const run_container_t *container2); |
| 2680 | |
| 2681 | /** |
| 2682 | * Used in a start-finish scan that appends segments, for XOR and NOT |
| 2683 | */ |
| 2684 | |
| 2685 | void run_container_smart_append_exclusive(run_container_t *src, |
| 2686 | const uint16_t start, |
| 2687 | const uint16_t length); |
| 2688 | |
| 2689 | /** |
| 2690 | * The new container consists of a single run [start,stop). |
| 2691 | * It is required that stop>start, the caller is responsability for this check. |
| 2692 | * It is required that stop <= (1<<16), the caller is responsability for this check. |
| 2693 | * The cardinality of the created container is stop - start. |
| 2694 | * Returns NULL on failure |
| 2695 | */ |
| 2696 | static inline run_container_t *run_container_create_range(uint32_t start, |
| 2697 | uint32_t stop) { |
| 2698 | run_container_t *rc = run_container_create_given_capacity(1); |
| 2699 | if (rc) { |
| 2700 | rle16_t r; |
| 2701 | r.value = (uint16_t)start; |
| 2702 | r.length = (uint16_t)(stop - start - 1); |
| 2703 | run_container_append_first(rc, r); |
| 2704 | } |
| 2705 | return rc; |
| 2706 | } |
| 2707 | |
| 2708 | /** |
| 2709 | * If the element of given rank is in this container, supposing that the first |
| 2710 | * element has rank start_rank, then the function returns true and sets element |
| 2711 | * accordingly. |
| 2712 | * Otherwise, it returns false and update start_rank. |
| 2713 | */ |
| 2714 | bool run_container_select(const run_container_t *container, |
| 2715 | uint32_t *start_rank, uint32_t rank, |
| 2716 | uint32_t *element); |
| 2717 | |
| 2718 | /* Compute the difference of src_1 and src_2 and write the result to |
| 2719 | * dst. It is assumed that dst is distinct from both src_1 and src_2. */ |
| 2720 | |
| 2721 | void run_container_andnot(const run_container_t *src_1, |
| 2722 | const run_container_t *src_2, run_container_t *dst); |
| 2723 | |
| 2724 | /* Returns the smallest value (assumes not empty) */ |
| 2725 | inline uint16_t run_container_minimum(const run_container_t *run) { |
| 2726 | if (run->n_runs == 0) return 0; |
| 2727 | return run->runs[0].value; |
| 2728 | } |
| 2729 | |
| 2730 | /* Returns the largest value (assumes not empty) */ |
| 2731 | inline uint16_t run_container_maximum(const run_container_t *run) { |
| 2732 | if (run->n_runs == 0) return 0; |
| 2733 | return run->runs[run->n_runs - 1].value + run->runs[run->n_runs - 1].length; |
| 2734 | } |
| 2735 | |
| 2736 | /* Returns the number of values equal or smaller than x */ |
| 2737 | int run_container_rank(const run_container_t *arr, uint16_t x); |
| 2738 | |
| 2739 | /* Returns the index of the first run containing a value at least as large as x, or -1 */ |
| 2740 | inline int run_container_index_equalorlarger(const run_container_t *arr, uint16_t x) { |
| 2741 | int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x); |
| 2742 | if (index >= 0) return index; |
| 2743 | index = -index - 2; // points to preceding run, possibly -1 |
| 2744 | if (index != -1) { // possible match |
| 2745 | int32_t offset = x - arr->runs[index].value; |
| 2746 | int32_t le = arr->runs[index].length; |
| 2747 | if (offset <= le) return index; |
| 2748 | } |
| 2749 | index += 1; |
| 2750 | if(index < arr->n_runs) { |
| 2751 | return index; |
| 2752 | } |
| 2753 | return -1; |
| 2754 | } |
| 2755 | |
| 2756 | /* |
| 2757 | * Add all values in range [min, max] using hint. |
| 2758 | */ |
| 2759 | static inline void run_container_add_range_nruns(run_container_t* run, |
| 2760 | uint32_t min, uint32_t max, |
| 2761 | int32_t nruns_less, |
| 2762 | int32_t nruns_greater) { |
| 2763 | int32_t nruns_common = run->n_runs - nruns_less - nruns_greater; |
| 2764 | if (nruns_common == 0) { |
| 2765 | makeRoomAtIndex(run, nruns_less); |
| 2766 | run->runs[nruns_less].value = min; |
| 2767 | run->runs[nruns_less].length = max - min; |
| 2768 | } else { |
| 2769 | uint32_t common_min = run->runs[nruns_less].value; |
| 2770 | uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value + |
| 2771 | run->runs[nruns_less + nruns_common - 1].length; |
| 2772 | uint32_t result_min = (common_min < min) ? common_min : min; |
| 2773 | uint32_t result_max = (common_max > max) ? common_max : max; |
| 2774 | |
| 2775 | run->runs[nruns_less].value = result_min; |
| 2776 | run->runs[nruns_less].length = result_max - result_min; |
| 2777 | |
| 2778 | memmove(&(run->runs[nruns_less + 1]), |
| 2779 | &(run->runs[run->n_runs - nruns_greater]), |
| 2780 | nruns_greater*sizeof(rle16_t)); |
| 2781 | run->n_runs = nruns_less + 1 + nruns_greater; |
| 2782 | } |
| 2783 | } |
| 2784 | |
| 2785 | /** |
| 2786 | * Add all values in range [min, max] |
| 2787 | */ |
| 2788 | static inline void run_container_add_range(run_container_t* run, |
| 2789 | uint32_t min, uint32_t max) { |
| 2790 | int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max); |
| 2791 | int32_t nruns_less = rle16_count_less(run->runs, run->n_runs - nruns_greater, min); |
| 2792 | run_container_add_range_nruns(run, min, max, nruns_less, nruns_greater); |
| 2793 | } |
| 2794 | |
| 2795 | /** |
| 2796 | * Shifts last $count elements either left (distance < 0) or right (distance > 0) |
| 2797 | */ |
| 2798 | static inline void run_container_shift_tail(run_container_t* run, |
| 2799 | int32_t count, int32_t distance) { |
| 2800 | if (distance > 0) { |
| 2801 | if (run->capacity < count+distance) { |
| 2802 | run_container_grow(run, count+distance, true); |
| 2803 | } |
| 2804 | } |
| 2805 | int32_t srcpos = run->n_runs - count; |
| 2806 | int32_t dstpos = srcpos + distance; |
| 2807 | memmove(&(run->runs[dstpos]), &(run->runs[srcpos]), sizeof(rle16_t) * count); |
| 2808 | run->n_runs += distance; |
| 2809 | } |
| 2810 | |
| 2811 | /** |
| 2812 | * Remove all elements in range [min, max] |
| 2813 | */ |
| 2814 | static inline void run_container_remove_range(run_container_t *run, uint32_t min, uint32_t max) { |
| 2815 | int32_t first = rle16_find_run(run->runs, run->n_runs, min); |
| 2816 | int32_t last = rle16_find_run(run->runs, run->n_runs, max); |
| 2817 | |
| 2818 | if (first >= 0 && min > run->runs[first].value && |
| 2819 | max < run->runs[first].value + run->runs[first].length) { |
| 2820 | // split this run into two adjacent runs |
| 2821 | |
| 2822 | // right subinterval |
| 2823 | makeRoomAtIndex(run, first+1); |
| 2824 | run->runs[first+1].value = max + 1; |
| 2825 | run->runs[first+1].length = (run->runs[first].value + run->runs[first].length) - (max + 1); |
| 2826 | |
| 2827 | // left subinterval |
| 2828 | run->runs[first].length = (min - 1) - run->runs[first].value; |
| 2829 | |
| 2830 | return; |
| 2831 | } |
| 2832 | |
| 2833 | // update left-most partial run |
| 2834 | if (first >= 0) { |
| 2835 | if (min > run->runs[first].value) { |
| 2836 | run->runs[first].length = (min - 1) - run->runs[first].value; |
| 2837 | first++; |
| 2838 | } |
| 2839 | } else { |
| 2840 | first = -first-1; |
| 2841 | } |
| 2842 | |
| 2843 | // update right-most run |
| 2844 | if (last >= 0) { |
| 2845 | uint16_t run_max = run->runs[last].value + run->runs[last].length; |
| 2846 | if (run_max > max) { |
| 2847 | run->runs[last].value = max + 1; |
| 2848 | run->runs[last].length = run_max - (max + 1); |
| 2849 | last--; |
| 2850 | } |
| 2851 | } else { |
| 2852 | last = (-last-1) - 1; |
| 2853 | } |
| 2854 | |
| 2855 | // remove intermediate runs |
| 2856 | if (first <= last) { |
| 2857 | run_container_shift_tail(run, run->n_runs - (last+1), -(last-first+1)); |
| 2858 | } |
| 2859 | } |
| 2860 | |
| 2861 | #ifdef __cplusplus |
| 2862 | } |
| 2863 | #endif |
| 2864 | |
| 2865 | #endif /* INCLUDE_CONTAINERS_RUN_H_ */ |
| 2866 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/run.h */ |
| 2867 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/convert.h */ |
| 2868 | /* |
| 2869 | * convert.h |
| 2870 | * |
| 2871 | */ |
| 2872 | |
| 2873 | #ifndef INCLUDE_CONTAINERS_CONVERT_H_ |
| 2874 | #define INCLUDE_CONTAINERS_CONVERT_H_ |
| 2875 | |
| 2876 | #ifdef __cplusplus |
| 2877 | extern "C" { |
| 2878 | #endif |
| 2879 | |
| 2880 | /* Convert an array into a bitset. The input container is not freed or modified. |
| 2881 | */ |
| 2882 | bitset_container_t *bitset_container_from_array(const array_container_t *arr); |
| 2883 | |
| 2884 | /* Convert a run into a bitset. The input container is not freed or modified. */ |
| 2885 | bitset_container_t *bitset_container_from_run(const run_container_t *arr); |
| 2886 | |
| 2887 | /* Convert a run into an array. The input container is not freed or modified. */ |
| 2888 | array_container_t *array_container_from_run(const run_container_t *arr); |
| 2889 | |
| 2890 | /* Convert a bitset into an array. The input container is not freed or modified. |
| 2891 | */ |
| 2892 | array_container_t *array_container_from_bitset(const bitset_container_t *bits); |
| 2893 | |
| 2894 | /* Convert an array into a run. The input container is not freed or modified. |
| 2895 | */ |
| 2896 | run_container_t *run_container_from_array(const array_container_t *c); |
| 2897 | |
| 2898 | /* convert a run into either an array or a bitset |
| 2899 | * might free the container */ |
| 2900 | void *convert_to_bitset_or_array_container(run_container_t *r, int32_t card, |
| 2901 | uint8_t *resulttype); |
| 2902 | |
| 2903 | /* convert containers to and from runcontainers, as is most space efficient. |
| 2904 | * The container might be freed. */ |
| 2905 | void *convert_run_optimize(void *c, uint8_t typecode_original, |
| 2906 | uint8_t *typecode_after); |
| 2907 | |
| 2908 | /* converts a run container to either an array or a bitset, IF it saves space. |
| 2909 | */ |
| 2910 | /* If a conversion occurs, the caller is responsible to free the original |
| 2911 | * container and |
| 2912 | * he becomes reponsible to free the new one. */ |
| 2913 | void *convert_run_to_efficient_container(run_container_t *c, |
| 2914 | uint8_t *typecode_after); |
| 2915 | // like convert_run_to_efficient_container but frees the old result if needed |
| 2916 | void *convert_run_to_efficient_container_and_free(run_container_t *c, |
| 2917 | uint8_t *typecode_after); |
| 2918 | |
| 2919 | /** |
| 2920 | * Create new bitset container which is a union of run container and |
| 2921 | * range [min, max]. Caller is responsible for freeing run container. |
| 2922 | */ |
| 2923 | bitset_container_t *bitset_container_from_run_range(const run_container_t *run, |
| 2924 | uint32_t min, uint32_t max); |
| 2925 | |
| 2926 | |
| 2927 | #ifdef __cplusplus |
| 2928 | } |
| 2929 | #endif |
| 2930 | |
| 2931 | #endif /* INCLUDE_CONTAINERS_CONVERT_H_ */ |
| 2932 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/convert.h */ |
| 2933 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_equal.h */ |
| 2934 | /* |
| 2935 | * mixed_equal.h |
| 2936 | * |
| 2937 | */ |
| 2938 | |
| 2939 | #ifndef CONTAINERS_MIXED_EQUAL_H_ |
| 2940 | #define CONTAINERS_MIXED_EQUAL_H_ |
| 2941 | |
| 2942 | |
| 2943 | /** |
| 2944 | * Return true if the two containers have the same content. |
| 2945 | */ |
| 2946 | bool array_container_equal_bitset(const array_container_t* container1, |
| 2947 | const bitset_container_t* container2); |
| 2948 | |
| 2949 | /** |
| 2950 | * Return true if the two containers have the same content. |
| 2951 | */ |
| 2952 | bool run_container_equals_array(const run_container_t* container1, |
| 2953 | const array_container_t* container2); |
| 2954 | /** |
| 2955 | * Return true if the two containers have the same content. |
| 2956 | */ |
| 2957 | bool run_container_equals_bitset(const run_container_t* container1, |
| 2958 | const bitset_container_t* container2); |
| 2959 | |
| 2960 | #endif /* CONTAINERS_MIXED_EQUAL_H_ */ |
| 2961 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_equal.h */ |
| 2962 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_subset.h */ |
| 2963 | /* |
| 2964 | * mixed_subset.h |
| 2965 | * |
| 2966 | */ |
| 2967 | |
| 2968 | #ifndef CONTAINERS_MIXED_SUBSET_H_ |
| 2969 | #define CONTAINERS_MIXED_SUBSET_H_ |
| 2970 | |
| 2971 | |
| 2972 | /** |
| 2973 | * Return true if container1 is a subset of container2. |
| 2974 | */ |
| 2975 | bool array_container_is_subset_bitset(const array_container_t* container1, |
| 2976 | const bitset_container_t* container2); |
| 2977 | |
| 2978 | /** |
| 2979 | * Return true if container1 is a subset of container2. |
| 2980 | */ |
| 2981 | bool run_container_is_subset_array(const run_container_t* container1, |
| 2982 | const array_container_t* container2); |
| 2983 | |
| 2984 | /** |
| 2985 | * Return true if container1 is a subset of container2. |
| 2986 | */ |
| 2987 | bool array_container_is_subset_run(const array_container_t* container1, |
| 2988 | const run_container_t* container2); |
| 2989 | |
| 2990 | /** |
| 2991 | * Return true if container1 is a subset of container2. |
| 2992 | */ |
| 2993 | bool run_container_is_subset_bitset(const run_container_t* container1, |
| 2994 | const bitset_container_t* container2); |
| 2995 | |
| 2996 | /** |
| 2997 | * Return true if container1 is a subset of container2. |
| 2998 | */ |
| 2999 | bool bitset_container_is_subset_run(const bitset_container_t* container1, |
| 3000 | const run_container_t* container2); |
| 3001 | |
| 3002 | #endif /* CONTAINERS_MIXED_SUBSET_H_ */ |
| 3003 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_subset.h */ |
| 3004 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_andnot.h */ |
| 3005 | /* |
| 3006 | * mixed_andnot.h |
| 3007 | */ |
| 3008 | #ifndef INCLUDE_CONTAINERS_MIXED_ANDNOT_H_ |
| 3009 | #define INCLUDE_CONTAINERS_MIXED_ANDNOT_H_ |
| 3010 | |
| 3011 | |
| 3012 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3013 | * dst, a valid array container that could be the same as dst.*/ |
| 3014 | void array_bitset_container_andnot(const array_container_t *src_1, |
| 3015 | const bitset_container_t *src_2, |
| 3016 | array_container_t *dst); |
| 3017 | |
| 3018 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3019 | * src_1 */ |
| 3020 | |
| 3021 | void array_bitset_container_iandnot(array_container_t *src_1, |
| 3022 | const bitset_container_t *src_2); |
| 3023 | |
| 3024 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3025 | * dst, which does not initially have a valid container. |
| 3026 | * Return true for a bitset result; false for array |
| 3027 | */ |
| 3028 | |
| 3029 | bool bitset_array_container_andnot(const bitset_container_t *src_1, |
| 3030 | const array_container_t *src_2, void **dst); |
| 3031 | |
| 3032 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3033 | * dst (which has no container initially). It will modify src_1 |
| 3034 | * to be dst if the result is a bitset. Otherwise, it will |
| 3035 | * free src_1 and dst will be a new array container. In both |
| 3036 | * cases, the caller is responsible for deallocating dst. |
| 3037 | * Returns true iff dst is a bitset */ |
| 3038 | |
| 3039 | bool bitset_array_container_iandnot(bitset_container_t *src_1, |
| 3040 | const array_container_t *src_2, void **dst); |
| 3041 | |
| 3042 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3043 | * dst. Result may be either a bitset or an array container |
| 3044 | * (returns "result is bitset"). dst does not initially have |
| 3045 | * any container, but becomes either a bitset container (return |
| 3046 | * result true) or an array container. |
| 3047 | */ |
| 3048 | |
| 3049 | bool run_bitset_container_andnot(const run_container_t *src_1, |
| 3050 | const bitset_container_t *src_2, void **dst); |
| 3051 | |
| 3052 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3053 | * dst. Result may be either a bitset or an array container |
| 3054 | * (returns "result is bitset"). dst does not initially have |
| 3055 | * any container, but becomes either a bitset container (return |
| 3056 | * result true) or an array container. |
| 3057 | */ |
| 3058 | |
| 3059 | bool run_bitset_container_iandnot(run_container_t *src_1, |
| 3060 | const bitset_container_t *src_2, void **dst); |
| 3061 | |
| 3062 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3063 | * dst. Result may be either a bitset or an array container |
| 3064 | * (returns "result is bitset"). dst does not initially have |
| 3065 | * any container, but becomes either a bitset container (return |
| 3066 | * result true) or an array container. |
| 3067 | */ |
| 3068 | |
| 3069 | bool bitset_run_container_andnot(const bitset_container_t *src_1, |
| 3070 | const run_container_t *src_2, void **dst); |
| 3071 | |
| 3072 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3073 | * dst (which has no container initially). It will modify src_1 |
| 3074 | * to be dst if the result is a bitset. Otherwise, it will |
| 3075 | * free src_1 and dst will be a new array container. In both |
| 3076 | * cases, the caller is responsible for deallocating dst. |
| 3077 | * Returns true iff dst is a bitset */ |
| 3078 | |
| 3079 | bool bitset_run_container_iandnot(bitset_container_t *src_1, |
| 3080 | const run_container_t *src_2, void **dst); |
| 3081 | |
| 3082 | /* dst does not indicate a valid container initially. Eventually it |
| 3083 | * can become any type of container. |
| 3084 | */ |
| 3085 | |
| 3086 | int run_array_container_andnot(const run_container_t *src_1, |
| 3087 | const array_container_t *src_2, void **dst); |
| 3088 | |
| 3089 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3090 | * dst (which has no container initially). It will modify src_1 |
| 3091 | * to be dst if the result is a bitset. Otherwise, it will |
| 3092 | * free src_1 and dst will be a new array container. In both |
| 3093 | * cases, the caller is responsible for deallocating dst. |
| 3094 | * Returns true iff dst is a bitset */ |
| 3095 | |
| 3096 | int run_array_container_iandnot(run_container_t *src_1, |
| 3097 | const array_container_t *src_2, void **dst); |
| 3098 | |
| 3099 | /* dst must be a valid array container, allowed to be src_1 */ |
| 3100 | |
| 3101 | void array_run_container_andnot(const array_container_t *src_1, |
| 3102 | const run_container_t *src_2, |
| 3103 | array_container_t *dst); |
| 3104 | |
| 3105 | /* dst does not indicate a valid container initially. Eventually it |
| 3106 | * can become any kind of container. |
| 3107 | */ |
| 3108 | |
| 3109 | void array_run_container_iandnot(array_container_t *src_1, |
| 3110 | const run_container_t *src_2); |
| 3111 | |
| 3112 | /* dst does not indicate a valid container initially. Eventually it |
| 3113 | * can become any kind of container. |
| 3114 | */ |
| 3115 | |
| 3116 | int run_run_container_andnot(const run_container_t *src_1, |
| 3117 | const run_container_t *src_2, void **dst); |
| 3118 | |
| 3119 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3120 | * dst (which has no container initially). It will modify src_1 |
| 3121 | * to be dst if the result is a bitset. Otherwise, it will |
| 3122 | * free src_1 and dst will be a new array container. In both |
| 3123 | * cases, the caller is responsible for deallocating dst. |
| 3124 | * Returns true iff dst is a bitset */ |
| 3125 | |
| 3126 | int run_run_container_iandnot(run_container_t *src_1, |
| 3127 | const run_container_t *src_2, void **dst); |
| 3128 | |
| 3129 | /* |
| 3130 | * dst is a valid array container and may be the same as src_1 |
| 3131 | */ |
| 3132 | |
| 3133 | void array_array_container_andnot(const array_container_t *src_1, |
| 3134 | const array_container_t *src_2, |
| 3135 | array_container_t *dst); |
| 3136 | |
| 3137 | /* inplace array-array andnot will always be able to reuse the space of |
| 3138 | * src_1 */ |
| 3139 | void array_array_container_iandnot(array_container_t *src_1, |
| 3140 | const array_container_t *src_2); |
| 3141 | |
| 3142 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3143 | * dst (which has no container initially). Return value is |
| 3144 | * "dst is a bitset" |
| 3145 | */ |
| 3146 | |
| 3147 | bool bitset_bitset_container_andnot(const bitset_container_t *src_1, |
| 3148 | const bitset_container_t *src_2, |
| 3149 | void **dst); |
| 3150 | |
| 3151 | /* Compute the andnot of src_1 and src_2 and write the result to |
| 3152 | * dst (which has no container initially). It will modify src_1 |
| 3153 | * to be dst if the result is a bitset. Otherwise, it will |
| 3154 | * free src_1 and dst will be a new array container. In both |
| 3155 | * cases, the caller is responsible for deallocating dst. |
| 3156 | * Returns true iff dst is a bitset */ |
| 3157 | |
| 3158 | bool bitset_bitset_container_iandnot(bitset_container_t *src_1, |
| 3159 | const bitset_container_t *src_2, |
| 3160 | void **dst); |
| 3161 | #endif |
| 3162 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_andnot.h */ |
| 3163 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_intersection.h */ |
| 3164 | /* |
| 3165 | * mixed_intersection.h |
| 3166 | * |
| 3167 | */ |
| 3168 | |
| 3169 | #ifndef INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ |
| 3170 | #define INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ |
| 3171 | |
| 3172 | /* These functions appear to exclude cases where the |
| 3173 | * inputs have the same type and the output is guaranteed |
| 3174 | * to have the same type as the inputs. Eg, array intersection |
| 3175 | */ |
| 3176 | |
| 3177 | |
| 3178 | /* Compute the intersection of src_1 and src_2 and write the result to |
| 3179 | * dst. It is allowed for dst to be equal to src_1. We assume that dst is a |
| 3180 | * valid container. */ |
| 3181 | void array_bitset_container_intersection(const array_container_t *src_1, |
| 3182 | const bitset_container_t *src_2, |
| 3183 | array_container_t *dst); |
| 3184 | |
| 3185 | /* Compute the size of the intersection of src_1 and src_2. */ |
| 3186 | int array_bitset_container_intersection_cardinality( |
| 3187 | const array_container_t *src_1, const bitset_container_t *src_2); |
| 3188 | |
| 3189 | |
| 3190 | |
| 3191 | /* Checking whether src_1 and src_2 intersect. */ |
| 3192 | bool array_bitset_container_intersect(const array_container_t *src_1, |
| 3193 | const bitset_container_t *src_2); |
| 3194 | |
| 3195 | /* |
| 3196 | * Compute the intersection between src_1 and src_2 and write the result |
| 3197 | * to *dst. If the return function is true, the result is a bitset_container_t |
| 3198 | * otherwise is a array_container_t. We assume that dst is not pre-allocated. In |
| 3199 | * case of failure, *dst will be NULL. |
| 3200 | */ |
| 3201 | bool bitset_bitset_container_intersection(const bitset_container_t *src_1, |
| 3202 | const bitset_container_t *src_2, |
| 3203 | void **dst); |
| 3204 | |
| 3205 | /* Compute the intersection between src_1 and src_2 and write the result to |
| 3206 | * dst. It is allowed for dst to be equal to src_1. We assume that dst is a |
| 3207 | * valid container. */ |
| 3208 | void array_run_container_intersection(const array_container_t *src_1, |
| 3209 | const run_container_t *src_2, |
| 3210 | array_container_t *dst); |
| 3211 | |
| 3212 | /* Compute the intersection between src_1 and src_2 and write the result to |
| 3213 | * *dst. If the result is true then the result is a bitset_container_t |
| 3214 | * otherwise is a array_container_t. |
| 3215 | * If *dst == src_2, then an in-place intersection is attempted |
| 3216 | **/ |
| 3217 | bool run_bitset_container_intersection(const run_container_t *src_1, |
| 3218 | const bitset_container_t *src_2, |
| 3219 | void **dst); |
| 3220 | |
| 3221 | /* Compute the size of the intersection between src_1 and src_2 . */ |
| 3222 | int array_run_container_intersection_cardinality(const array_container_t *src_1, |
| 3223 | const run_container_t *src_2); |
| 3224 | |
| 3225 | /* Compute the size of the intersection between src_1 and src_2 |
| 3226 | **/ |
| 3227 | int run_bitset_container_intersection_cardinality(const run_container_t *src_1, |
| 3228 | const bitset_container_t *src_2); |
| 3229 | |
| 3230 | |
| 3231 | /* Check that src_1 and src_2 intersect. */ |
| 3232 | bool array_run_container_intersect(const array_container_t *src_1, |
| 3233 | const run_container_t *src_2); |
| 3234 | |
| 3235 | /* Check that src_1 and src_2 intersect. |
| 3236 | **/ |
| 3237 | bool run_bitset_container_intersect(const run_container_t *src_1, |
| 3238 | const bitset_container_t *src_2); |
| 3239 | |
| 3240 | /* |
| 3241 | * Same as bitset_bitset_container_intersection except that if the output is to |
| 3242 | * be a |
| 3243 | * bitset_container_t, then src_1 is modified and no allocation is made. |
| 3244 | * If the output is to be an array_container_t, then caller is responsible |
| 3245 | * to free the container. |
| 3246 | * In all cases, the result is in *dst. |
| 3247 | */ |
| 3248 | bool bitset_bitset_container_intersection_inplace( |
| 3249 | bitset_container_t *src_1, const bitset_container_t *src_2, void **dst); |
| 3250 | |
| 3251 | #endif /* INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ */ |
| 3252 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_intersection.h */ |
| 3253 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_negation.h */ |
| 3254 | /* |
| 3255 | * mixed_negation.h |
| 3256 | * |
| 3257 | */ |
| 3258 | |
| 3259 | #ifndef INCLUDE_CONTAINERS_MIXED_NEGATION_H_ |
| 3260 | #define INCLUDE_CONTAINERS_MIXED_NEGATION_H_ |
| 3261 | |
| 3262 | |
| 3263 | /* Negation across the entire range of the container. |
| 3264 | * Compute the negation of src and write the result |
| 3265 | * to *dst. The complement of a |
| 3266 | * sufficiently sparse set will always be dense and a hence a bitmap |
| 3267 | * We assume that dst is pre-allocated and a valid bitset container |
| 3268 | * There can be no in-place version. |
| 3269 | */ |
| 3270 | void array_container_negation(const array_container_t *src, |
| 3271 | bitset_container_t *dst); |
| 3272 | |
| 3273 | /* Negation across the entire range of the container |
| 3274 | * Compute the negation of src and write the result |
| 3275 | * to *dst. A true return value indicates a bitset result, |
| 3276 | * otherwise the result is an array container. |
| 3277 | * We assume that dst is not pre-allocated. In |
| 3278 | * case of failure, *dst will be NULL. |
| 3279 | */ |
| 3280 | bool bitset_container_negation(const bitset_container_t *src, void **dst); |
| 3281 | |
| 3282 | /* inplace version */ |
| 3283 | /* |
| 3284 | * Same as bitset_container_negation except that if the output is to |
| 3285 | * be a |
| 3286 | * bitset_container_t, then src is modified and no allocation is made. |
| 3287 | * If the output is to be an array_container_t, then caller is responsible |
| 3288 | * to free the container. |
| 3289 | * In all cases, the result is in *dst. |
| 3290 | */ |
| 3291 | bool bitset_container_negation_inplace(bitset_container_t *src, void **dst); |
| 3292 | |
| 3293 | /* Negation across the entire range of container |
| 3294 | * Compute the negation of src and write the result |
| 3295 | * to *dst. |
| 3296 | * Return values are the *_TYPECODES as defined * in containers.h |
| 3297 | * We assume that dst is not pre-allocated. In |
| 3298 | * case of failure, *dst will be NULL. |
| 3299 | */ |
| 3300 | int run_container_negation(const run_container_t *src, void **dst); |
| 3301 | |
| 3302 | /* |
| 3303 | * Same as run_container_negation except that if the output is to |
| 3304 | * be a |
| 3305 | * run_container_t, and has the capacity to hold the result, |
| 3306 | * then src is modified and no allocation is made. |
| 3307 | * In all cases, the result is in *dst. |
| 3308 | */ |
| 3309 | int run_container_negation_inplace(run_container_t *src, void **dst); |
| 3310 | |
| 3311 | /* Negation across a range of the container. |
| 3312 | * Compute the negation of src and write the result |
| 3313 | * to *dst. Returns true if the result is a bitset container |
| 3314 | * and false for an array container. *dst is not preallocated. |
| 3315 | */ |
| 3316 | bool array_container_negation_range(const array_container_t *src, |
| 3317 | const int range_start, const int range_end, |
| 3318 | void **dst); |
| 3319 | |
| 3320 | /* Even when the result would fit, it is unclear how to make an |
| 3321 | * inplace version without inefficient copying. Thus this routine |
| 3322 | * may be a wrapper for the non-in-place version |
| 3323 | */ |
| 3324 | bool array_container_negation_range_inplace(array_container_t *src, |
| 3325 | const int range_start, |
| 3326 | const int range_end, void **dst); |
| 3327 | |
| 3328 | /* Negation across a range of the container |
| 3329 | * Compute the negation of src and write the result |
| 3330 | * to *dst. A true return value indicates a bitset result, |
| 3331 | * otherwise the result is an array container. |
| 3332 | * We assume that dst is not pre-allocated. In |
| 3333 | * case of failure, *dst will be NULL. |
| 3334 | */ |
| 3335 | bool bitset_container_negation_range(const bitset_container_t *src, |
| 3336 | const int range_start, const int range_end, |
| 3337 | void **dst); |
| 3338 | |
| 3339 | /* inplace version */ |
| 3340 | /* |
| 3341 | * Same as bitset_container_negation except that if the output is to |
| 3342 | * be a |
| 3343 | * bitset_container_t, then src is modified and no allocation is made. |
| 3344 | * If the output is to be an array_container_t, then caller is responsible |
| 3345 | * to free the container. |
| 3346 | * In all cases, the result is in *dst. |
| 3347 | */ |
| 3348 | bool bitset_container_negation_range_inplace(bitset_container_t *src, |
| 3349 | const int range_start, |
| 3350 | const int range_end, void **dst); |
| 3351 | |
| 3352 | /* Negation across a range of container |
| 3353 | * Compute the negation of src and write the result |
| 3354 | * to *dst. Return values are the *_TYPECODES as defined * in containers.h |
| 3355 | * We assume that dst is not pre-allocated. In |
| 3356 | * case of failure, *dst will be NULL. |
| 3357 | */ |
| 3358 | int run_container_negation_range(const run_container_t *src, |
| 3359 | const int range_start, const int range_end, |
| 3360 | void **dst); |
| 3361 | |
| 3362 | /* |
| 3363 | * Same as run_container_negation except that if the output is to |
| 3364 | * be a |
| 3365 | * run_container_t, and has the capacity to hold the result, |
| 3366 | * then src is modified and no allocation is made. |
| 3367 | * In all cases, the result is in *dst. |
| 3368 | */ |
| 3369 | int run_container_negation_range_inplace(run_container_t *src, |
| 3370 | const int range_start, |
| 3371 | const int range_end, void **dst); |
| 3372 | |
| 3373 | #endif /* INCLUDE_CONTAINERS_MIXED_NEGATION_H_ */ |
| 3374 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_negation.h */ |
| 3375 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_union.h */ |
| 3376 | /* |
| 3377 | * mixed_intersection.h |
| 3378 | * |
| 3379 | */ |
| 3380 | |
| 3381 | #ifndef INCLUDE_CONTAINERS_MIXED_UNION_H_ |
| 3382 | #define INCLUDE_CONTAINERS_MIXED_UNION_H_ |
| 3383 | |
| 3384 | /* These functions appear to exclude cases where the |
| 3385 | * inputs have the same type and the output is guaranteed |
| 3386 | * to have the same type as the inputs. Eg, bitset unions |
| 3387 | */ |
| 3388 | |
| 3389 | |
| 3390 | /* Compute the union of src_1 and src_2 and write the result to |
| 3391 | * dst. It is allowed for src_2 to be dst. */ |
| 3392 | void array_bitset_container_union(const array_container_t *src_1, |
| 3393 | const bitset_container_t *src_2, |
| 3394 | bitset_container_t *dst); |
| 3395 | |
| 3396 | /* Compute the union of src_1 and src_2 and write the result to |
| 3397 | * dst. It is allowed for src_2 to be dst. This version does not |
| 3398 | * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */ |
| 3399 | void array_bitset_container_lazy_union(const array_container_t *src_1, |
| 3400 | const bitset_container_t *src_2, |
| 3401 | bitset_container_t *dst); |
| 3402 | |
| 3403 | /* |
| 3404 | * Compute the union between src_1 and src_2 and write the result |
| 3405 | * to *dst. If the return function is true, the result is a bitset_container_t |
| 3406 | * otherwise is a array_container_t. We assume that dst is not pre-allocated. In |
| 3407 | * case of failure, *dst will be NULL. |
| 3408 | */ |
| 3409 | bool array_array_container_union(const array_container_t *src_1, |
| 3410 | const array_container_t *src_2, void **dst); |
| 3411 | |
| 3412 | /* |
| 3413 | * Compute the union between src_1 and src_2 and write the result |
| 3414 | * to *dst if it cannot be written to src_1. If the return function is true, |
| 3415 | * the result is a bitset_container_t |
| 3416 | * otherwise is a array_container_t. When the result is an array_container_t, it |
| 3417 | * it either written to src_1 (if *dst is null) or to *dst. |
| 3418 | * If the result is a bitset_container_t and *dst is null, then there was a failure. |
| 3419 | */ |
| 3420 | bool array_array_container_inplace_union(array_container_t *src_1, |
| 3421 | const array_container_t *src_2, void **dst); |
| 3422 | |
| 3423 | /* |
| 3424 | * Same as array_array_container_union except that it will more eagerly produce |
| 3425 | * a bitset. |
| 3426 | */ |
| 3427 | bool array_array_container_lazy_union(const array_container_t *src_1, |
| 3428 | const array_container_t *src_2, |
| 3429 | void **dst); |
| 3430 | |
| 3431 | /* |
| 3432 | * Same as array_array_container_inplace_union except that it will more eagerly produce |
| 3433 | * a bitset. |
| 3434 | */ |
| 3435 | bool array_array_container_lazy_inplace_union(array_container_t *src_1, |
| 3436 | const array_container_t *src_2, |
| 3437 | void **dst); |
| 3438 | |
| 3439 | /* Compute the union of src_1 and src_2 and write the result to |
| 3440 | * dst. We assume that dst is a |
| 3441 | * valid container. The result might need to be further converted to array or |
| 3442 | * bitset container, |
| 3443 | * the caller is responsible for the eventual conversion. */ |
| 3444 | void array_run_container_union(const array_container_t *src_1, |
| 3445 | const run_container_t *src_2, |
| 3446 | run_container_t *dst); |
| 3447 | |
| 3448 | /* Compute the union of src_1 and src_2 and write the result to |
| 3449 | * src2. The result might need to be further converted to array or |
| 3450 | * bitset container, |
| 3451 | * the caller is responsible for the eventual conversion. */ |
| 3452 | void array_run_container_inplace_union(const array_container_t *src_1, |
| 3453 | run_container_t *src_2); |
| 3454 | |
| 3455 | /* Compute the union of src_1 and src_2 and write the result to |
| 3456 | * dst. It is allowed for dst to be src_2. |
| 3457 | * If run_container_is_full(src_1) is true, you must not be calling this |
| 3458 | *function. |
| 3459 | **/ |
| 3460 | void run_bitset_container_union(const run_container_t *src_1, |
| 3461 | const bitset_container_t *src_2, |
| 3462 | bitset_container_t *dst); |
| 3463 | |
| 3464 | /* Compute the union of src_1 and src_2 and write the result to |
| 3465 | * dst. It is allowed for dst to be src_2. This version does not |
| 3466 | * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). |
| 3467 | * If run_container_is_full(src_1) is true, you must not be calling this |
| 3468 | * function. |
| 3469 | * */ |
| 3470 | void run_bitset_container_lazy_union(const run_container_t *src_1, |
| 3471 | const bitset_container_t *src_2, |
| 3472 | bitset_container_t *dst); |
| 3473 | |
| 3474 | #endif /* INCLUDE_CONTAINERS_MIXED_UNION_H_ */ |
| 3475 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_union.h */ |
| 3476 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_xor.h */ |
| 3477 | /* |
| 3478 | * mixed_xor.h |
| 3479 | * |
| 3480 | */ |
| 3481 | |
| 3482 | #ifndef INCLUDE_CONTAINERS_MIXED_XOR_H_ |
| 3483 | #define INCLUDE_CONTAINERS_MIXED_XOR_H_ |
| 3484 | |
| 3485 | /* These functions appear to exclude cases where the |
| 3486 | * inputs have the same type and the output is guaranteed |
| 3487 | * to have the same type as the inputs. Eg, bitset unions |
| 3488 | */ |
| 3489 | |
| 3490 | /* |
| 3491 | * Java implementation (as of May 2016) for array_run, run_run |
| 3492 | * and bitset_run don't do anything different for inplace. |
| 3493 | * (They are not truly in place.) |
| 3494 | */ |
| 3495 | |
| 3496 | |
| 3497 | |
| 3498 | /* Compute the xor of src_1 and src_2 and write the result to |
| 3499 | * dst (which has no container initially). |
| 3500 | * Result is true iff dst is a bitset */ |
| 3501 | bool array_bitset_container_xor(const array_container_t *src_1, |
| 3502 | const bitset_container_t *src_2, void **dst); |
| 3503 | |
| 3504 | /* Compute the xor of src_1 and src_2 and write the result to |
| 3505 | * dst. It is allowed for src_2 to be dst. This version does not |
| 3506 | * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). |
| 3507 | */ |
| 3508 | |
| 3509 | void array_bitset_container_lazy_xor(const array_container_t *src_1, |
| 3510 | const bitset_container_t *src_2, |
| 3511 | bitset_container_t *dst); |
| 3512 | /* Compute the xor of src_1 and src_2 and write the result to |
| 3513 | * dst (which has no container initially). Return value is |
| 3514 | * "dst is a bitset" |
| 3515 | */ |
| 3516 | |
| 3517 | bool bitset_bitset_container_xor(const bitset_container_t *src_1, |
| 3518 | const bitset_container_t *src_2, void **dst); |
| 3519 | |
| 3520 | /* Compute the xor of src_1 and src_2 and write the result to |
| 3521 | * dst. Result may be either a bitset or an array container |
| 3522 | * (returns "result is bitset"). dst does not initially have |
| 3523 | * any container, but becomes either a bitset container (return |
| 3524 | * result true) or an array container. |
| 3525 | */ |
| 3526 | |
| 3527 | bool run_bitset_container_xor(const run_container_t *src_1, |
| 3528 | const bitset_container_t *src_2, void **dst); |
| 3529 | |
| 3530 | /* lazy xor. Dst is initialized and may be equal to src_2. |
| 3531 | * Result is left as a bitset container, even if actual |
| 3532 | * cardinality would dictate an array container. |
| 3533 | */ |
| 3534 | |
| 3535 | void run_bitset_container_lazy_xor(const run_container_t *src_1, |
| 3536 | const bitset_container_t *src_2, |
| 3537 | bitset_container_t *dst); |
| 3538 | |
| 3539 | /* dst does not indicate a valid container initially. Eventually it |
| 3540 | * can become any kind of container. |
| 3541 | */ |
| 3542 | |
| 3543 | int array_run_container_xor(const array_container_t *src_1, |
| 3544 | const run_container_t *src_2, void **dst); |
| 3545 | |
| 3546 | /* dst does not initially have a valid container. Creates either |
| 3547 | * an array or a bitset container, indicated by return code |
| 3548 | */ |
| 3549 | |
| 3550 | bool array_array_container_xor(const array_container_t *src_1, |
| 3551 | const array_container_t *src_2, void **dst); |
| 3552 | |
| 3553 | /* dst does not initially have a valid container. Creates either |
| 3554 | * an array or a bitset container, indicated by return code. |
| 3555 | * A bitset container will not have a valid cardinality and the |
| 3556 | * container type might not be correct for the actual cardinality |
| 3557 | */ |
| 3558 | |
| 3559 | bool array_array_container_lazy_xor(const array_container_t *src_1, |
| 3560 | const array_container_t *src_2, void **dst); |
| 3561 | |
| 3562 | /* Dst is a valid run container. (Can it be src_2? Let's say not.) |
| 3563 | * Leaves result as run container, even if other options are |
| 3564 | * smaller. |
| 3565 | */ |
| 3566 | |
| 3567 | void array_run_container_lazy_xor(const array_container_t *src_1, |
| 3568 | const run_container_t *src_2, |
| 3569 | run_container_t *dst); |
| 3570 | |
| 3571 | /* dst does not indicate a valid container initially. Eventually it |
| 3572 | * can become any kind of container. |
| 3573 | */ |
| 3574 | |
| 3575 | int run_run_container_xor(const run_container_t *src_1, |
| 3576 | const run_container_t *src_2, void **dst); |
| 3577 | |
| 3578 | /* INPLACE versions (initial implementation may not exploit all inplace |
| 3579 | * opportunities (if any...) |
| 3580 | */ |
| 3581 | |
| 3582 | /* Compute the xor of src_1 and src_2 and write the result to |
| 3583 | * dst (which has no container initially). It will modify src_1 |
| 3584 | * to be dst if the result is a bitset. Otherwise, it will |
| 3585 | * free src_1 and dst will be a new array container. In both |
| 3586 | * cases, the caller is responsible for deallocating dst. |
| 3587 | * Returns true iff dst is a bitset */ |
| 3588 | |
| 3589 | bool bitset_array_container_ixor(bitset_container_t *src_1, |
| 3590 | const array_container_t *src_2, void **dst); |
| 3591 | |
| 3592 | bool bitset_bitset_container_ixor(bitset_container_t *src_1, |
| 3593 | const bitset_container_t *src_2, void **dst); |
| 3594 | |
| 3595 | bool array_bitset_container_ixor(array_container_t *src_1, |
| 3596 | const bitset_container_t *src_2, void **dst); |
| 3597 | |
| 3598 | /* Compute the xor of src_1 and src_2 and write the result to |
| 3599 | * dst. Result may be either a bitset or an array container |
| 3600 | * (returns "result is bitset"). dst does not initially have |
| 3601 | * any container, but becomes either a bitset container (return |
| 3602 | * result true) or an array container. |
| 3603 | */ |
| 3604 | |
| 3605 | bool run_bitset_container_ixor(run_container_t *src_1, |
| 3606 | const bitset_container_t *src_2, void **dst); |
| 3607 | |
| 3608 | bool bitset_run_container_ixor(bitset_container_t *src_1, |
| 3609 | const run_container_t *src_2, void **dst); |
| 3610 | |
| 3611 | /* dst does not indicate a valid container initially. Eventually it |
| 3612 | * can become any kind of container. |
| 3613 | */ |
| 3614 | |
| 3615 | int array_run_container_ixor(array_container_t *src_1, |
| 3616 | const run_container_t *src_2, void **dst); |
| 3617 | |
| 3618 | int run_array_container_ixor(run_container_t *src_1, |
| 3619 | const array_container_t *src_2, void **dst); |
| 3620 | |
| 3621 | bool array_array_container_ixor(array_container_t *src_1, |
| 3622 | const array_container_t *src_2, void **dst); |
| 3623 | |
| 3624 | int run_run_container_ixor(run_container_t *src_1, const run_container_t *src_2, |
| 3625 | void **dst); |
| 3626 | #endif |
| 3627 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_xor.h */ |
| 3628 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/containers.h */ |
| 3629 | #ifndef CONTAINERS_CONTAINERS_H |
| 3630 | #define CONTAINERS_CONTAINERS_H |
| 3631 | |
| 3632 | #ifdef __cplusplus |
| 3633 | extern "C" { |
| 3634 | #endif |
| 3635 | |
| 3636 | #include <assert.h> |
| 3637 | #include <stdbool.h> |
| 3638 | #include <stdio.h> |
| 3639 | |
| 3640 | |
| 3641 | // would enum be possible or better? |
| 3642 | |
| 3643 | /** |
| 3644 | * The switch case statements follow |
| 3645 | * BITSET_CONTAINER_TYPE_CODE -- ARRAY_CONTAINER_TYPE_CODE -- |
| 3646 | * RUN_CONTAINER_TYPE_CODE |
| 3647 | * so it makes more sense to number them 1, 2, 3 (in the vague hope that the |
| 3648 | * compiler might exploit this ordering). |
| 3649 | */ |
| 3650 | |
| 3651 | #define BITSET_CONTAINER_TYPE_CODE 1 |
| 3652 | #define ARRAY_CONTAINER_TYPE_CODE 2 |
| 3653 | #define RUN_CONTAINER_TYPE_CODE 3 |
| 3654 | #define SHARED_CONTAINER_TYPE_CODE 4 |
| 3655 | |
| 3656 | // macro for pairing container type codes |
| 3657 | #define CONTAINER_PAIR(c1, c2) (4 * (c1) + (c2)) |
| 3658 | |
| 3659 | /** |
| 3660 | * A shared container is a wrapper around a container |
| 3661 | * with reference counting. |
| 3662 | */ |
| 3663 | |
| 3664 | struct shared_container_s { |
| 3665 | void *container; |
| 3666 | uint8_t typecode; |
| 3667 | uint32_t counter; // to be managed atomically |
| 3668 | }; |
| 3669 | |
| 3670 | typedef struct shared_container_s shared_container_t; |
| 3671 | |
| 3672 | /* |
| 3673 | * With copy_on_write = true |
| 3674 | * Create a new shared container if the typecode is not SHARED_CONTAINER_TYPE, |
| 3675 | * otherwise, increase the count |
| 3676 | * If copy_on_write = false, then clone. |
| 3677 | * Return NULL in case of failure. |
| 3678 | **/ |
| 3679 | void *get_copy_of_container(void *container, uint8_t *typecode, |
| 3680 | bool copy_on_write); |
| 3681 | |
| 3682 | /* Frees a shared container (actually decrement its counter and only frees when |
| 3683 | * the counter falls to zero). */ |
| 3684 | void shared_container_free(shared_container_t *container); |
| 3685 | |
| 3686 | /* extract a copy from the shared container, freeing the shared container if |
| 3687 | there is just one instance left, |
| 3688 | clone instances when the counter is higher than one |
| 3689 | */ |
| 3690 | void *(shared_container_t *container, |
| 3691 | uint8_t *typecode); |
| 3692 | |
| 3693 | /* access to container underneath */ |
| 3694 | inline const void *container_unwrap_shared( |
| 3695 | const void *candidate_shared_container, uint8_t *type) { |
| 3696 | if (*type == SHARED_CONTAINER_TYPE_CODE) { |
| 3697 | *type = |
| 3698 | ((const shared_container_t *)candidate_shared_container)->typecode; |
| 3699 | assert(*type != SHARED_CONTAINER_TYPE_CODE); |
| 3700 | return ((const shared_container_t *)candidate_shared_container)->container; |
| 3701 | } else { |
| 3702 | return candidate_shared_container; |
| 3703 | } |
| 3704 | } |
| 3705 | |
| 3706 | |
| 3707 | /* access to container underneath */ |
| 3708 | inline void *container_mutable_unwrap_shared( |
| 3709 | void *candidate_shared_container, uint8_t *type) { |
| 3710 | if (*type == SHARED_CONTAINER_TYPE_CODE) { |
| 3711 | *type = |
| 3712 | ((shared_container_t *)candidate_shared_container)->typecode; |
| 3713 | assert(*type != SHARED_CONTAINER_TYPE_CODE); |
| 3714 | return ((shared_container_t *)candidate_shared_container)->container; |
| 3715 | } else { |
| 3716 | return candidate_shared_container; |
| 3717 | } |
| 3718 | } |
| 3719 | |
| 3720 | /* access to container underneath and queries its type */ |
| 3721 | static inline uint8_t get_container_type(const void *container, uint8_t type) { |
| 3722 | if (type == SHARED_CONTAINER_TYPE_CODE) { |
| 3723 | return ((const shared_container_t *)container)->typecode; |
| 3724 | } else { |
| 3725 | return type; |
| 3726 | } |
| 3727 | } |
| 3728 | |
| 3729 | /** |
| 3730 | * Copies a container, requires a typecode. This allocates new memory, caller |
| 3731 | * is responsible for deallocation. If the container is not shared, then it is |
| 3732 | * physically cloned. Sharable containers are not cloneable. |
| 3733 | */ |
| 3734 | void *container_clone(const void *container, uint8_t typecode); |
| 3735 | |
| 3736 | /* access to container underneath, cloning it if needed */ |
| 3737 | static inline void *get_writable_copy_if_shared( |
| 3738 | void *candidate_shared_container, uint8_t *type) { |
| 3739 | if (*type == SHARED_CONTAINER_TYPE_CODE) { |
| 3740 | return shared_container_extract_copy( |
| 3741 | (shared_container_t *)candidate_shared_container, type); |
| 3742 | } else { |
| 3743 | return candidate_shared_container; |
| 3744 | } |
| 3745 | } |
| 3746 | |
| 3747 | /** |
| 3748 | * End of shared container code |
| 3749 | */ |
| 3750 | |
| 3751 | static const char *container_names[] = {"bitset" , "array" , "run" , "shared" }; |
| 3752 | static const char *shared_container_names[] = { |
| 3753 | "bitset (shared)" , "array (shared)" , "run (shared)" }; |
| 3754 | |
| 3755 | // no matter what the initial container was, convert it to a bitset |
| 3756 | // if a new container is produced, caller responsible for freeing the previous |
| 3757 | // one |
| 3758 | // container should not be a shared container |
| 3759 | static inline void *container_to_bitset(void *container, uint8_t typecode) { |
| 3760 | bitset_container_t *result = NULL; |
| 3761 | switch (typecode) { |
| 3762 | case BITSET_CONTAINER_TYPE_CODE: |
| 3763 | return container; // nothing to do |
| 3764 | case ARRAY_CONTAINER_TYPE_CODE: |
| 3765 | result = |
| 3766 | bitset_container_from_array((array_container_t *)container); |
| 3767 | return result; |
| 3768 | case RUN_CONTAINER_TYPE_CODE: |
| 3769 | result = bitset_container_from_run((run_container_t *)container); |
| 3770 | return result; |
| 3771 | case SHARED_CONTAINER_TYPE_CODE: |
| 3772 | assert(false); |
| 3773 | } |
| 3774 | assert(false); |
| 3775 | __builtin_unreachable(); |
| 3776 | return 0; // unreached |
| 3777 | } |
| 3778 | |
| 3779 | /** |
| 3780 | * Get the container name from the typecode |
| 3781 | */ |
| 3782 | static inline const char *get_container_name(uint8_t typecode) { |
| 3783 | switch (typecode) { |
| 3784 | case BITSET_CONTAINER_TYPE_CODE: |
| 3785 | return container_names[0]; |
| 3786 | case ARRAY_CONTAINER_TYPE_CODE: |
| 3787 | return container_names[1]; |
| 3788 | case RUN_CONTAINER_TYPE_CODE: |
| 3789 | return container_names[2]; |
| 3790 | case SHARED_CONTAINER_TYPE_CODE: |
| 3791 | return container_names[3]; |
| 3792 | default: |
| 3793 | assert(false); |
| 3794 | __builtin_unreachable(); |
| 3795 | return "unknown" ; |
| 3796 | } |
| 3797 | } |
| 3798 | |
| 3799 | static inline const char *get_full_container_name(const void *container, |
| 3800 | uint8_t typecode) { |
| 3801 | switch (typecode) { |
| 3802 | case BITSET_CONTAINER_TYPE_CODE: |
| 3803 | return container_names[0]; |
| 3804 | case ARRAY_CONTAINER_TYPE_CODE: |
| 3805 | return container_names[1]; |
| 3806 | case RUN_CONTAINER_TYPE_CODE: |
| 3807 | return container_names[2]; |
| 3808 | case SHARED_CONTAINER_TYPE_CODE: |
| 3809 | switch (((const shared_container_t *)container)->typecode) { |
| 3810 | case BITSET_CONTAINER_TYPE_CODE: |
| 3811 | return shared_container_names[0]; |
| 3812 | case ARRAY_CONTAINER_TYPE_CODE: |
| 3813 | return shared_container_names[1]; |
| 3814 | case RUN_CONTAINER_TYPE_CODE: |
| 3815 | return shared_container_names[2]; |
| 3816 | default: |
| 3817 | assert(false); |
| 3818 | __builtin_unreachable(); |
| 3819 | return "unknown" ; |
| 3820 | } |
| 3821 | break; |
| 3822 | default: |
| 3823 | assert(false); |
| 3824 | __builtin_unreachable(); |
| 3825 | return "unknown" ; |
| 3826 | } |
| 3827 | __builtin_unreachable(); |
| 3828 | return NULL; |
| 3829 | } |
| 3830 | |
| 3831 | /** |
| 3832 | * Get the container cardinality (number of elements), requires a typecode |
| 3833 | */ |
| 3834 | static inline int container_get_cardinality(const void *container, |
| 3835 | uint8_t typecode) { |
| 3836 | container = container_unwrap_shared(container, &typecode); |
| 3837 | switch (typecode) { |
| 3838 | case BITSET_CONTAINER_TYPE_CODE: |
| 3839 | return bitset_container_cardinality( |
| 3840 | (const bitset_container_t *)container); |
| 3841 | case ARRAY_CONTAINER_TYPE_CODE: |
| 3842 | return array_container_cardinality( |
| 3843 | (const array_container_t *)container); |
| 3844 | case RUN_CONTAINER_TYPE_CODE: |
| 3845 | return run_container_cardinality( |
| 3846 | (const run_container_t *)container); |
| 3847 | } |
| 3848 | assert(false); |
| 3849 | __builtin_unreachable(); |
| 3850 | return 0; // unreached |
| 3851 | } |
| 3852 | |
| 3853 | |
| 3854 | |
| 3855 | // returns true if a container is known to be full. Note that a lazy bitset |
| 3856 | // container |
| 3857 | // might be full without us knowing |
| 3858 | static inline bool container_is_full(const void *container, uint8_t typecode) { |
| 3859 | container = container_unwrap_shared(container, &typecode); |
| 3860 | switch (typecode) { |
| 3861 | case BITSET_CONTAINER_TYPE_CODE: |
| 3862 | return bitset_container_cardinality( |
| 3863 | (const bitset_container_t *)container) == (1 << 16); |
| 3864 | case ARRAY_CONTAINER_TYPE_CODE: |
| 3865 | return array_container_cardinality( |
| 3866 | (const array_container_t *)container) == (1 << 16); |
| 3867 | case RUN_CONTAINER_TYPE_CODE: |
| 3868 | return run_container_is_full((const run_container_t *)container); |
| 3869 | } |
| 3870 | assert(false); |
| 3871 | __builtin_unreachable(); |
| 3872 | return 0; // unreached |
| 3873 | } |
| 3874 | |
| 3875 | static inline int container_shrink_to_fit(void *container, uint8_t typecode) { |
| 3876 | container = container_mutable_unwrap_shared(container, &typecode); |
| 3877 | switch (typecode) { |
| 3878 | case BITSET_CONTAINER_TYPE_CODE: |
| 3879 | return 0; // no shrinking possible |
| 3880 | case ARRAY_CONTAINER_TYPE_CODE: |
| 3881 | return array_container_shrink_to_fit( |
| 3882 | (array_container_t *)container); |
| 3883 | case RUN_CONTAINER_TYPE_CODE: |
| 3884 | return run_container_shrink_to_fit((run_container_t *)container); |
| 3885 | } |
| 3886 | assert(false); |
| 3887 | __builtin_unreachable(); |
| 3888 | return 0; // unreached |
| 3889 | } |
| 3890 | |
| 3891 | |
| 3892 | /** |
| 3893 | * make a container with a run of ones |
| 3894 | */ |
| 3895 | /* initially always use a run container, even if an array might be |
| 3896 | * marginally |
| 3897 | * smaller */ |
| 3898 | static inline void *container_range_of_ones(uint32_t range_start, |
| 3899 | uint32_t range_end, |
| 3900 | uint8_t *result_type) { |
| 3901 | assert(range_end >= range_start); |
| 3902 | uint64_t cardinality = range_end - range_start + 1; |
| 3903 | if(cardinality <= 2) { |
| 3904 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 3905 | return array_container_create_range(range_start, range_end); |
| 3906 | } else { |
| 3907 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 3908 | return run_container_create_range(range_start, range_end); |
| 3909 | } |
| 3910 | } |
| 3911 | |
| 3912 | |
| 3913 | /* Create a container with all the values between in [min,max) at a |
| 3914 | distance k*step from min. */ |
| 3915 | static inline void *container_from_range(uint8_t *type, uint32_t min, |
| 3916 | uint32_t max, uint16_t step) { |
| 3917 | if (step == 0) return NULL; // being paranoid |
| 3918 | if (step == 1) { |
| 3919 | return container_range_of_ones(min,max,type); |
| 3920 | // Note: the result is not always a run (need to check the cardinality) |
| 3921 | //*type = RUN_CONTAINER_TYPE_CODE; |
| 3922 | //return run_container_create_range(min, max); |
| 3923 | } |
| 3924 | int size = (max - min + step - 1) / step; |
| 3925 | if (size <= DEFAULT_MAX_SIZE) { // array container |
| 3926 | *type = ARRAY_CONTAINER_TYPE_CODE; |
| 3927 | array_container_t *array = array_container_create_given_capacity(size); |
| 3928 | array_container_add_from_range(array, min, max, step); |
| 3929 | assert(array->cardinality == size); |
| 3930 | return array; |
| 3931 | } else { // bitset container |
| 3932 | *type = BITSET_CONTAINER_TYPE_CODE; |
| 3933 | bitset_container_t *bitset = bitset_container_create(); |
| 3934 | bitset_container_add_from_range(bitset, min, max, step); |
| 3935 | assert(bitset->cardinality == size); |
| 3936 | return bitset; |
| 3937 | } |
| 3938 | } |
| 3939 | |
| 3940 | /** |
| 3941 | * "repair" the container after lazy operations. |
| 3942 | */ |
| 3943 | static inline void *container_repair_after_lazy(void *container, |
| 3944 | uint8_t *typecode) { |
| 3945 | container = get_writable_copy_if_shared( |
| 3946 | container, typecode); // TODO: this introduces unnecessary cloning |
| 3947 | void *result = NULL; |
| 3948 | switch (*typecode) { |
| 3949 | case BITSET_CONTAINER_TYPE_CODE: |
| 3950 | ((bitset_container_t *)container)->cardinality = |
| 3951 | bitset_container_compute_cardinality( |
| 3952 | (bitset_container_t *)container); |
| 3953 | if (((bitset_container_t *)container)->cardinality <= |
| 3954 | DEFAULT_MAX_SIZE) { |
| 3955 | result = array_container_from_bitset( |
| 3956 | (const bitset_container_t *)container); |
| 3957 | bitset_container_free((bitset_container_t *)container); |
| 3958 | *typecode = ARRAY_CONTAINER_TYPE_CODE; |
| 3959 | return result; |
| 3960 | } |
| 3961 | return container; |
| 3962 | case ARRAY_CONTAINER_TYPE_CODE: |
| 3963 | return container; // nothing to do |
| 3964 | case RUN_CONTAINER_TYPE_CODE: |
| 3965 | return convert_run_to_efficient_container_and_free( |
| 3966 | (run_container_t *)container, typecode); |
| 3967 | case SHARED_CONTAINER_TYPE_CODE: |
| 3968 | assert(false); |
| 3969 | } |
| 3970 | assert(false); |
| 3971 | __builtin_unreachable(); |
| 3972 | return 0; // unreached |
| 3973 | } |
| 3974 | |
| 3975 | /** |
| 3976 | * Writes the underlying array to buf, outputs how many bytes were written. |
| 3977 | * This is meant to be byte-by-byte compatible with the Java and Go versions of |
| 3978 | * Roaring. |
| 3979 | * The number of bytes written should be |
| 3980 | * container_write(container, buf). |
| 3981 | * |
| 3982 | */ |
| 3983 | static inline int32_t container_write(const void *container, uint8_t typecode, |
| 3984 | char *buf) { |
| 3985 | container = container_unwrap_shared(container, &typecode); |
| 3986 | switch (typecode) { |
| 3987 | case BITSET_CONTAINER_TYPE_CODE: |
| 3988 | return bitset_container_write((const bitset_container_t *)container, buf); |
| 3989 | case ARRAY_CONTAINER_TYPE_CODE: |
| 3990 | return array_container_write((const array_container_t *)container, buf); |
| 3991 | case RUN_CONTAINER_TYPE_CODE: |
| 3992 | return run_container_write((const run_container_t *)container, buf); |
| 3993 | } |
| 3994 | assert(false); |
| 3995 | __builtin_unreachable(); |
| 3996 | return 0; // unreached |
| 3997 | } |
| 3998 | |
| 3999 | /** |
| 4000 | * Get the container size in bytes under portable serialization (see |
| 4001 | * container_write), requires a |
| 4002 | * typecode |
| 4003 | */ |
| 4004 | static inline int32_t container_size_in_bytes(const void *container, |
| 4005 | uint8_t typecode) { |
| 4006 | container = container_unwrap_shared(container, &typecode); |
| 4007 | switch (typecode) { |
| 4008 | case BITSET_CONTAINER_TYPE_CODE: |
| 4009 | return bitset_container_size_in_bytes( |
| 4010 | (const bitset_container_t *)container); |
| 4011 | case ARRAY_CONTAINER_TYPE_CODE: |
| 4012 | return array_container_size_in_bytes( |
| 4013 | (const array_container_t *)container); |
| 4014 | case RUN_CONTAINER_TYPE_CODE: |
| 4015 | return run_container_size_in_bytes((const run_container_t *)container); |
| 4016 | } |
| 4017 | assert(false); |
| 4018 | __builtin_unreachable(); |
| 4019 | return 0; // unreached |
| 4020 | } |
| 4021 | |
| 4022 | /** |
| 4023 | * print the container (useful for debugging), requires a typecode |
| 4024 | */ |
| 4025 | void container_printf(const void *container, uint8_t typecode); |
| 4026 | |
| 4027 | /** |
| 4028 | * print the content of the container as a comma-separated list of 32-bit values |
| 4029 | * starting at base, requires a typecode |
| 4030 | */ |
| 4031 | void container_printf_as_uint32_array(const void *container, uint8_t typecode, |
| 4032 | uint32_t base); |
| 4033 | |
| 4034 | /** |
| 4035 | * Checks whether a container is not empty, requires a typecode |
| 4036 | */ |
| 4037 | static inline bool container_nonzero_cardinality(const void *container, |
| 4038 | uint8_t typecode) { |
| 4039 | container = container_unwrap_shared(container, &typecode); |
| 4040 | switch (typecode) { |
| 4041 | case BITSET_CONTAINER_TYPE_CODE: |
| 4042 | return bitset_container_const_nonzero_cardinality( |
| 4043 | (const bitset_container_t *)container); |
| 4044 | case ARRAY_CONTAINER_TYPE_CODE: |
| 4045 | return array_container_nonzero_cardinality( |
| 4046 | (const array_container_t *)container); |
| 4047 | case RUN_CONTAINER_TYPE_CODE: |
| 4048 | return run_container_nonzero_cardinality( |
| 4049 | (const run_container_t *)container); |
| 4050 | } |
| 4051 | assert(false); |
| 4052 | __builtin_unreachable(); |
| 4053 | return 0; // unreached |
| 4054 | } |
| 4055 | |
| 4056 | /** |
| 4057 | * Recover memory from a container, requires a typecode |
| 4058 | */ |
| 4059 | void container_free(void *container, uint8_t typecode); |
| 4060 | |
| 4061 | /** |
| 4062 | * Convert a container to an array of values, requires a typecode as well as a |
| 4063 | * "base" (most significant values) |
| 4064 | * Returns number of ints added. |
| 4065 | */ |
| 4066 | static inline int container_to_uint32_array(uint32_t *output, |
| 4067 | const void *container, |
| 4068 | uint8_t typecode, uint32_t base) { |
| 4069 | container = container_unwrap_shared(container, &typecode); |
| 4070 | switch (typecode) { |
| 4071 | case BITSET_CONTAINER_TYPE_CODE: |
| 4072 | return bitset_container_to_uint32_array( |
| 4073 | output, (const bitset_container_t *)container, base); |
| 4074 | case ARRAY_CONTAINER_TYPE_CODE: |
| 4075 | return array_container_to_uint32_array( |
| 4076 | output, (const array_container_t *)container, base); |
| 4077 | case RUN_CONTAINER_TYPE_CODE: |
| 4078 | return run_container_to_uint32_array( |
| 4079 | output, (const run_container_t *)container, base); |
| 4080 | } |
| 4081 | assert(false); |
| 4082 | __builtin_unreachable(); |
| 4083 | return 0; // unreached |
| 4084 | } |
| 4085 | |
| 4086 | /** |
| 4087 | * Add a value to a container, requires a typecode, fills in new_typecode and |
| 4088 | * return (possibly different) container. |
| 4089 | * This function may allocate a new container, and caller is responsible for |
| 4090 | * memory deallocation |
| 4091 | */ |
| 4092 | static inline void *container_add(void *container, uint16_t val, |
| 4093 | uint8_t typecode, uint8_t *new_typecode) { |
| 4094 | container = get_writable_copy_if_shared(container, &typecode); |
| 4095 | switch (typecode) { |
| 4096 | case BITSET_CONTAINER_TYPE_CODE: |
| 4097 | bitset_container_set((bitset_container_t *)container, val); |
| 4098 | *new_typecode = BITSET_CONTAINER_TYPE_CODE; |
| 4099 | return container; |
| 4100 | case ARRAY_CONTAINER_TYPE_CODE: { |
| 4101 | array_container_t *ac = (array_container_t *)container; |
| 4102 | if (array_container_try_add(ac, val, DEFAULT_MAX_SIZE) != -1) { |
| 4103 | *new_typecode = ARRAY_CONTAINER_TYPE_CODE; |
| 4104 | return ac; |
| 4105 | } else { |
| 4106 | bitset_container_t* bitset = bitset_container_from_array(ac); |
| 4107 | bitset_container_add(bitset, val); |
| 4108 | *new_typecode = BITSET_CONTAINER_TYPE_CODE; |
| 4109 | return bitset; |
| 4110 | } |
| 4111 | } break; |
| 4112 | case RUN_CONTAINER_TYPE_CODE: |
| 4113 | // per Java, no container type adjustments are done (revisit?) |
| 4114 | run_container_add((run_container_t *)container, val); |
| 4115 | *new_typecode = RUN_CONTAINER_TYPE_CODE; |
| 4116 | return container; |
| 4117 | default: |
| 4118 | assert(false); |
| 4119 | __builtin_unreachable(); |
| 4120 | return NULL; |
| 4121 | } |
| 4122 | } |
| 4123 | |
| 4124 | /** |
| 4125 | * Remove a value from a container, requires a typecode, fills in new_typecode |
| 4126 | * and |
| 4127 | * return (possibly different) container. |
| 4128 | * This function may allocate a new container, and caller is responsible for |
| 4129 | * memory deallocation |
| 4130 | */ |
| 4131 | static inline void *container_remove(void *container, uint16_t val, |
| 4132 | uint8_t typecode, uint8_t *new_typecode) { |
| 4133 | container = get_writable_copy_if_shared(container, &typecode); |
| 4134 | switch (typecode) { |
| 4135 | case BITSET_CONTAINER_TYPE_CODE: |
| 4136 | if (bitset_container_remove((bitset_container_t *)container, val)) { |
| 4137 | if (bitset_container_cardinality( |
| 4138 | (bitset_container_t *)container) <= DEFAULT_MAX_SIZE) { |
| 4139 | *new_typecode = ARRAY_CONTAINER_TYPE_CODE; |
| 4140 | return array_container_from_bitset( |
| 4141 | (bitset_container_t *)container); |
| 4142 | } |
| 4143 | } |
| 4144 | *new_typecode = typecode; |
| 4145 | return container; |
| 4146 | case ARRAY_CONTAINER_TYPE_CODE: |
| 4147 | *new_typecode = typecode; |
| 4148 | array_container_remove((array_container_t *)container, val); |
| 4149 | return container; |
| 4150 | case RUN_CONTAINER_TYPE_CODE: |
| 4151 | // per Java, no container type adjustments are done (revisit?) |
| 4152 | run_container_remove((run_container_t *)container, val); |
| 4153 | *new_typecode = RUN_CONTAINER_TYPE_CODE; |
| 4154 | return container; |
| 4155 | default: |
| 4156 | assert(false); |
| 4157 | __builtin_unreachable(); |
| 4158 | return NULL; |
| 4159 | } |
| 4160 | } |
| 4161 | |
| 4162 | /** |
| 4163 | * Check whether a value is in a container, requires a typecode |
| 4164 | */ |
| 4165 | inline bool container_contains(const void *container, uint16_t val, |
| 4166 | uint8_t typecode) { |
| 4167 | container = container_unwrap_shared(container, &typecode); |
| 4168 | switch (typecode) { |
| 4169 | case BITSET_CONTAINER_TYPE_CODE: |
| 4170 | return bitset_container_get((const bitset_container_t *)container, |
| 4171 | val); |
| 4172 | case ARRAY_CONTAINER_TYPE_CODE: |
| 4173 | return array_container_contains( |
| 4174 | (const array_container_t *)container, val); |
| 4175 | case RUN_CONTAINER_TYPE_CODE: |
| 4176 | return run_container_contains((const run_container_t *)container, |
| 4177 | val); |
| 4178 | default: |
| 4179 | assert(false); |
| 4180 | __builtin_unreachable(); |
| 4181 | return false; |
| 4182 | } |
| 4183 | } |
| 4184 | |
| 4185 | /** |
| 4186 | * Check whether a range of values from range_start (included) to range_end (excluded) |
| 4187 | * is in a container, requires a typecode |
| 4188 | */ |
| 4189 | static inline bool container_contains_range(const void *container, uint32_t range_start, |
| 4190 | uint32_t range_end, uint8_t typecode) { |
| 4191 | container = container_unwrap_shared(container, &typecode); |
| 4192 | switch (typecode) { |
| 4193 | case BITSET_CONTAINER_TYPE_CODE: |
| 4194 | return bitset_container_get_range((const bitset_container_t *)container, |
| 4195 | range_start, range_end); |
| 4196 | case ARRAY_CONTAINER_TYPE_CODE: |
| 4197 | return array_container_contains_range((const array_container_t *)container, |
| 4198 | range_start, range_end); |
| 4199 | case RUN_CONTAINER_TYPE_CODE: |
| 4200 | return run_container_contains_range((const run_container_t *)container, |
| 4201 | range_start, range_end); |
| 4202 | default: |
| 4203 | assert(false); |
| 4204 | __builtin_unreachable(); |
| 4205 | return false; |
| 4206 | } |
| 4207 | } |
| 4208 | |
| 4209 | int32_t container_serialize(const void *container, uint8_t typecode, |
| 4210 | char *buf) WARN_UNUSED; |
| 4211 | |
| 4212 | uint32_t container_serialization_len(const void *container, uint8_t typecode); |
| 4213 | |
| 4214 | void *container_deserialize(uint8_t typecode, const char *buf, size_t buf_len); |
| 4215 | |
| 4216 | /** |
| 4217 | * Returns true if the two containers have the same content. Note that |
| 4218 | * two containers having different types can be "equal" in this sense. |
| 4219 | */ |
| 4220 | static inline bool container_equals(const void *c1, uint8_t type1, |
| 4221 | const void *c2, uint8_t type2) { |
| 4222 | c1 = container_unwrap_shared(c1, &type1); |
| 4223 | c2 = container_unwrap_shared(c2, &type2); |
| 4224 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4225 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4226 | BITSET_CONTAINER_TYPE_CODE): |
| 4227 | return bitset_container_equals((const bitset_container_t *)c1, |
| 4228 | (const bitset_container_t *)c2); |
| 4229 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4230 | RUN_CONTAINER_TYPE_CODE): |
| 4231 | return run_container_equals_bitset((const run_container_t *)c2, |
| 4232 | (const bitset_container_t *)c1); |
| 4233 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 4234 | BITSET_CONTAINER_TYPE_CODE): |
| 4235 | return run_container_equals_bitset((const run_container_t *)c1, |
| 4236 | (const bitset_container_t *)c2); |
| 4237 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4238 | ARRAY_CONTAINER_TYPE_CODE): |
| 4239 | // java would always return false? |
| 4240 | return array_container_equal_bitset((const array_container_t *)c2, |
| 4241 | (const bitset_container_t *)c1); |
| 4242 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4243 | BITSET_CONTAINER_TYPE_CODE): |
| 4244 | // java would always return false? |
| 4245 | return array_container_equal_bitset((const array_container_t *)c1, |
| 4246 | (const bitset_container_t *)c2); |
| 4247 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4248 | return run_container_equals_array((const run_container_t *)c2, |
| 4249 | (const array_container_t *)c1); |
| 4250 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 4251 | return run_container_equals_array((const run_container_t *)c1, |
| 4252 | (const array_container_t *)c2); |
| 4253 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4254 | ARRAY_CONTAINER_TYPE_CODE): |
| 4255 | return array_container_equals((const array_container_t *)c1, |
| 4256 | (const array_container_t *)c2); |
| 4257 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4258 | return run_container_equals((const run_container_t *)c1, |
| 4259 | (const run_container_t *)c2); |
| 4260 | default: |
| 4261 | assert(false); |
| 4262 | __builtin_unreachable(); |
| 4263 | return false; |
| 4264 | } |
| 4265 | } |
| 4266 | |
| 4267 | /** |
| 4268 | * Returns true if the container c1 is a subset of the container c2. Note that |
| 4269 | * c1 can be a subset of c2 even if they have a different type. |
| 4270 | */ |
| 4271 | static inline bool container_is_subset(const void *c1, uint8_t type1, |
| 4272 | const void *c2, uint8_t type2) { |
| 4273 | c1 = container_unwrap_shared(c1, &type1); |
| 4274 | c2 = container_unwrap_shared(c2, &type2); |
| 4275 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4276 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4277 | BITSET_CONTAINER_TYPE_CODE): |
| 4278 | return bitset_container_is_subset((const bitset_container_t *)c1, |
| 4279 | (const bitset_container_t *)c2); |
| 4280 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4281 | RUN_CONTAINER_TYPE_CODE): |
| 4282 | return bitset_container_is_subset_run((const bitset_container_t *)c1, |
| 4283 | (const run_container_t *)c2); |
| 4284 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 4285 | BITSET_CONTAINER_TYPE_CODE): |
| 4286 | return run_container_is_subset_bitset((const run_container_t *)c1, |
| 4287 | (const bitset_container_t *)c2); |
| 4288 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4289 | ARRAY_CONTAINER_TYPE_CODE): |
| 4290 | return false; // by construction, size(c1) > size(c2) |
| 4291 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4292 | BITSET_CONTAINER_TYPE_CODE): |
| 4293 | return array_container_is_subset_bitset((const array_container_t *)c1, |
| 4294 | (const bitset_container_t *)c2); |
| 4295 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4296 | return array_container_is_subset_run((const array_container_t *)c1, |
| 4297 | (const run_container_t *)c2); |
| 4298 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 4299 | return run_container_is_subset_array((const run_container_t *)c1, |
| 4300 | (const array_container_t *)c2); |
| 4301 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4302 | ARRAY_CONTAINER_TYPE_CODE): |
| 4303 | return array_container_is_subset((const array_container_t *)c1, |
| 4304 | (const array_container_t *)c2); |
| 4305 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4306 | return run_container_is_subset((const run_container_t *)c1, |
| 4307 | (const run_container_t *)c2); |
| 4308 | default: |
| 4309 | assert(false); |
| 4310 | __builtin_unreachable(); |
| 4311 | return false; |
| 4312 | } |
| 4313 | } |
| 4314 | |
| 4315 | // macro-izations possibilities for generic non-inplace binary-op dispatch |
| 4316 | |
| 4317 | /** |
| 4318 | * Compute intersection between two containers, generate a new container (having |
| 4319 | * type result_type), requires a typecode. This allocates new memory, caller |
| 4320 | * is responsible for deallocation. |
| 4321 | */ |
| 4322 | static inline void *container_and(const void *c1, uint8_t type1, const void *c2, |
| 4323 | uint8_t type2, uint8_t *result_type) { |
| 4324 | c1 = container_unwrap_shared(c1, &type1); |
| 4325 | c2 = container_unwrap_shared(c2, &type2); |
| 4326 | void *result = NULL; |
| 4327 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4328 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4329 | BITSET_CONTAINER_TYPE_CODE): |
| 4330 | *result_type = bitset_bitset_container_intersection( |
| 4331 | (const bitset_container_t *)c1, |
| 4332 | (const bitset_container_t *)c2, &result) |
| 4333 | ? BITSET_CONTAINER_TYPE_CODE |
| 4334 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4335 | return result; |
| 4336 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4337 | ARRAY_CONTAINER_TYPE_CODE): |
| 4338 | result = array_container_create(); |
| 4339 | array_container_intersection((const array_container_t *)c1, |
| 4340 | (const array_container_t *)c2, |
| 4341 | (array_container_t *)result); |
| 4342 | *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset |
| 4343 | return result; |
| 4344 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4345 | result = run_container_create(); |
| 4346 | run_container_intersection((const run_container_t *)c1, |
| 4347 | (const run_container_t *)c2, |
| 4348 | (run_container_t *)result); |
| 4349 | return convert_run_to_efficient_container_and_free( |
| 4350 | (run_container_t *)result, result_type); |
| 4351 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4352 | ARRAY_CONTAINER_TYPE_CODE): |
| 4353 | result = array_container_create(); |
| 4354 | array_bitset_container_intersection((const array_container_t *)c2, |
| 4355 | (const bitset_container_t *)c1, |
| 4356 | (array_container_t *)result); |
| 4357 | *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset |
| 4358 | return result; |
| 4359 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4360 | BITSET_CONTAINER_TYPE_CODE): |
| 4361 | result = array_container_create(); |
| 4362 | *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset |
| 4363 | array_bitset_container_intersection((const array_container_t *)c1, |
| 4364 | (const bitset_container_t *)c2, |
| 4365 | (array_container_t *)result); |
| 4366 | return result; |
| 4367 | |
| 4368 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4369 | RUN_CONTAINER_TYPE_CODE): |
| 4370 | *result_type = run_bitset_container_intersection( |
| 4371 | (const run_container_t *)c2, |
| 4372 | (const bitset_container_t *)c1, &result) |
| 4373 | ? BITSET_CONTAINER_TYPE_CODE |
| 4374 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4375 | return result; |
| 4376 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 4377 | BITSET_CONTAINER_TYPE_CODE): |
| 4378 | *result_type = run_bitset_container_intersection( |
| 4379 | (const run_container_t *)c1, |
| 4380 | (const bitset_container_t *)c2, &result) |
| 4381 | ? BITSET_CONTAINER_TYPE_CODE |
| 4382 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4383 | return result; |
| 4384 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4385 | result = array_container_create(); |
| 4386 | *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset |
| 4387 | array_run_container_intersection((const array_container_t *)c1, |
| 4388 | (const run_container_t *)c2, |
| 4389 | (array_container_t *)result); |
| 4390 | return result; |
| 4391 | |
| 4392 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 4393 | result = array_container_create(); |
| 4394 | *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset |
| 4395 | array_run_container_intersection((const array_container_t *)c2, |
| 4396 | (const run_container_t *)c1, |
| 4397 | (array_container_t *)result); |
| 4398 | return result; |
| 4399 | default: |
| 4400 | assert(false); |
| 4401 | __builtin_unreachable(); |
| 4402 | return NULL; |
| 4403 | } |
| 4404 | } |
| 4405 | |
| 4406 | /** |
| 4407 | * Compute the size of the intersection between two containers. |
| 4408 | */ |
| 4409 | static inline int container_and_cardinality(const void *c1, uint8_t type1, |
| 4410 | const void *c2, uint8_t type2) { |
| 4411 | c1 = container_unwrap_shared(c1, &type1); |
| 4412 | c2 = container_unwrap_shared(c2, &type2); |
| 4413 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4414 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4415 | BITSET_CONTAINER_TYPE_CODE): |
| 4416 | return bitset_container_and_justcard( |
| 4417 | (const bitset_container_t *)c1, (const bitset_container_t *)c2); |
| 4418 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4419 | ARRAY_CONTAINER_TYPE_CODE): |
| 4420 | return array_container_intersection_cardinality( |
| 4421 | (const array_container_t *)c1, (const array_container_t *)c2); |
| 4422 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4423 | return run_container_intersection_cardinality( |
| 4424 | (const run_container_t *)c1, (const run_container_t *)c2); |
| 4425 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4426 | ARRAY_CONTAINER_TYPE_CODE): |
| 4427 | return array_bitset_container_intersection_cardinality( |
| 4428 | (const array_container_t *)c2, (const bitset_container_t *)c1); |
| 4429 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4430 | BITSET_CONTAINER_TYPE_CODE): |
| 4431 | return array_bitset_container_intersection_cardinality( |
| 4432 | (const array_container_t *)c1, (const bitset_container_t *)c2); |
| 4433 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4434 | RUN_CONTAINER_TYPE_CODE): |
| 4435 | return run_bitset_container_intersection_cardinality( |
| 4436 | (const run_container_t *)c2, (const bitset_container_t *)c1); |
| 4437 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 4438 | BITSET_CONTAINER_TYPE_CODE): |
| 4439 | return run_bitset_container_intersection_cardinality( |
| 4440 | (const run_container_t *)c1, (const bitset_container_t *)c2); |
| 4441 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4442 | return array_run_container_intersection_cardinality( |
| 4443 | (const array_container_t *)c1, (const run_container_t *)c2); |
| 4444 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 4445 | return array_run_container_intersection_cardinality( |
| 4446 | (const array_container_t *)c2, (const run_container_t *)c1); |
| 4447 | default: |
| 4448 | assert(false); |
| 4449 | __builtin_unreachable(); |
| 4450 | return 0; |
| 4451 | } |
| 4452 | } |
| 4453 | |
| 4454 | /** |
| 4455 | * Check whether two containers intersect. |
| 4456 | */ |
| 4457 | static inline bool container_intersect(const void *c1, uint8_t type1, const void *c2, |
| 4458 | uint8_t type2) { |
| 4459 | c1 = container_unwrap_shared(c1, &type1); |
| 4460 | c2 = container_unwrap_shared(c2, &type2); |
| 4461 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4462 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4463 | BITSET_CONTAINER_TYPE_CODE): |
| 4464 | return bitset_container_intersect( |
| 4465 | (const bitset_container_t *)c1, |
| 4466 | (const bitset_container_t *)c2); |
| 4467 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4468 | ARRAY_CONTAINER_TYPE_CODE): |
| 4469 | return array_container_intersect((const array_container_t *)c1, |
| 4470 | (const array_container_t *)c2); |
| 4471 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4472 | return run_container_intersect((const run_container_t *)c1, |
| 4473 | (const run_container_t *)c2); |
| 4474 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4475 | ARRAY_CONTAINER_TYPE_CODE): |
| 4476 | return array_bitset_container_intersect((const array_container_t *)c2, |
| 4477 | (const bitset_container_t *)c1); |
| 4478 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4479 | BITSET_CONTAINER_TYPE_CODE): |
| 4480 | return array_bitset_container_intersect((const array_container_t *)c1, |
| 4481 | (const bitset_container_t *)c2); |
| 4482 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4483 | RUN_CONTAINER_TYPE_CODE): |
| 4484 | return run_bitset_container_intersect( |
| 4485 | (const run_container_t *)c2, |
| 4486 | (const bitset_container_t *)c1); |
| 4487 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 4488 | BITSET_CONTAINER_TYPE_CODE): |
| 4489 | return run_bitset_container_intersect( |
| 4490 | (const run_container_t *)c1, |
| 4491 | (const bitset_container_t *)c2); |
| 4492 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4493 | return array_run_container_intersect((const array_container_t *)c1, |
| 4494 | (const run_container_t *)c2); |
| 4495 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 4496 | return array_run_container_intersect((const array_container_t *)c2, |
| 4497 | (const run_container_t *)c1); |
| 4498 | default: |
| 4499 | assert(false); |
| 4500 | __builtin_unreachable(); |
| 4501 | return 0; |
| 4502 | } |
| 4503 | } |
| 4504 | |
| 4505 | /** |
| 4506 | * Compute intersection between two containers, with result in the first |
| 4507 | container if possible. If the returned pointer is identical to c1, |
| 4508 | then the container has been modified. If the returned pointer is different |
| 4509 | from c1, then a new container has been created and the caller is responsible |
| 4510 | for freeing it. |
| 4511 | The type of the first container may change. Returns the modified |
| 4512 | (and possibly new) container. |
| 4513 | */ |
| 4514 | static inline void *container_iand(void *c1, uint8_t type1, const void *c2, |
| 4515 | uint8_t type2, uint8_t *result_type) { |
| 4516 | c1 = get_writable_copy_if_shared(c1, &type1); |
| 4517 | c2 = container_unwrap_shared(c2, &type2); |
| 4518 | void *result = NULL; |
| 4519 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4520 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4521 | BITSET_CONTAINER_TYPE_CODE): |
| 4522 | *result_type = |
| 4523 | bitset_bitset_container_intersection_inplace( |
| 4524 | (bitset_container_t *)c1, (const bitset_container_t *)c2, &result) |
| 4525 | ? BITSET_CONTAINER_TYPE_CODE |
| 4526 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4527 | return result; |
| 4528 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4529 | ARRAY_CONTAINER_TYPE_CODE): |
| 4530 | array_container_intersection_inplace((array_container_t *)c1, |
| 4531 | (const array_container_t *)c2); |
| 4532 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 4533 | return c1; |
| 4534 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4535 | result = run_container_create(); |
| 4536 | run_container_intersection((const run_container_t *)c1, |
| 4537 | (const run_container_t *)c2, |
| 4538 | (run_container_t *)result); |
| 4539 | // as of January 2016, Java code used non-in-place intersection for |
| 4540 | // two runcontainers |
| 4541 | return convert_run_to_efficient_container_and_free( |
| 4542 | (run_container_t *)result, result_type); |
| 4543 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4544 | ARRAY_CONTAINER_TYPE_CODE): |
| 4545 | // c1 is a bitmap so no inplace possible |
| 4546 | result = array_container_create(); |
| 4547 | array_bitset_container_intersection((const array_container_t *)c2, |
| 4548 | (const bitset_container_t *)c1, |
| 4549 | (array_container_t *)result); |
| 4550 | *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset |
| 4551 | return result; |
| 4552 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4553 | BITSET_CONTAINER_TYPE_CODE): |
| 4554 | *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset |
| 4555 | array_bitset_container_intersection( |
| 4556 | (const array_container_t *)c1, (const bitset_container_t *)c2, |
| 4557 | (array_container_t *)c1); // allowed |
| 4558 | return c1; |
| 4559 | |
| 4560 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4561 | RUN_CONTAINER_TYPE_CODE): |
| 4562 | // will attempt in-place computation |
| 4563 | *result_type = run_bitset_container_intersection( |
| 4564 | (const run_container_t *)c2, |
| 4565 | (const bitset_container_t *)c1, &c1) |
| 4566 | ? BITSET_CONTAINER_TYPE_CODE |
| 4567 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4568 | return c1; |
| 4569 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 4570 | BITSET_CONTAINER_TYPE_CODE): |
| 4571 | *result_type = run_bitset_container_intersection( |
| 4572 | (const run_container_t *)c1, |
| 4573 | (const bitset_container_t *)c2, &result) |
| 4574 | ? BITSET_CONTAINER_TYPE_CODE |
| 4575 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4576 | return result; |
| 4577 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4578 | result = array_container_create(); |
| 4579 | *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset |
| 4580 | array_run_container_intersection((const array_container_t *)c1, |
| 4581 | (const run_container_t *)c2, |
| 4582 | (array_container_t *)result); |
| 4583 | return result; |
| 4584 | |
| 4585 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 4586 | result = array_container_create(); |
| 4587 | *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset |
| 4588 | array_run_container_intersection((const array_container_t *)c2, |
| 4589 | (const run_container_t *)c1, |
| 4590 | (array_container_t *)result); |
| 4591 | return result; |
| 4592 | default: |
| 4593 | assert(false); |
| 4594 | __builtin_unreachable(); |
| 4595 | return NULL; |
| 4596 | } |
| 4597 | } |
| 4598 | |
| 4599 | /** |
| 4600 | * Compute union between two containers, generate a new container (having type |
| 4601 | * result_type), requires a typecode. This allocates new memory, caller |
| 4602 | * is responsible for deallocation. |
| 4603 | */ |
| 4604 | static inline void *container_or(const void *c1, uint8_t type1, const void *c2, |
| 4605 | uint8_t type2, uint8_t *result_type) { |
| 4606 | c1 = container_unwrap_shared(c1, &type1); |
| 4607 | c2 = container_unwrap_shared(c2, &type2); |
| 4608 | void *result = NULL; |
| 4609 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4610 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4611 | BITSET_CONTAINER_TYPE_CODE): |
| 4612 | result = bitset_container_create(); |
| 4613 | bitset_container_or((const bitset_container_t *)c1, |
| 4614 | (const bitset_container_t *)c2, |
| 4615 | (bitset_container_t *)result); |
| 4616 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4617 | return result; |
| 4618 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4619 | ARRAY_CONTAINER_TYPE_CODE): |
| 4620 | *result_type = array_array_container_union( |
| 4621 | (const array_container_t *)c1, |
| 4622 | (const array_container_t *)c2, &result) |
| 4623 | ? BITSET_CONTAINER_TYPE_CODE |
| 4624 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4625 | return result; |
| 4626 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4627 | result = run_container_create(); |
| 4628 | run_container_union((const run_container_t *)c1, |
| 4629 | (const run_container_t *)c2, |
| 4630 | (run_container_t *)result); |
| 4631 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4632 | // todo: could be optimized since will never convert to array |
| 4633 | result = convert_run_to_efficient_container_and_free( |
| 4634 | (run_container_t *)result, (uint8_t *)result_type); |
| 4635 | return result; |
| 4636 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4637 | ARRAY_CONTAINER_TYPE_CODE): |
| 4638 | result = bitset_container_create(); |
| 4639 | array_bitset_container_union((const array_container_t *)c2, |
| 4640 | (const bitset_container_t *)c1, |
| 4641 | (bitset_container_t *)result); |
| 4642 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4643 | return result; |
| 4644 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4645 | BITSET_CONTAINER_TYPE_CODE): |
| 4646 | result = bitset_container_create(); |
| 4647 | array_bitset_container_union((const array_container_t *)c1, |
| 4648 | (const bitset_container_t *)c2, |
| 4649 | (bitset_container_t *)result); |
| 4650 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4651 | return result; |
| 4652 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4653 | RUN_CONTAINER_TYPE_CODE): |
| 4654 | if (run_container_is_full((const run_container_t *)c2)) { |
| 4655 | result = run_container_create(); |
| 4656 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4657 | run_container_copy((const run_container_t *)c2, |
| 4658 | (run_container_t *)result); |
| 4659 | return result; |
| 4660 | } |
| 4661 | result = bitset_container_create(); |
| 4662 | run_bitset_container_union((const run_container_t *)c2, |
| 4663 | (const bitset_container_t *)c1, |
| 4664 | (bitset_container_t *)result); |
| 4665 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4666 | return result; |
| 4667 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 4668 | BITSET_CONTAINER_TYPE_CODE): |
| 4669 | if (run_container_is_full((const run_container_t *)c1)) { |
| 4670 | result = run_container_create(); |
| 4671 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4672 | run_container_copy((const run_container_t *)c1, |
| 4673 | (run_container_t *)result); |
| 4674 | return result; |
| 4675 | } |
| 4676 | result = bitset_container_create(); |
| 4677 | run_bitset_container_union((const run_container_t *)c1, |
| 4678 | (const bitset_container_t *)c2, |
| 4679 | (bitset_container_t *)result); |
| 4680 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4681 | return result; |
| 4682 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4683 | result = run_container_create(); |
| 4684 | array_run_container_union((const array_container_t *)c1, |
| 4685 | (const run_container_t *)c2, |
| 4686 | (run_container_t *)result); |
| 4687 | result = convert_run_to_efficient_container_and_free( |
| 4688 | (run_container_t *)result, (uint8_t *)result_type); |
| 4689 | return result; |
| 4690 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 4691 | result = run_container_create(); |
| 4692 | array_run_container_union((const array_container_t *)c2, |
| 4693 | (const run_container_t *)c1, |
| 4694 | (run_container_t *)result); |
| 4695 | result = convert_run_to_efficient_container_and_free( |
| 4696 | (run_container_t *)result, (uint8_t *)result_type); |
| 4697 | return result; |
| 4698 | default: |
| 4699 | assert(false); |
| 4700 | __builtin_unreachable(); |
| 4701 | return NULL; // unreached |
| 4702 | } |
| 4703 | } |
| 4704 | |
| 4705 | /** |
| 4706 | * Compute union between two containers, generate a new container (having type |
| 4707 | * result_type), requires a typecode. This allocates new memory, caller |
| 4708 | * is responsible for deallocation. |
| 4709 | * |
| 4710 | * This lazy version delays some operations such as the maintenance of the |
| 4711 | * cardinality. It requires repair later on the generated containers. |
| 4712 | */ |
| 4713 | static inline void *container_lazy_or(const void *c1, uint8_t type1, |
| 4714 | const void *c2, uint8_t type2, |
| 4715 | uint8_t *result_type) { |
| 4716 | c1 = container_unwrap_shared(c1, &type1); |
| 4717 | c2 = container_unwrap_shared(c2, &type2); |
| 4718 | void *result = NULL; |
| 4719 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4720 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4721 | BITSET_CONTAINER_TYPE_CODE): |
| 4722 | result = bitset_container_create(); |
| 4723 | bitset_container_or_nocard( |
| 4724 | (const bitset_container_t *)c1, (const bitset_container_t *)c2, |
| 4725 | (bitset_container_t *)result); // is lazy |
| 4726 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4727 | return result; |
| 4728 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4729 | ARRAY_CONTAINER_TYPE_CODE): |
| 4730 | *result_type = array_array_container_lazy_union( |
| 4731 | (const array_container_t *)c1, |
| 4732 | (const array_container_t *)c2, &result) |
| 4733 | ? BITSET_CONTAINER_TYPE_CODE |
| 4734 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4735 | return result; |
| 4736 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4737 | result = run_container_create(); |
| 4738 | run_container_union((const run_container_t *)c1, |
| 4739 | (const run_container_t *)c2, |
| 4740 | (run_container_t *)result); |
| 4741 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4742 | // we are being lazy |
| 4743 | result = convert_run_to_efficient_container( |
| 4744 | (run_container_t *)result, result_type); |
| 4745 | return result; |
| 4746 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4747 | ARRAY_CONTAINER_TYPE_CODE): |
| 4748 | result = bitset_container_create(); |
| 4749 | array_bitset_container_lazy_union( |
| 4750 | (const array_container_t *)c2, (const bitset_container_t *)c1, |
| 4751 | (bitset_container_t *)result); // is lazy |
| 4752 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4753 | return result; |
| 4754 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4755 | BITSET_CONTAINER_TYPE_CODE): |
| 4756 | result = bitset_container_create(); |
| 4757 | array_bitset_container_lazy_union( |
| 4758 | (const array_container_t *)c1, (const bitset_container_t *)c2, |
| 4759 | (bitset_container_t *)result); // is lazy |
| 4760 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4761 | return result; |
| 4762 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4763 | RUN_CONTAINER_TYPE_CODE): |
| 4764 | if (run_container_is_full((const run_container_t *)c2)) { |
| 4765 | result = run_container_create(); |
| 4766 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4767 | run_container_copy((const run_container_t *)c2, |
| 4768 | (run_container_t *)result); |
| 4769 | return result; |
| 4770 | } |
| 4771 | result = bitset_container_create(); |
| 4772 | run_bitset_container_lazy_union( |
| 4773 | (const run_container_t *)c2, (const bitset_container_t *)c1, |
| 4774 | (bitset_container_t *)result); // is lazy |
| 4775 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4776 | return result; |
| 4777 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 4778 | BITSET_CONTAINER_TYPE_CODE): |
| 4779 | if (run_container_is_full((const run_container_t *)c1)) { |
| 4780 | result = run_container_create(); |
| 4781 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4782 | run_container_copy((const run_container_t *)c1, |
| 4783 | (run_container_t *)result); |
| 4784 | return result; |
| 4785 | } |
| 4786 | result = bitset_container_create(); |
| 4787 | run_bitset_container_lazy_union( |
| 4788 | (const run_container_t *)c1, (const bitset_container_t *)c2, |
| 4789 | (bitset_container_t *)result); // is lazy |
| 4790 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4791 | return result; |
| 4792 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4793 | result = run_container_create(); |
| 4794 | array_run_container_union((const array_container_t *)c1, |
| 4795 | (const run_container_t *)c2, |
| 4796 | (run_container_t *)result); |
| 4797 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4798 | // next line skipped since we are lazy |
| 4799 | // result = convert_run_to_efficient_container(result, result_type); |
| 4800 | return result; |
| 4801 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 4802 | result = run_container_create(); |
| 4803 | array_run_container_union( |
| 4804 | (const array_container_t *)c2, (const run_container_t *)c1, |
| 4805 | (run_container_t *)result); // TODO make lazy |
| 4806 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4807 | // next line skipped since we are lazy |
| 4808 | // result = convert_run_to_efficient_container(result, result_type); |
| 4809 | return result; |
| 4810 | default: |
| 4811 | assert(false); |
| 4812 | __builtin_unreachable(); |
| 4813 | return NULL; // unreached |
| 4814 | } |
| 4815 | } |
| 4816 | |
| 4817 | /** |
| 4818 | * Compute the union between two containers, with result in the first container. |
| 4819 | * If the returned pointer is identical to c1, then the container has been |
| 4820 | * modified. |
| 4821 | * If the returned pointer is different from c1, then a new container has been |
| 4822 | * created and the caller is responsible for freeing it. |
| 4823 | * The type of the first container may change. Returns the modified |
| 4824 | * (and possibly new) container |
| 4825 | */ |
| 4826 | static inline void *container_ior(void *c1, uint8_t type1, const void *c2, |
| 4827 | uint8_t type2, uint8_t *result_type) { |
| 4828 | c1 = get_writable_copy_if_shared(c1, &type1); |
| 4829 | c2 = container_unwrap_shared(c2, &type2); |
| 4830 | void *result = NULL; |
| 4831 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4832 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4833 | BITSET_CONTAINER_TYPE_CODE): |
| 4834 | bitset_container_or((const bitset_container_t *)c1, |
| 4835 | (const bitset_container_t *)c2, |
| 4836 | (bitset_container_t *)c1); |
| 4837 | #ifdef OR_BITSET_CONVERSION_TO_FULL |
| 4838 | if (((bitset_container_t *)c1)->cardinality == |
| 4839 | (1 << 16)) { // we convert |
| 4840 | result = run_container_create_range(0, (1 << 16)); |
| 4841 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4842 | return result; |
| 4843 | } |
| 4844 | #endif |
| 4845 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4846 | return c1; |
| 4847 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4848 | ARRAY_CONTAINER_TYPE_CODE): |
| 4849 | *result_type = array_array_container_inplace_union( |
| 4850 | (array_container_t *)c1, |
| 4851 | (const array_container_t *)c2, &result) |
| 4852 | ? BITSET_CONTAINER_TYPE_CODE |
| 4853 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4854 | if((result == NULL) |
| 4855 | && (*result_type == ARRAY_CONTAINER_TYPE_CODE)) { |
| 4856 | return c1; // the computation was done in-place! |
| 4857 | } |
| 4858 | return result; |
| 4859 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4860 | run_container_union_inplace((run_container_t *)c1, |
| 4861 | (const run_container_t *)c2); |
| 4862 | return convert_run_to_efficient_container((run_container_t *)c1, |
| 4863 | result_type); |
| 4864 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4865 | ARRAY_CONTAINER_TYPE_CODE): |
| 4866 | array_bitset_container_union((const array_container_t *)c2, |
| 4867 | (const bitset_container_t *)c1, |
| 4868 | (bitset_container_t *)c1); |
| 4869 | *result_type = BITSET_CONTAINER_TYPE_CODE; // never array |
| 4870 | return c1; |
| 4871 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4872 | BITSET_CONTAINER_TYPE_CODE): |
| 4873 | // c1 is an array, so no in-place possible |
| 4874 | result = bitset_container_create(); |
| 4875 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4876 | array_bitset_container_union((const array_container_t *)c1, |
| 4877 | (const bitset_container_t *)c2, |
| 4878 | (bitset_container_t *)result); |
| 4879 | return result; |
| 4880 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4881 | RUN_CONTAINER_TYPE_CODE): |
| 4882 | if (run_container_is_full((const run_container_t *)c2)) { |
| 4883 | result = run_container_create(); |
| 4884 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4885 | run_container_copy((const run_container_t *)c2, |
| 4886 | (run_container_t *)result); |
| 4887 | return result; |
| 4888 | } |
| 4889 | run_bitset_container_union((const run_container_t *)c2, |
| 4890 | (const bitset_container_t *)c1, |
| 4891 | (bitset_container_t *)c1); // allowed |
| 4892 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4893 | return c1; |
| 4894 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 4895 | BITSET_CONTAINER_TYPE_CODE): |
| 4896 | if (run_container_is_full((const run_container_t *)c1)) { |
| 4897 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4898 | |
| 4899 | return c1; |
| 4900 | } |
| 4901 | result = bitset_container_create(); |
| 4902 | run_bitset_container_union((const run_container_t *)c1, |
| 4903 | (const bitset_container_t *)c2, |
| 4904 | (bitset_container_t *)result); |
| 4905 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4906 | return result; |
| 4907 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4908 | result = run_container_create(); |
| 4909 | array_run_container_union((const array_container_t *)c1, |
| 4910 | (const run_container_t *)c2, |
| 4911 | (run_container_t *)result); |
| 4912 | result = convert_run_to_efficient_container_and_free( |
| 4913 | (run_container_t *)result, result_type); |
| 4914 | return result; |
| 4915 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 4916 | array_run_container_inplace_union((const array_container_t *)c2, |
| 4917 | (run_container_t *)c1); |
| 4918 | c1 = convert_run_to_efficient_container((run_container_t *)c1, |
| 4919 | result_type); |
| 4920 | return c1; |
| 4921 | default: |
| 4922 | assert(false); |
| 4923 | __builtin_unreachable(); |
| 4924 | return NULL; |
| 4925 | } |
| 4926 | } |
| 4927 | |
| 4928 | /** |
| 4929 | * Compute the union between two containers, with result in the first container. |
| 4930 | * If the returned pointer is identical to c1, then the container has been |
| 4931 | * modified. |
| 4932 | * If the returned pointer is different from c1, then a new container has been |
| 4933 | * created and the caller is responsible for freeing it. |
| 4934 | * The type of the first container may change. Returns the modified |
| 4935 | * (and possibly new) container |
| 4936 | * |
| 4937 | * This lazy version delays some operations such as the maintenance of the |
| 4938 | * cardinality. It requires repair later on the generated containers. |
| 4939 | */ |
| 4940 | static inline void *container_lazy_ior(void *c1, uint8_t type1, const void *c2, |
| 4941 | uint8_t type2, uint8_t *result_type) { |
| 4942 | assert(type1 != SHARED_CONTAINER_TYPE_CODE); |
| 4943 | // c1 = get_writable_copy_if_shared(c1,&type1); |
| 4944 | c2 = container_unwrap_shared(c2, &type2); |
| 4945 | void *result = NULL; |
| 4946 | switch (CONTAINER_PAIR(type1, type2)) { |
| 4947 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4948 | BITSET_CONTAINER_TYPE_CODE): |
| 4949 | #ifdef LAZY_OR_BITSET_CONVERSION_TO_FULL |
| 4950 | // if we have two bitsets, we might as well compute the cardinality |
| 4951 | bitset_container_or((const bitset_container_t *)c1, |
| 4952 | (const bitset_container_t *)c2, |
| 4953 | (bitset_container_t *)c1); |
| 4954 | // it is possible that two bitsets can lead to a full container |
| 4955 | if (((bitset_container_t *)c1)->cardinality == |
| 4956 | (1 << 16)) { // we convert |
| 4957 | result = run_container_create_range(0, (1 << 16)); |
| 4958 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4959 | return result; |
| 4960 | } |
| 4961 | #else |
| 4962 | bitset_container_or_nocard((const bitset_container_t *)c1, |
| 4963 | (const bitset_container_t *)c2, |
| 4964 | (bitset_container_t *)c1); |
| 4965 | |
| 4966 | #endif |
| 4967 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4968 | return c1; |
| 4969 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4970 | ARRAY_CONTAINER_TYPE_CODE): |
| 4971 | *result_type = array_array_container_lazy_inplace_union( |
| 4972 | (array_container_t *)c1, |
| 4973 | (const array_container_t *)c2, &result) |
| 4974 | ? BITSET_CONTAINER_TYPE_CODE |
| 4975 | : ARRAY_CONTAINER_TYPE_CODE; |
| 4976 | if((result == NULL) |
| 4977 | && (*result_type == ARRAY_CONTAINER_TYPE_CODE)) { |
| 4978 | return c1; // the computation was done in-place! |
| 4979 | } |
| 4980 | return result; |
| 4981 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 4982 | run_container_union_inplace((run_container_t *)c1, |
| 4983 | (const run_container_t *)c2); |
| 4984 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 4985 | return convert_run_to_efficient_container((run_container_t *)c1, |
| 4986 | result_type); |
| 4987 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 4988 | ARRAY_CONTAINER_TYPE_CODE): |
| 4989 | array_bitset_container_lazy_union( |
| 4990 | (const array_container_t *)c2, (const bitset_container_t *)c1, |
| 4991 | (bitset_container_t *)c1); // is lazy |
| 4992 | *result_type = BITSET_CONTAINER_TYPE_CODE; // never array |
| 4993 | return c1; |
| 4994 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 4995 | BITSET_CONTAINER_TYPE_CODE): |
| 4996 | // c1 is an array, so no in-place possible |
| 4997 | result = bitset_container_create(); |
| 4998 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 4999 | array_bitset_container_lazy_union( |
| 5000 | (const array_container_t *)c1, (const bitset_container_t *)c2, |
| 5001 | (bitset_container_t *)result); // is lazy |
| 5002 | return result; |
| 5003 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5004 | RUN_CONTAINER_TYPE_CODE): |
| 5005 | if (run_container_is_full((const run_container_t *)c2)) { |
| 5006 | result = run_container_create(); |
| 5007 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5008 | run_container_copy((const run_container_t *)c2, |
| 5009 | (run_container_t *)result); |
| 5010 | return result; |
| 5011 | } |
| 5012 | run_bitset_container_lazy_union( |
| 5013 | (const run_container_t *)c2, (const bitset_container_t *)c1, |
| 5014 | (bitset_container_t *)c1); // allowed // lazy |
| 5015 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5016 | return c1; |
| 5017 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 5018 | BITSET_CONTAINER_TYPE_CODE): |
| 5019 | if (run_container_is_full((const run_container_t *)c1)) { |
| 5020 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5021 | return c1; |
| 5022 | } |
| 5023 | result = bitset_container_create(); |
| 5024 | run_bitset_container_lazy_union( |
| 5025 | (const run_container_t *)c1, (const bitset_container_t *)c2, |
| 5026 | (bitset_container_t *)result); // lazy |
| 5027 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5028 | return result; |
| 5029 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5030 | result = run_container_create(); |
| 5031 | array_run_container_union((const array_container_t *)c1, |
| 5032 | (const run_container_t *)c2, |
| 5033 | (run_container_t *)result); |
| 5034 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5035 | // next line skipped since we are lazy |
| 5036 | // result = convert_run_to_efficient_container_and_free(result, |
| 5037 | // result_type); |
| 5038 | return result; |
| 5039 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 5040 | array_run_container_inplace_union((const array_container_t *)c2, |
| 5041 | (run_container_t *)c1); |
| 5042 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5043 | // next line skipped since we are lazy |
| 5044 | // result = convert_run_to_efficient_container_and_free(result, |
| 5045 | // result_type); |
| 5046 | return c1; |
| 5047 | default: |
| 5048 | assert(false); |
| 5049 | __builtin_unreachable(); |
| 5050 | return NULL; |
| 5051 | } |
| 5052 | } |
| 5053 | |
| 5054 | /** |
| 5055 | * Compute symmetric difference (xor) between two containers, generate a new |
| 5056 | * container (having type result_type), requires a typecode. This allocates new |
| 5057 | * memory, caller is responsible for deallocation. |
| 5058 | */ |
| 5059 | static inline void *container_xor(const void *c1, uint8_t type1, const void *c2, |
| 5060 | uint8_t type2, uint8_t *result_type) { |
| 5061 | c1 = container_unwrap_shared(c1, &type1); |
| 5062 | c2 = container_unwrap_shared(c2, &type2); |
| 5063 | void *result = NULL; |
| 5064 | switch (CONTAINER_PAIR(type1, type2)) { |
| 5065 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5066 | BITSET_CONTAINER_TYPE_CODE): |
| 5067 | *result_type = bitset_bitset_container_xor( |
| 5068 | (const bitset_container_t *)c1, |
| 5069 | (const bitset_container_t *)c2, &result) |
| 5070 | ? BITSET_CONTAINER_TYPE_CODE |
| 5071 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5072 | return result; |
| 5073 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5074 | ARRAY_CONTAINER_TYPE_CODE): |
| 5075 | *result_type = array_array_container_xor( |
| 5076 | (const array_container_t *)c1, |
| 5077 | (const array_container_t *)c2, &result) |
| 5078 | ? BITSET_CONTAINER_TYPE_CODE |
| 5079 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5080 | return result; |
| 5081 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5082 | *result_type = |
| 5083 | run_run_container_xor((const run_container_t *)c1, |
| 5084 | (const run_container_t *)c2, &result); |
| 5085 | return result; |
| 5086 | |
| 5087 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5088 | ARRAY_CONTAINER_TYPE_CODE): |
| 5089 | *result_type = array_bitset_container_xor( |
| 5090 | (const array_container_t *)c2, |
| 5091 | (const bitset_container_t *)c1, &result) |
| 5092 | ? BITSET_CONTAINER_TYPE_CODE |
| 5093 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5094 | return result; |
| 5095 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5096 | BITSET_CONTAINER_TYPE_CODE): |
| 5097 | *result_type = array_bitset_container_xor( |
| 5098 | (const array_container_t *)c1, |
| 5099 | (const bitset_container_t *)c2, &result) |
| 5100 | ? BITSET_CONTAINER_TYPE_CODE |
| 5101 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5102 | return result; |
| 5103 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5104 | RUN_CONTAINER_TYPE_CODE): |
| 5105 | *result_type = run_bitset_container_xor( |
| 5106 | (const run_container_t *)c2, |
| 5107 | (const bitset_container_t *)c1, &result) |
| 5108 | ? BITSET_CONTAINER_TYPE_CODE |
| 5109 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5110 | return result; |
| 5111 | |
| 5112 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 5113 | BITSET_CONTAINER_TYPE_CODE): |
| 5114 | |
| 5115 | *result_type = run_bitset_container_xor( |
| 5116 | (const run_container_t *)c1, |
| 5117 | (const bitset_container_t *)c2, &result) |
| 5118 | ? BITSET_CONTAINER_TYPE_CODE |
| 5119 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5120 | return result; |
| 5121 | |
| 5122 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5123 | *result_type = |
| 5124 | array_run_container_xor((const array_container_t *)c1, |
| 5125 | (const run_container_t *)c2, &result); |
| 5126 | return result; |
| 5127 | |
| 5128 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 5129 | *result_type = |
| 5130 | array_run_container_xor((const array_container_t *)c2, |
| 5131 | (const run_container_t *)c1, &result); |
| 5132 | return result; |
| 5133 | |
| 5134 | default: |
| 5135 | assert(false); |
| 5136 | __builtin_unreachable(); |
| 5137 | return NULL; // unreached |
| 5138 | } |
| 5139 | } |
| 5140 | |
| 5141 | /** |
| 5142 | * Compute xor between two containers, generate a new container (having type |
| 5143 | * result_type), requires a typecode. This allocates new memory, caller |
| 5144 | * is responsible for deallocation. |
| 5145 | * |
| 5146 | * This lazy version delays some operations such as the maintenance of the |
| 5147 | * cardinality. It requires repair later on the generated containers. |
| 5148 | */ |
| 5149 | static inline void *container_lazy_xor(const void *c1, uint8_t type1, |
| 5150 | const void *c2, uint8_t type2, |
| 5151 | uint8_t *result_type) { |
| 5152 | c1 = container_unwrap_shared(c1, &type1); |
| 5153 | c2 = container_unwrap_shared(c2, &type2); |
| 5154 | void *result = NULL; |
| 5155 | switch (CONTAINER_PAIR(type1, type2)) { |
| 5156 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5157 | BITSET_CONTAINER_TYPE_CODE): |
| 5158 | result = bitset_container_create(); |
| 5159 | bitset_container_xor_nocard( |
| 5160 | (const bitset_container_t *)c1, (const bitset_container_t *)c2, |
| 5161 | (bitset_container_t *)result); // is lazy |
| 5162 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5163 | return result; |
| 5164 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5165 | ARRAY_CONTAINER_TYPE_CODE): |
| 5166 | *result_type = array_array_container_lazy_xor( |
| 5167 | (const array_container_t *)c1, |
| 5168 | (const array_container_t *)c2, &result) |
| 5169 | ? BITSET_CONTAINER_TYPE_CODE |
| 5170 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5171 | return result; |
| 5172 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5173 | // nothing special done yet. |
| 5174 | *result_type = |
| 5175 | run_run_container_xor((const run_container_t *)c1, |
| 5176 | (const run_container_t *)c2, &result); |
| 5177 | return result; |
| 5178 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5179 | ARRAY_CONTAINER_TYPE_CODE): |
| 5180 | result = bitset_container_create(); |
| 5181 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5182 | array_bitset_container_lazy_xor((const array_container_t *)c2, |
| 5183 | (const bitset_container_t *)c1, |
| 5184 | (bitset_container_t *)result); |
| 5185 | return result; |
| 5186 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5187 | BITSET_CONTAINER_TYPE_CODE): |
| 5188 | result = bitset_container_create(); |
| 5189 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5190 | array_bitset_container_lazy_xor((const array_container_t *)c1, |
| 5191 | (const bitset_container_t *)c2, |
| 5192 | (bitset_container_t *)result); |
| 5193 | return result; |
| 5194 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5195 | RUN_CONTAINER_TYPE_CODE): |
| 5196 | result = bitset_container_create(); |
| 5197 | run_bitset_container_lazy_xor((const run_container_t *)c2, |
| 5198 | (const bitset_container_t *)c1, |
| 5199 | (bitset_container_t *)result); |
| 5200 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5201 | return result; |
| 5202 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 5203 | BITSET_CONTAINER_TYPE_CODE): |
| 5204 | result = bitset_container_create(); |
| 5205 | run_bitset_container_lazy_xor((const run_container_t *)c1, |
| 5206 | (const bitset_container_t *)c2, |
| 5207 | (bitset_container_t *)result); |
| 5208 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5209 | return result; |
| 5210 | |
| 5211 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5212 | result = run_container_create(); |
| 5213 | array_run_container_lazy_xor((const array_container_t *)c1, |
| 5214 | (const run_container_t *)c2, |
| 5215 | (run_container_t *)result); |
| 5216 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5217 | // next line skipped since we are lazy |
| 5218 | // result = convert_run_to_efficient_container(result, result_type); |
| 5219 | return result; |
| 5220 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 5221 | result = run_container_create(); |
| 5222 | array_run_container_lazy_xor((const array_container_t *)c2, |
| 5223 | (const run_container_t *)c1, |
| 5224 | (run_container_t *)result); |
| 5225 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5226 | // next line skipped since we are lazy |
| 5227 | // result = convert_run_to_efficient_container(result, result_type); |
| 5228 | return result; |
| 5229 | default: |
| 5230 | assert(false); |
| 5231 | __builtin_unreachable(); |
| 5232 | return NULL; // unreached |
| 5233 | } |
| 5234 | } |
| 5235 | |
| 5236 | /** |
| 5237 | * Compute the xor between two containers, with result in the first container. |
| 5238 | * If the returned pointer is identical to c1, then the container has been |
| 5239 | * modified. |
| 5240 | * If the returned pointer is different from c1, then a new container has been |
| 5241 | * created and the caller is responsible for freeing it. |
| 5242 | * The type of the first container may change. Returns the modified |
| 5243 | * (and possibly new) container |
| 5244 | */ |
| 5245 | static inline void *container_ixor(void *c1, uint8_t type1, const void *c2, |
| 5246 | uint8_t type2, uint8_t *result_type) { |
| 5247 | c1 = get_writable_copy_if_shared(c1, &type1); |
| 5248 | c2 = container_unwrap_shared(c2, &type2); |
| 5249 | void *result = NULL; |
| 5250 | switch (CONTAINER_PAIR(type1, type2)) { |
| 5251 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5252 | BITSET_CONTAINER_TYPE_CODE): |
| 5253 | *result_type = bitset_bitset_container_ixor( |
| 5254 | (bitset_container_t *)c1, |
| 5255 | (const bitset_container_t *)c2, &result) |
| 5256 | ? BITSET_CONTAINER_TYPE_CODE |
| 5257 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5258 | return result; |
| 5259 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5260 | ARRAY_CONTAINER_TYPE_CODE): |
| 5261 | *result_type = array_array_container_ixor( |
| 5262 | (array_container_t *)c1, |
| 5263 | (const array_container_t *)c2, &result) |
| 5264 | ? BITSET_CONTAINER_TYPE_CODE |
| 5265 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5266 | return result; |
| 5267 | |
| 5268 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5269 | *result_type = run_run_container_ixor( |
| 5270 | (run_container_t *)c1, (const run_container_t *)c2, &result); |
| 5271 | return result; |
| 5272 | |
| 5273 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5274 | ARRAY_CONTAINER_TYPE_CODE): |
| 5275 | *result_type = bitset_array_container_ixor( |
| 5276 | (bitset_container_t *)c1, |
| 5277 | (const array_container_t *)c2, &result) |
| 5278 | ? BITSET_CONTAINER_TYPE_CODE |
| 5279 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5280 | return result; |
| 5281 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5282 | BITSET_CONTAINER_TYPE_CODE): |
| 5283 | *result_type = array_bitset_container_ixor( |
| 5284 | (array_container_t *)c1, |
| 5285 | (const bitset_container_t *)c2, &result) |
| 5286 | ? BITSET_CONTAINER_TYPE_CODE |
| 5287 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5288 | |
| 5289 | return result; |
| 5290 | |
| 5291 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5292 | RUN_CONTAINER_TYPE_CODE): |
| 5293 | *result_type = |
| 5294 | bitset_run_container_ixor((bitset_container_t *)c1, |
| 5295 | (const run_container_t *)c2, &result) |
| 5296 | ? BITSET_CONTAINER_TYPE_CODE |
| 5297 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5298 | |
| 5299 | return result; |
| 5300 | |
| 5301 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 5302 | BITSET_CONTAINER_TYPE_CODE): |
| 5303 | *result_type = run_bitset_container_ixor( |
| 5304 | (run_container_t *)c1, |
| 5305 | (const bitset_container_t *)c2, &result) |
| 5306 | ? BITSET_CONTAINER_TYPE_CODE |
| 5307 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5308 | |
| 5309 | return result; |
| 5310 | |
| 5311 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5312 | *result_type = array_run_container_ixor( |
| 5313 | (array_container_t *)c1, (const run_container_t *)c2, &result); |
| 5314 | return result; |
| 5315 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 5316 | *result_type = run_array_container_ixor( |
| 5317 | (run_container_t *)c1, (const array_container_t *)c2, &result); |
| 5318 | return result; |
| 5319 | default: |
| 5320 | assert(false); |
| 5321 | __builtin_unreachable(); |
| 5322 | return NULL; |
| 5323 | } |
| 5324 | } |
| 5325 | |
| 5326 | /** |
| 5327 | * Compute the xor between two containers, with result in the first container. |
| 5328 | * If the returned pointer is identical to c1, then the container has been |
| 5329 | * modified. |
| 5330 | * If the returned pointer is different from c1, then a new container has been |
| 5331 | * created and the caller is responsible for freeing it. |
| 5332 | * The type of the first container may change. Returns the modified |
| 5333 | * (and possibly new) container |
| 5334 | * |
| 5335 | * This lazy version delays some operations such as the maintenance of the |
| 5336 | * cardinality. It requires repair later on the generated containers. |
| 5337 | */ |
| 5338 | static inline void *container_lazy_ixor(void *c1, uint8_t type1, const void *c2, |
| 5339 | uint8_t type2, uint8_t *result_type) { |
| 5340 | assert(type1 != SHARED_CONTAINER_TYPE_CODE); |
| 5341 | // c1 = get_writable_copy_if_shared(c1,&type1); |
| 5342 | c2 = container_unwrap_shared(c2, &type2); |
| 5343 | switch (CONTAINER_PAIR(type1, type2)) { |
| 5344 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5345 | BITSET_CONTAINER_TYPE_CODE): |
| 5346 | bitset_container_xor_nocard((bitset_container_t *)c1, |
| 5347 | (const bitset_container_t *)c2, |
| 5348 | (bitset_container_t *)c1); // is lazy |
| 5349 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5350 | return c1; |
| 5351 | // TODO: other cases being lazy, esp. when we know inplace not likely |
| 5352 | // could see the corresponding code for union |
| 5353 | default: |
| 5354 | // we may have a dirty bitset (without a precomputed cardinality) and |
| 5355 | // calling container_ixor on it might be unsafe. |
| 5356 | if( (type1 == BITSET_CONTAINER_TYPE_CODE) |
| 5357 | && (((const bitset_container_t *)c1)->cardinality == BITSET_UNKNOWN_CARDINALITY)) { |
| 5358 | ((bitset_container_t *)c1)->cardinality = bitset_container_compute_cardinality((bitset_container_t *)c1); |
| 5359 | } |
| 5360 | return container_ixor(c1, type1, c2, type2, result_type); |
| 5361 | } |
| 5362 | } |
| 5363 | |
| 5364 | /** |
| 5365 | * Compute difference (andnot) between two containers, generate a new |
| 5366 | * container (having type result_type), requires a typecode. This allocates new |
| 5367 | * memory, caller is responsible for deallocation. |
| 5368 | */ |
| 5369 | static inline void *container_andnot(const void *c1, uint8_t type1, |
| 5370 | const void *c2, uint8_t type2, |
| 5371 | uint8_t *result_type) { |
| 5372 | c1 = container_unwrap_shared(c1, &type1); |
| 5373 | c2 = container_unwrap_shared(c2, &type2); |
| 5374 | void *result = NULL; |
| 5375 | switch (CONTAINER_PAIR(type1, type2)) { |
| 5376 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5377 | BITSET_CONTAINER_TYPE_CODE): |
| 5378 | *result_type = bitset_bitset_container_andnot( |
| 5379 | (const bitset_container_t *)c1, |
| 5380 | (const bitset_container_t *)c2, &result) |
| 5381 | ? BITSET_CONTAINER_TYPE_CODE |
| 5382 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5383 | return result; |
| 5384 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5385 | ARRAY_CONTAINER_TYPE_CODE): |
| 5386 | result = array_container_create(); |
| 5387 | array_array_container_andnot((const array_container_t *)c1, |
| 5388 | (const array_container_t *)c2, |
| 5389 | (array_container_t *)result); |
| 5390 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5391 | return result; |
| 5392 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5393 | if (run_container_is_full((const run_container_t *)c2)) { |
| 5394 | result = array_container_create(); |
| 5395 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5396 | return result; |
| 5397 | } |
| 5398 | *result_type = |
| 5399 | run_run_container_andnot((const run_container_t *)c1, |
| 5400 | (const run_container_t *)c2, &result); |
| 5401 | return result; |
| 5402 | |
| 5403 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5404 | ARRAY_CONTAINER_TYPE_CODE): |
| 5405 | *result_type = bitset_array_container_andnot( |
| 5406 | (const bitset_container_t *)c1, |
| 5407 | (const array_container_t *)c2, &result) |
| 5408 | ? BITSET_CONTAINER_TYPE_CODE |
| 5409 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5410 | return result; |
| 5411 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5412 | BITSET_CONTAINER_TYPE_CODE): |
| 5413 | result = array_container_create(); |
| 5414 | array_bitset_container_andnot((const array_container_t *)c1, |
| 5415 | (const bitset_container_t *)c2, |
| 5416 | (array_container_t *)result); |
| 5417 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5418 | return result; |
| 5419 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5420 | RUN_CONTAINER_TYPE_CODE): |
| 5421 | if (run_container_is_full((const run_container_t *)c2)) { |
| 5422 | result = array_container_create(); |
| 5423 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5424 | return result; |
| 5425 | } |
| 5426 | *result_type = bitset_run_container_andnot( |
| 5427 | (const bitset_container_t *)c1, |
| 5428 | (const run_container_t *)c2, &result) |
| 5429 | ? BITSET_CONTAINER_TYPE_CODE |
| 5430 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5431 | return result; |
| 5432 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 5433 | BITSET_CONTAINER_TYPE_CODE): |
| 5434 | |
| 5435 | *result_type = run_bitset_container_andnot( |
| 5436 | (const run_container_t *)c1, |
| 5437 | (const bitset_container_t *)c2, &result) |
| 5438 | ? BITSET_CONTAINER_TYPE_CODE |
| 5439 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5440 | return result; |
| 5441 | |
| 5442 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5443 | if (run_container_is_full((const run_container_t *)c2)) { |
| 5444 | result = array_container_create(); |
| 5445 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5446 | return result; |
| 5447 | } |
| 5448 | result = array_container_create(); |
| 5449 | array_run_container_andnot((const array_container_t *)c1, |
| 5450 | (const run_container_t *)c2, |
| 5451 | (array_container_t *)result); |
| 5452 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5453 | return result; |
| 5454 | |
| 5455 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 5456 | *result_type = run_array_container_andnot( |
| 5457 | (const run_container_t *)c1, (const array_container_t *)c2, |
| 5458 | &result); |
| 5459 | return result; |
| 5460 | |
| 5461 | default: |
| 5462 | assert(false); |
| 5463 | __builtin_unreachable(); |
| 5464 | return NULL; // unreached |
| 5465 | } |
| 5466 | } |
| 5467 | |
| 5468 | /** |
| 5469 | * Compute the andnot between two containers, with result in the first |
| 5470 | * container. |
| 5471 | * If the returned pointer is identical to c1, then the container has been |
| 5472 | * modified. |
| 5473 | * If the returned pointer is different from c1, then a new container has been |
| 5474 | * created and the caller is responsible for freeing it. |
| 5475 | * The type of the first container may change. Returns the modified |
| 5476 | * (and possibly new) container |
| 5477 | */ |
| 5478 | static inline void *container_iandnot(void *c1, uint8_t type1, const void *c2, |
| 5479 | uint8_t type2, uint8_t *result_type) { |
| 5480 | c1 = get_writable_copy_if_shared(c1, &type1); |
| 5481 | c2 = container_unwrap_shared(c2, &type2); |
| 5482 | void *result = NULL; |
| 5483 | switch (CONTAINER_PAIR(type1, type2)) { |
| 5484 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5485 | BITSET_CONTAINER_TYPE_CODE): |
| 5486 | *result_type = bitset_bitset_container_iandnot( |
| 5487 | (bitset_container_t *)c1, |
| 5488 | (const bitset_container_t *)c2, &result) |
| 5489 | ? BITSET_CONTAINER_TYPE_CODE |
| 5490 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5491 | return result; |
| 5492 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5493 | ARRAY_CONTAINER_TYPE_CODE): |
| 5494 | array_array_container_iandnot((array_container_t *)c1, |
| 5495 | (const array_container_t *)c2); |
| 5496 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5497 | return c1; |
| 5498 | |
| 5499 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5500 | *result_type = run_run_container_iandnot( |
| 5501 | (run_container_t *)c1, (const run_container_t *)c2, &result); |
| 5502 | return result; |
| 5503 | |
| 5504 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5505 | ARRAY_CONTAINER_TYPE_CODE): |
| 5506 | *result_type = bitset_array_container_iandnot( |
| 5507 | (bitset_container_t *)c1, |
| 5508 | (const array_container_t *)c2, &result) |
| 5509 | ? BITSET_CONTAINER_TYPE_CODE |
| 5510 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5511 | return result; |
| 5512 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, |
| 5513 | BITSET_CONTAINER_TYPE_CODE): |
| 5514 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5515 | |
| 5516 | array_bitset_container_iandnot((array_container_t *)c1, |
| 5517 | (const bitset_container_t *)c2); |
| 5518 | return c1; |
| 5519 | |
| 5520 | case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, |
| 5521 | RUN_CONTAINER_TYPE_CODE): |
| 5522 | *result_type = bitset_run_container_iandnot( |
| 5523 | (bitset_container_t *)c1, |
| 5524 | (const run_container_t *)c2, &result) |
| 5525 | ? BITSET_CONTAINER_TYPE_CODE |
| 5526 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5527 | |
| 5528 | return result; |
| 5529 | |
| 5530 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, |
| 5531 | BITSET_CONTAINER_TYPE_CODE): |
| 5532 | *result_type = run_bitset_container_iandnot( |
| 5533 | (run_container_t *)c1, |
| 5534 | (const bitset_container_t *)c2, &result) |
| 5535 | ? BITSET_CONTAINER_TYPE_CODE |
| 5536 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5537 | |
| 5538 | return result; |
| 5539 | |
| 5540 | case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): |
| 5541 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5542 | array_run_container_iandnot((array_container_t *)c1, |
| 5543 | (const run_container_t *)c2); |
| 5544 | return c1; |
| 5545 | case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): |
| 5546 | *result_type = run_array_container_iandnot( |
| 5547 | (run_container_t *)c1, (const array_container_t *)c2, &result); |
| 5548 | return result; |
| 5549 | default: |
| 5550 | assert(false); |
| 5551 | __builtin_unreachable(); |
| 5552 | return NULL; |
| 5553 | } |
| 5554 | } |
| 5555 | |
| 5556 | /** |
| 5557 | * Visit all values x of the container once, passing (base+x,ptr) |
| 5558 | * to iterator. You need to specify a container and its type. |
| 5559 | * Returns true if the iteration should continue. |
| 5560 | */ |
| 5561 | static inline bool container_iterate(const void *container, uint8_t typecode, |
| 5562 | uint32_t base, roaring_iterator iterator, |
| 5563 | void *ptr) { |
| 5564 | container = container_unwrap_shared(container, &typecode); |
| 5565 | switch (typecode) { |
| 5566 | case BITSET_CONTAINER_TYPE_CODE: |
| 5567 | return bitset_container_iterate( |
| 5568 | (const bitset_container_t *)container, base, iterator, ptr); |
| 5569 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5570 | return array_container_iterate((const array_container_t *)container, |
| 5571 | base, iterator, ptr); |
| 5572 | case RUN_CONTAINER_TYPE_CODE: |
| 5573 | return run_container_iterate((const run_container_t *)container, |
| 5574 | base, iterator, ptr); |
| 5575 | default: |
| 5576 | assert(false); |
| 5577 | __builtin_unreachable(); |
| 5578 | } |
| 5579 | assert(false); |
| 5580 | __builtin_unreachable(); |
| 5581 | return false; |
| 5582 | } |
| 5583 | |
| 5584 | static inline bool container_iterate64(const void *container, uint8_t typecode, |
| 5585 | uint32_t base, |
| 5586 | roaring_iterator64 iterator, |
| 5587 | uint64_t high_bits, void *ptr) { |
| 5588 | container = container_unwrap_shared(container, &typecode); |
| 5589 | switch (typecode) { |
| 5590 | case BITSET_CONTAINER_TYPE_CODE: |
| 5591 | return bitset_container_iterate64( |
| 5592 | (const bitset_container_t *)container, base, iterator, |
| 5593 | high_bits, ptr); |
| 5594 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5595 | return array_container_iterate64( |
| 5596 | (const array_container_t *)container, base, iterator, high_bits, |
| 5597 | ptr); |
| 5598 | case RUN_CONTAINER_TYPE_CODE: |
| 5599 | return run_container_iterate64((const run_container_t *)container, |
| 5600 | base, iterator, high_bits, ptr); |
| 5601 | default: |
| 5602 | assert(false); |
| 5603 | __builtin_unreachable(); |
| 5604 | } |
| 5605 | assert(false); |
| 5606 | __builtin_unreachable(); |
| 5607 | return false; |
| 5608 | } |
| 5609 | |
| 5610 | static inline void *container_not(const void *c, uint8_t typ, |
| 5611 | uint8_t *result_type) { |
| 5612 | c = container_unwrap_shared(c, &typ); |
| 5613 | void *result = NULL; |
| 5614 | switch (typ) { |
| 5615 | case BITSET_CONTAINER_TYPE_CODE: |
| 5616 | *result_type = bitset_container_negation( |
| 5617 | (const bitset_container_t *)c, &result) |
| 5618 | ? BITSET_CONTAINER_TYPE_CODE |
| 5619 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5620 | return result; |
| 5621 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5622 | result = bitset_container_create(); |
| 5623 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5624 | array_container_negation((const array_container_t *)c, |
| 5625 | (bitset_container_t *)result); |
| 5626 | return result; |
| 5627 | case RUN_CONTAINER_TYPE_CODE: |
| 5628 | *result_type = |
| 5629 | run_container_negation((const run_container_t *)c, &result); |
| 5630 | return result; |
| 5631 | |
| 5632 | default: |
| 5633 | assert(false); |
| 5634 | __builtin_unreachable(); |
| 5635 | } |
| 5636 | assert(false); |
| 5637 | __builtin_unreachable(); |
| 5638 | return NULL; |
| 5639 | } |
| 5640 | |
| 5641 | static inline void *container_not_range(const void *c, uint8_t typ, |
| 5642 | uint32_t range_start, |
| 5643 | uint32_t range_end, |
| 5644 | uint8_t *result_type) { |
| 5645 | c = container_unwrap_shared(c, &typ); |
| 5646 | void *result = NULL; |
| 5647 | switch (typ) { |
| 5648 | case BITSET_CONTAINER_TYPE_CODE: |
| 5649 | *result_type = |
| 5650 | bitset_container_negation_range((const bitset_container_t *)c, |
| 5651 | range_start, range_end, &result) |
| 5652 | ? BITSET_CONTAINER_TYPE_CODE |
| 5653 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5654 | return result; |
| 5655 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5656 | *result_type = |
| 5657 | array_container_negation_range((const array_container_t *)c, |
| 5658 | range_start, range_end, &result) |
| 5659 | ? BITSET_CONTAINER_TYPE_CODE |
| 5660 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5661 | return result; |
| 5662 | case RUN_CONTAINER_TYPE_CODE: |
| 5663 | *result_type = run_container_negation_range( |
| 5664 | (const run_container_t *)c, range_start, range_end, &result); |
| 5665 | return result; |
| 5666 | |
| 5667 | default: |
| 5668 | assert(false); |
| 5669 | __builtin_unreachable(); |
| 5670 | } |
| 5671 | assert(false); |
| 5672 | __builtin_unreachable(); |
| 5673 | return NULL; |
| 5674 | } |
| 5675 | |
| 5676 | static inline void *container_inot(void *c, uint8_t typ, uint8_t *result_type) { |
| 5677 | c = get_writable_copy_if_shared(c, &typ); |
| 5678 | void *result = NULL; |
| 5679 | switch (typ) { |
| 5680 | case BITSET_CONTAINER_TYPE_CODE: |
| 5681 | *result_type = bitset_container_negation_inplace( |
| 5682 | (bitset_container_t *)c, &result) |
| 5683 | ? BITSET_CONTAINER_TYPE_CODE |
| 5684 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5685 | return result; |
| 5686 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5687 | // will never be inplace |
| 5688 | result = bitset_container_create(); |
| 5689 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5690 | array_container_negation((array_container_t *)c, |
| 5691 | (bitset_container_t *)result); |
| 5692 | array_container_free((array_container_t *)c); |
| 5693 | return result; |
| 5694 | case RUN_CONTAINER_TYPE_CODE: |
| 5695 | *result_type = |
| 5696 | run_container_negation_inplace((run_container_t *)c, &result); |
| 5697 | return result; |
| 5698 | |
| 5699 | default: |
| 5700 | assert(false); |
| 5701 | __builtin_unreachable(); |
| 5702 | } |
| 5703 | assert(false); |
| 5704 | __builtin_unreachable(); |
| 5705 | return NULL; |
| 5706 | } |
| 5707 | |
| 5708 | static inline void *container_inot_range(void *c, uint8_t typ, |
| 5709 | uint32_t range_start, |
| 5710 | uint32_t range_end, |
| 5711 | uint8_t *result_type) { |
| 5712 | c = get_writable_copy_if_shared(c, &typ); |
| 5713 | void *result = NULL; |
| 5714 | switch (typ) { |
| 5715 | case BITSET_CONTAINER_TYPE_CODE: |
| 5716 | *result_type = |
| 5717 | bitset_container_negation_range_inplace( |
| 5718 | (bitset_container_t *)c, range_start, range_end, &result) |
| 5719 | ? BITSET_CONTAINER_TYPE_CODE |
| 5720 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5721 | return result; |
| 5722 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5723 | *result_type = |
| 5724 | array_container_negation_range_inplace( |
| 5725 | (array_container_t *)c, range_start, range_end, &result) |
| 5726 | ? BITSET_CONTAINER_TYPE_CODE |
| 5727 | : ARRAY_CONTAINER_TYPE_CODE; |
| 5728 | return result; |
| 5729 | case RUN_CONTAINER_TYPE_CODE: |
| 5730 | *result_type = run_container_negation_range_inplace( |
| 5731 | (run_container_t *)c, range_start, range_end, &result); |
| 5732 | return result; |
| 5733 | |
| 5734 | default: |
| 5735 | assert(false); |
| 5736 | __builtin_unreachable(); |
| 5737 | } |
| 5738 | assert(false); |
| 5739 | __builtin_unreachable(); |
| 5740 | return NULL; |
| 5741 | } |
| 5742 | |
| 5743 | /** |
| 5744 | * If the element of given rank is in this container, supposing that |
| 5745 | * the first |
| 5746 | * element has rank start_rank, then the function returns true and |
| 5747 | * sets element |
| 5748 | * accordingly. |
| 5749 | * Otherwise, it returns false and update start_rank. |
| 5750 | */ |
| 5751 | static inline bool container_select(const void *container, uint8_t typecode, |
| 5752 | uint32_t *start_rank, uint32_t rank, |
| 5753 | uint32_t *element) { |
| 5754 | container = container_unwrap_shared(container, &typecode); |
| 5755 | switch (typecode) { |
| 5756 | case BITSET_CONTAINER_TYPE_CODE: |
| 5757 | return bitset_container_select((const bitset_container_t *)container, |
| 5758 | start_rank, rank, element); |
| 5759 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5760 | return array_container_select((const array_container_t *)container, |
| 5761 | start_rank, rank, element); |
| 5762 | case RUN_CONTAINER_TYPE_CODE: |
| 5763 | return run_container_select((const run_container_t *)container, |
| 5764 | start_rank, rank, element); |
| 5765 | default: |
| 5766 | assert(false); |
| 5767 | __builtin_unreachable(); |
| 5768 | } |
| 5769 | assert(false); |
| 5770 | __builtin_unreachable(); |
| 5771 | return false; |
| 5772 | } |
| 5773 | |
| 5774 | static inline uint16_t container_maximum(const void *container, |
| 5775 | uint8_t typecode) { |
| 5776 | container = container_unwrap_shared(container, &typecode); |
| 5777 | switch (typecode) { |
| 5778 | case BITSET_CONTAINER_TYPE_CODE: |
| 5779 | return bitset_container_maximum((const bitset_container_t *)container); |
| 5780 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5781 | return array_container_maximum((const array_container_t *)container); |
| 5782 | case RUN_CONTAINER_TYPE_CODE: |
| 5783 | return run_container_maximum((const run_container_t *)container); |
| 5784 | default: |
| 5785 | assert(false); |
| 5786 | __builtin_unreachable(); |
| 5787 | } |
| 5788 | assert(false); |
| 5789 | __builtin_unreachable(); |
| 5790 | return false; |
| 5791 | } |
| 5792 | |
| 5793 | static inline uint16_t container_minimum(const void *container, |
| 5794 | uint8_t typecode) { |
| 5795 | container = container_unwrap_shared(container, &typecode); |
| 5796 | switch (typecode) { |
| 5797 | case BITSET_CONTAINER_TYPE_CODE: |
| 5798 | return bitset_container_minimum((const bitset_container_t *)container); |
| 5799 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5800 | return array_container_minimum((const array_container_t *)container); |
| 5801 | case RUN_CONTAINER_TYPE_CODE: |
| 5802 | return run_container_minimum((const run_container_t *)container); |
| 5803 | default: |
| 5804 | assert(false); |
| 5805 | __builtin_unreachable(); |
| 5806 | } |
| 5807 | assert(false); |
| 5808 | __builtin_unreachable(); |
| 5809 | return false; |
| 5810 | } |
| 5811 | |
| 5812 | // number of values smaller or equal to x |
| 5813 | static inline int container_rank(const void *container, uint8_t typecode, |
| 5814 | uint16_t x) { |
| 5815 | container = container_unwrap_shared(container, &typecode); |
| 5816 | switch (typecode) { |
| 5817 | case BITSET_CONTAINER_TYPE_CODE: |
| 5818 | return bitset_container_rank((const bitset_container_t *)container, x); |
| 5819 | case ARRAY_CONTAINER_TYPE_CODE: |
| 5820 | return array_container_rank((const array_container_t *)container, x); |
| 5821 | case RUN_CONTAINER_TYPE_CODE: |
| 5822 | return run_container_rank((const run_container_t *)container, x); |
| 5823 | default: |
| 5824 | assert(false); |
| 5825 | __builtin_unreachable(); |
| 5826 | } |
| 5827 | assert(false); |
| 5828 | __builtin_unreachable(); |
| 5829 | return false; |
| 5830 | } |
| 5831 | |
| 5832 | /** |
| 5833 | * Add all values in range [min, max] to a given container. |
| 5834 | * |
| 5835 | * If the returned pointer is different from $container, then a new container |
| 5836 | * has been created and the caller is responsible for freeing it. |
| 5837 | * The type of the first container may change. Returns the modified |
| 5838 | * (and possibly new) container. |
| 5839 | */ |
| 5840 | static inline void *container_add_range(void *container, uint8_t type, |
| 5841 | uint32_t min, uint32_t max, |
| 5842 | uint8_t *result_type) { |
| 5843 | // NB: when selecting new container type, we perform only inexpensive checks |
| 5844 | switch (type) { |
| 5845 | case BITSET_CONTAINER_TYPE_CODE: { |
| 5846 | bitset_container_t *bitset = (bitset_container_t *) container; |
| 5847 | |
| 5848 | int32_t union_cardinality = 0; |
| 5849 | union_cardinality += bitset->cardinality; |
| 5850 | union_cardinality += max - min + 1; |
| 5851 | union_cardinality -= bitset_lenrange_cardinality(bitset->array, min, max-min); |
| 5852 | |
| 5853 | if (union_cardinality == INT32_C(0x10000)) { |
| 5854 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5855 | return run_container_create_range(0, INT32_C(0x10000)); |
| 5856 | } else { |
| 5857 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5858 | bitset_set_lenrange(bitset->array, min, max - min); |
| 5859 | bitset->cardinality = union_cardinality; |
| 5860 | return bitset; |
| 5861 | } |
| 5862 | } |
| 5863 | case ARRAY_CONTAINER_TYPE_CODE: { |
| 5864 | array_container_t *array = (array_container_t *) container; |
| 5865 | |
| 5866 | int32_t nvals_greater = count_greater(array->array, array->cardinality, max); |
| 5867 | int32_t nvals_less = count_less(array->array, array->cardinality - nvals_greater, min); |
| 5868 | int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater; |
| 5869 | |
| 5870 | if (union_cardinality == INT32_C(0x10000)) { |
| 5871 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5872 | return run_container_create_range(0, INT32_C(0x10000)); |
| 5873 | } else if (union_cardinality <= DEFAULT_MAX_SIZE) { |
| 5874 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5875 | array_container_add_range_nvals(array, min, max, nvals_less, nvals_greater); |
| 5876 | return array; |
| 5877 | } else { |
| 5878 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5879 | bitset_container_t *bitset = bitset_container_from_array(array); |
| 5880 | bitset_set_lenrange(bitset->array, min, max - min); |
| 5881 | bitset->cardinality = union_cardinality; |
| 5882 | return bitset; |
| 5883 | } |
| 5884 | } |
| 5885 | case RUN_CONTAINER_TYPE_CODE: { |
| 5886 | run_container_t *run = (run_container_t *) container; |
| 5887 | |
| 5888 | int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max); |
| 5889 | int32_t nruns_less = rle16_count_less(run->runs, run->n_runs - nruns_greater, min); |
| 5890 | |
| 5891 | int32_t run_size_bytes = (nruns_less + 1 + nruns_greater) * sizeof(rle16_t); |
| 5892 | int32_t bitset_size_bytes = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); |
| 5893 | |
| 5894 | if (run_size_bytes <= bitset_size_bytes) { |
| 5895 | run_container_add_range_nruns(run, min, max, nruns_less, nruns_greater); |
| 5896 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5897 | return run; |
| 5898 | } else { |
| 5899 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5900 | return bitset_container_from_run_range(run, min, max); |
| 5901 | } |
| 5902 | } |
| 5903 | default: |
| 5904 | __builtin_unreachable(); |
| 5905 | } |
| 5906 | } |
| 5907 | |
| 5908 | /* |
| 5909 | * Removes all elements in range [min, max]. |
| 5910 | * Returns one of: |
| 5911 | * - NULL if no elements left |
| 5912 | * - pointer to the original container |
| 5913 | * - pointer to a newly-allocated container (if it is more efficient) |
| 5914 | * |
| 5915 | * If the returned pointer is different from $container, then a new container |
| 5916 | * has been created and the caller is responsible for freeing the original container. |
| 5917 | */ |
| 5918 | static inline void *container_remove_range(void *container, uint8_t type, |
| 5919 | uint32_t min, uint32_t max, |
| 5920 | uint8_t *result_type) { |
| 5921 | switch (type) { |
| 5922 | case BITSET_CONTAINER_TYPE_CODE: { |
| 5923 | bitset_container_t *bitset = (bitset_container_t *) container; |
| 5924 | |
| 5925 | int32_t result_cardinality = bitset->cardinality - |
| 5926 | bitset_lenrange_cardinality(bitset->array, min, max-min); |
| 5927 | |
| 5928 | if (result_cardinality == 0) { |
| 5929 | return NULL; |
| 5930 | } else if (result_cardinality < DEFAULT_MAX_SIZE) { |
| 5931 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5932 | bitset_reset_range(bitset->array, min, max+1); |
| 5933 | bitset->cardinality = result_cardinality; |
| 5934 | return array_container_from_bitset(bitset); |
| 5935 | } else { |
| 5936 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5937 | bitset_reset_range(bitset->array, min, max+1); |
| 5938 | bitset->cardinality = result_cardinality; |
| 5939 | return bitset; |
| 5940 | } |
| 5941 | } |
| 5942 | case ARRAY_CONTAINER_TYPE_CODE: { |
| 5943 | array_container_t *array = (array_container_t *) container; |
| 5944 | |
| 5945 | int32_t nvals_greater = count_greater(array->array, array->cardinality, max); |
| 5946 | int32_t nvals_less = count_less(array->array, array->cardinality - nvals_greater, min); |
| 5947 | int32_t result_cardinality = nvals_less + nvals_greater; |
| 5948 | |
| 5949 | if (result_cardinality == 0) { |
| 5950 | return NULL; |
| 5951 | } else { |
| 5952 | *result_type = ARRAY_CONTAINER_TYPE_CODE; |
| 5953 | array_container_remove_range(array, nvals_less, |
| 5954 | array->cardinality - result_cardinality); |
| 5955 | return array; |
| 5956 | } |
| 5957 | } |
| 5958 | case RUN_CONTAINER_TYPE_CODE: { |
| 5959 | run_container_t *run = (run_container_t *) container; |
| 5960 | |
| 5961 | if (run->n_runs == 0) { |
| 5962 | return NULL; |
| 5963 | } |
| 5964 | if (min <= run_container_minimum(run) && max >= run_container_maximum(run)) { |
| 5965 | return NULL; |
| 5966 | } |
| 5967 | |
| 5968 | run_container_remove_range(run, min, max); |
| 5969 | |
| 5970 | if (run_container_serialized_size_in_bytes(run->n_runs) <= |
| 5971 | bitset_container_serialized_size_in_bytes()) { |
| 5972 | *result_type = RUN_CONTAINER_TYPE_CODE; |
| 5973 | return run; |
| 5974 | } else { |
| 5975 | *result_type = BITSET_CONTAINER_TYPE_CODE; |
| 5976 | return bitset_container_from_run(run); |
| 5977 | } |
| 5978 | } |
| 5979 | default: |
| 5980 | __builtin_unreachable(); |
| 5981 | } |
| 5982 | } |
| 5983 | |
| 5984 | #ifdef __cplusplus |
| 5985 | } |
| 5986 | #endif |
| 5987 | |
| 5988 | #endif /* CONTAINERS_CONTAINERS_H */ |
| 5989 | |
| 5990 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/containers.h */ |
| 5991 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_array.h */ |
| 5992 | #ifndef INCLUDE_ROARING_ARRAY_H |
| 5993 | #define INCLUDE_ROARING_ARRAY_H |
| 5994 | #ifdef __cplusplus |
| 5995 | extern "C" { |
| 5996 | #endif |
| 5997 | |
| 5998 | #include <assert.h> |
| 5999 | #include <stdbool.h> |
| 6000 | #include <stdint.h> |
| 6001 | |
| 6002 | #define MAX_CONTAINERS 65536 |
| 6003 | |
| 6004 | #define SERIALIZATION_ARRAY_UINT32 1 |
| 6005 | #define SERIALIZATION_CONTAINER 2 |
| 6006 | |
| 6007 | enum { |
| 6008 | SERIAL_COOKIE_NO_RUNCONTAINER = 12346, |
| 6009 | SERIAL_COOKIE = 12347, |
| 6010 | NO_OFFSET_THRESHOLD = 4 |
| 6011 | }; |
| 6012 | |
| 6013 | /** |
| 6014 | * Roaring arrays are array-based key-value pairs having containers as values |
| 6015 | * and 16-bit integer keys. A roaring bitmap might be implemented as such. |
| 6016 | */ |
| 6017 | |
| 6018 | // parallel arrays. Element sizes quite different. |
| 6019 | // Alternative is array |
| 6020 | // of structs. Which would have better |
| 6021 | // cache performance through binary searches? |
| 6022 | |
| 6023 | typedef struct roaring_array_s { |
| 6024 | int32_t size; |
| 6025 | int32_t allocation_size; |
| 6026 | void **containers; |
| 6027 | uint16_t *keys; |
| 6028 | uint8_t *typecodes; |
| 6029 | } roaring_array_t; |
| 6030 | |
| 6031 | /** |
| 6032 | * Create a new roaring array |
| 6033 | */ |
| 6034 | roaring_array_t *ra_create(void); |
| 6035 | |
| 6036 | /** |
| 6037 | * Initialize an existing roaring array with the specified capacity (in number |
| 6038 | * of containers) |
| 6039 | */ |
| 6040 | bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap); |
| 6041 | |
| 6042 | /** |
| 6043 | * Initialize with default capacity |
| 6044 | */ |
| 6045 | bool ra_init(roaring_array_t *t); |
| 6046 | |
| 6047 | /** |
| 6048 | * Copies this roaring array, we assume that dest is not initialized |
| 6049 | */ |
| 6050 | bool ra_copy(const roaring_array_t *source, roaring_array_t *dest, |
| 6051 | bool copy_on_write); |
| 6052 | |
| 6053 | /* |
| 6054 | * Shrinks the capacity, returns the number of bytes saved. |
| 6055 | */ |
| 6056 | int ra_shrink_to_fit(roaring_array_t *ra); |
| 6057 | |
| 6058 | /** |
| 6059 | * Copies this roaring array, we assume that dest is initialized |
| 6060 | */ |
| 6061 | bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest, |
| 6062 | bool copy_on_write); |
| 6063 | |
| 6064 | /** |
| 6065 | * Frees the memory used by a roaring array |
| 6066 | */ |
| 6067 | void ra_clear(roaring_array_t *r); |
| 6068 | |
| 6069 | /** |
| 6070 | * Frees the memory used by a roaring array, but does not free the containers |
| 6071 | */ |
| 6072 | void ra_clear_without_containers(roaring_array_t *r); |
| 6073 | |
| 6074 | /** |
| 6075 | * Frees just the containers |
| 6076 | */ |
| 6077 | void ra_clear_containers(roaring_array_t *ra); |
| 6078 | |
| 6079 | /** |
| 6080 | * Get the index corresponding to a 16-bit key |
| 6081 | */ |
| 6082 | inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x) { |
| 6083 | if ((ra->size == 0) || ra->keys[ra->size - 1] == x) return ra->size - 1; |
| 6084 | return binarySearch(ra->keys, (int32_t)ra->size, x); |
| 6085 | } |
| 6086 | |
| 6087 | /** |
| 6088 | * Retrieves the container at index i, filling in the typecode |
| 6089 | */ |
| 6090 | inline void *ra_get_container_at_index(const roaring_array_t *ra, uint16_t i, |
| 6091 | uint8_t *typecode) { |
| 6092 | *typecode = ra->typecodes[i]; |
| 6093 | return ra->containers[i]; |
| 6094 | } |
| 6095 | |
| 6096 | /** |
| 6097 | * Retrieves the key at index i |
| 6098 | */ |
| 6099 | uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i); |
| 6100 | |
| 6101 | /** |
| 6102 | * Add a new key-value pair at index i |
| 6103 | */ |
| 6104 | void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key, |
| 6105 | void *container, uint8_t typecode); |
| 6106 | |
| 6107 | /** |
| 6108 | * Append a new key-value pair |
| 6109 | */ |
| 6110 | void ra_append(roaring_array_t *ra, uint16_t s, void *c, uint8_t typecode); |
| 6111 | |
| 6112 | /** |
| 6113 | * Append a new key-value pair to ra, cloning (in COW sense) a value from sa |
| 6114 | * at index index |
| 6115 | */ |
| 6116 | void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa, |
| 6117 | uint16_t index, bool copy_on_write); |
| 6118 | |
| 6119 | /** |
| 6120 | * Append new key-value pairs to ra, cloning (in COW sense) values from sa |
| 6121 | * at indexes |
| 6122 | * [start_index, end_index) |
| 6123 | */ |
| 6124 | void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa, |
| 6125 | int32_t start_index, int32_t end_index, |
| 6126 | bool copy_on_write); |
| 6127 | |
| 6128 | /** appends from sa to ra, ending with the greatest key that is |
| 6129 | * is less or equal stopping_key |
| 6130 | */ |
| 6131 | void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa, |
| 6132 | uint16_t stopping_key, bool copy_on_write); |
| 6133 | |
| 6134 | /** appends from sa to ra, starting with the smallest key that is |
| 6135 | * is strictly greater than before_start |
| 6136 | */ |
| 6137 | |
| 6138 | void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa, |
| 6139 | uint16_t before_start, bool copy_on_write); |
| 6140 | |
| 6141 | /** |
| 6142 | * Move the key-value pairs to ra from sa at indexes |
| 6143 | * [start_index, end_index), old array should not be freed |
| 6144 | * (use ra_clear_without_containers) |
| 6145 | **/ |
| 6146 | void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa, |
| 6147 | int32_t start_index, int32_t end_index); |
| 6148 | /** |
| 6149 | * Append new key-value pairs to ra, from sa at indexes |
| 6150 | * [start_index, end_index) |
| 6151 | */ |
| 6152 | void ra_append_range(roaring_array_t *ra, roaring_array_t *sa, |
| 6153 | int32_t start_index, int32_t end_index, |
| 6154 | bool copy_on_write); |
| 6155 | |
| 6156 | /** |
| 6157 | * Set the container at the corresponding index using the specified |
| 6158 | * typecode. |
| 6159 | */ |
| 6160 | inline void ra_set_container_at_index(const roaring_array_t *ra, int32_t i, |
| 6161 | void *c, uint8_t typecode) { |
| 6162 | assert(i < ra->size); |
| 6163 | ra->containers[i] = c; |
| 6164 | ra->typecodes[i] = typecode; |
| 6165 | } |
| 6166 | |
| 6167 | /** |
| 6168 | * If needed, increase the capacity of the array so that it can fit k values |
| 6169 | * (at |
| 6170 | * least); |
| 6171 | */ |
| 6172 | bool extend_array(roaring_array_t *ra, int32_t k); |
| 6173 | |
| 6174 | inline int32_t ra_get_size(const roaring_array_t *ra) { return ra->size; } |
| 6175 | |
| 6176 | static inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x, |
| 6177 | int32_t pos) { |
| 6178 | return advanceUntil(ra->keys, pos, ra->size, x); |
| 6179 | } |
| 6180 | |
| 6181 | int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos); |
| 6182 | |
| 6183 | void ra_downsize(roaring_array_t *ra, int32_t new_length); |
| 6184 | |
| 6185 | inline void ra_replace_key_and_container_at_index(roaring_array_t *ra, |
| 6186 | int32_t i, uint16_t key, |
| 6187 | void *c, uint8_t typecode) { |
| 6188 | assert(i < ra->size); |
| 6189 | |
| 6190 | ra->keys[i] = key; |
| 6191 | ra->containers[i] = c; |
| 6192 | ra->typecodes[i] = typecode; |
| 6193 | } |
| 6194 | |
| 6195 | // write set bits to an array |
| 6196 | void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans); |
| 6197 | |
| 6198 | bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset, size_t limit, uint32_t *ans); |
| 6199 | |
| 6200 | /** |
| 6201 | * write a bitmap to a buffer. This is meant to be compatible with |
| 6202 | * the |
| 6203 | * Java and Go versions. Return the size in bytes of the serialized |
| 6204 | * output (which should be ra_portable_size_in_bytes(ra)). |
| 6205 | */ |
| 6206 | size_t ra_portable_serialize(const roaring_array_t *ra, char *buf); |
| 6207 | |
| 6208 | /** |
| 6209 | * read a bitmap from a serialized version. This is meant to be compatible |
| 6210 | * with the Java and Go versions. |
| 6211 | * maxbytes indicates how many bytes available from buf. |
| 6212 | * When the function returns true, roaring_array_t is populated with the data |
| 6213 | * and *readbytes indicates how many bytes were read. In all cases, if the function |
| 6214 | * returns true, then maxbytes >= *readbytes. |
| 6215 | */ |
| 6216 | bool ra_portable_deserialize(roaring_array_t *ra, const char *buf, const size_t maxbytes, size_t * readbytes); |
| 6217 | |
| 6218 | /** |
| 6219 | * Quickly checks whether there is a serialized bitmap at the pointer, |
| 6220 | * not exceeding size "maxbytes" in bytes. This function does not allocate |
| 6221 | * memory dynamically. |
| 6222 | * |
| 6223 | * This function returns 0 if and only if no valid bitmap is found. |
| 6224 | * Otherwise, it returns how many bytes are occupied by the bitmap data. |
| 6225 | */ |
| 6226 | size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes); |
| 6227 | |
| 6228 | /** |
| 6229 | * How many bytes are required to serialize this bitmap (meant to be |
| 6230 | * compatible |
| 6231 | * with Java and Go versions) |
| 6232 | */ |
| 6233 | size_t ra_portable_size_in_bytes(const roaring_array_t *ra); |
| 6234 | |
| 6235 | /** |
| 6236 | * return true if it contains at least one run container. |
| 6237 | */ |
| 6238 | bool ra_has_run_container(const roaring_array_t *ra); |
| 6239 | |
| 6240 | /** |
| 6241 | * Size of the header when serializing (meant to be compatible |
| 6242 | * with Java and Go versions) |
| 6243 | */ |
| 6244 | uint32_t (const roaring_array_t *ra); |
| 6245 | |
| 6246 | /** |
| 6247 | * If the container at the index i is share, unshare it (creating a local |
| 6248 | * copy if needed). |
| 6249 | */ |
| 6250 | static inline void ra_unshare_container_at_index(roaring_array_t *ra, |
| 6251 | uint16_t i) { |
| 6252 | assert(i < ra->size); |
| 6253 | ra->containers[i] = |
| 6254 | get_writable_copy_if_shared(ra->containers[i], &ra->typecodes[i]); |
| 6255 | } |
| 6256 | |
| 6257 | /** |
| 6258 | * remove at index i, sliding over all entries after i |
| 6259 | */ |
| 6260 | void ra_remove_at_index(roaring_array_t *ra, int32_t i); |
| 6261 | |
| 6262 | |
| 6263 | /** |
| 6264 | * clears all containers, sets the size at 0 and shrinks the memory usage. |
| 6265 | */ |
| 6266 | void ra_reset(roaring_array_t *ra); |
| 6267 | |
| 6268 | /** |
| 6269 | * remove at index i, sliding over all entries after i. Free removed container. |
| 6270 | */ |
| 6271 | void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i); |
| 6272 | |
| 6273 | /** |
| 6274 | * remove a chunk of indices, sliding over entries after it |
| 6275 | */ |
| 6276 | // void ra_remove_index_range(roaring_array_t *ra, int32_t begin, int32_t end); |
| 6277 | |
| 6278 | // used in inplace andNot only, to slide left the containers from |
| 6279 | // the mutated RoaringBitmap that are after the largest container of |
| 6280 | // the argument RoaringBitmap. It is followed by a call to resize. |
| 6281 | // |
| 6282 | void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end, |
| 6283 | uint32_t new_begin); |
| 6284 | |
| 6285 | /** |
| 6286 | * Shifts rightmost $count containers to the left (distance < 0) or |
| 6287 | * to the right (distance > 0). |
| 6288 | * Allocates memory if necessary. |
| 6289 | * This function doesn't free or create new containers. |
| 6290 | * Caller is responsible for that. |
| 6291 | */ |
| 6292 | void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance); |
| 6293 | |
| 6294 | #ifdef __cplusplus |
| 6295 | } |
| 6296 | #endif |
| 6297 | |
| 6298 | #endif |
| 6299 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_array.h */ |
| 6300 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/misc/configreport.h */ |
| 6301 | /* |
| 6302 | * configreport.h |
| 6303 | * |
| 6304 | */ |
| 6305 | |
| 6306 | #ifndef INCLUDE_MISC_CONFIGREPORT_H_ |
| 6307 | #define INCLUDE_MISC_CONFIGREPORT_H_ |
| 6308 | |
| 6309 | #include <stddef.h> // for size_t |
| 6310 | #include <stdint.h> |
| 6311 | #include <stdio.h> |
| 6312 | |
| 6313 | |
| 6314 | #ifdef IS_X64 |
| 6315 | // useful for basic info (0) |
| 6316 | static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, |
| 6317 | unsigned int *ecx, unsigned int *edx) { |
| 6318 | #ifdef ROARING_INLINE_ASM |
| 6319 | __asm volatile("cpuid" |
| 6320 | : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) |
| 6321 | : "0" (*eax), "2" (*ecx)); |
| 6322 | #endif /* not sure what to do when inline assembly is unavailable*/ |
| 6323 | } |
| 6324 | |
| 6325 | // CPUID instruction takes no parameters as CPUID implicitly uses the EAX |
| 6326 | // register. |
| 6327 | // The EAX register should be loaded with a value specifying what information to |
| 6328 | // return |
| 6329 | static inline void cpuinfo(int code, int *eax, int *ebx, int *ecx, int *edx) { |
| 6330 | #ifdef ROARING_INLINE_ASM |
| 6331 | __asm__ volatile("cpuid;" // call cpuid instruction |
| 6332 | : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), |
| 6333 | "=d" (*edx) // output equal to "movl %%eax %1" |
| 6334 | : "a" (code) // input equal to "movl %1, %%eax" |
| 6335 | //:"%eax","%ebx","%ecx","%edx"// clobbered register |
| 6336 | ); |
| 6337 | #endif /* not sure what to do when inline assembly is unavailable*/ |
| 6338 | } |
| 6339 | |
| 6340 | static inline int computecacheline() { |
| 6341 | int eax = 0, ebx = 0, ecx = 0, edx = 0; |
| 6342 | cpuinfo((int)0x80000006, &eax, &ebx, &ecx, &edx); |
| 6343 | return ecx & 0xFF; |
| 6344 | } |
| 6345 | |
| 6346 | // this is quite imperfect, but can be handy |
| 6347 | static inline const char *guessprocessor() { |
| 6348 | unsigned eax = 1, ebx = 0, ecx = 0, edx = 0; |
| 6349 | native_cpuid(&eax, &ebx, &ecx, &edx); |
| 6350 | const char *codename; |
| 6351 | switch (eax >> 4) { |
| 6352 | case 0x506E: |
| 6353 | codename = "Skylake" ; |
| 6354 | break; |
| 6355 | case 0x406C: |
| 6356 | codename = "CherryTrail" ; |
| 6357 | break; |
| 6358 | case 0x306D: |
| 6359 | codename = "Broadwell" ; |
| 6360 | break; |
| 6361 | case 0x306C: |
| 6362 | codename = "Haswell" ; |
| 6363 | break; |
| 6364 | case 0x306A: |
| 6365 | codename = "IvyBridge" ; |
| 6366 | break; |
| 6367 | case 0x206A: |
| 6368 | case 0x206D: |
| 6369 | codename = "SandyBridge" ; |
| 6370 | break; |
| 6371 | case 0x2065: |
| 6372 | case 0x206C: |
| 6373 | case 0x206F: |
| 6374 | codename = "Westmere" ; |
| 6375 | break; |
| 6376 | case 0x106E: |
| 6377 | case 0x106A: |
| 6378 | case 0x206E: |
| 6379 | codename = "Nehalem" ; |
| 6380 | break; |
| 6381 | case 0x1067: |
| 6382 | case 0x106D: |
| 6383 | codename = "Penryn" ; |
| 6384 | break; |
| 6385 | case 0x006F: |
| 6386 | case 0x1066: |
| 6387 | codename = "Merom" ; |
| 6388 | break; |
| 6389 | case 0x0066: |
| 6390 | codename = "Presler" ; |
| 6391 | break; |
| 6392 | case 0x0063: |
| 6393 | case 0x0064: |
| 6394 | codename = "Prescott" ; |
| 6395 | break; |
| 6396 | case 0x006D: |
| 6397 | codename = "Dothan" ; |
| 6398 | break; |
| 6399 | case 0x0366: |
| 6400 | codename = "Cedarview" ; |
| 6401 | break; |
| 6402 | case 0x0266: |
| 6403 | codename = "Lincroft" ; |
| 6404 | break; |
| 6405 | case 0x016C: |
| 6406 | codename = "Pineview" ; |
| 6407 | break; |
| 6408 | default: |
| 6409 | codename = "UNKNOWN" ; |
| 6410 | break; |
| 6411 | } |
| 6412 | return codename; |
| 6413 | } |
| 6414 | |
| 6415 | static inline void tellmeall() { |
| 6416 | printf("Intel processor: %s\t" , guessprocessor()); |
| 6417 | |
| 6418 | #ifdef __VERSION__ |
| 6419 | printf(" compiler version: %s\t" , __VERSION__); |
| 6420 | #endif |
| 6421 | printf("\tBuild option USEAVX " ); |
| 6422 | #ifdef USEAVX |
| 6423 | printf("enabled\n" ); |
| 6424 | #else |
| 6425 | printf("disabled\n" ); |
| 6426 | #endif |
| 6427 | #ifndef __AVX2__ |
| 6428 | printf("AVX2 is NOT available.\n" ); |
| 6429 | #endif |
| 6430 | |
| 6431 | if ((sizeof(int) != 4) || (sizeof(long) != 8)) { |
| 6432 | printf("number of bytes: int = %lu long = %lu \n" , |
| 6433 | (long unsigned int)sizeof(size_t), |
| 6434 | (long unsigned int)sizeof(int)); |
| 6435 | } |
| 6436 | #if __LITTLE_ENDIAN__ |
| 6437 | // This is what we expect! |
| 6438 | // printf("you have little endian machine"); |
| 6439 | #endif |
| 6440 | #if __BIG_ENDIAN__ |
| 6441 | printf("you have a big endian machine" ); |
| 6442 | #endif |
| 6443 | #if __CHAR_BIT__ |
| 6444 | if (__CHAR_BIT__ != 8) printf("on your machine, chars don't have 8bits???" ); |
| 6445 | #endif |
| 6446 | if (computecacheline() != 64) |
| 6447 | printf("cache line: %d bytes\n" , computecacheline()); |
| 6448 | } |
| 6449 | #else |
| 6450 | |
| 6451 | static inline void tellmeall() { |
| 6452 | printf("Non-X64 processor\n" ); |
| 6453 | #ifdef __arm__ |
| 6454 | printf("ARM processor detected\n" ); |
| 6455 | #endif |
| 6456 | #ifdef __VERSION__ |
| 6457 | printf(" compiler version: %s\t" , __VERSION__); |
| 6458 | #endif |
| 6459 | if ((sizeof(int) != 4) || (sizeof(long) != 8)) { |
| 6460 | printf("number of bytes: int = %lu long = %lu \n" , |
| 6461 | (long unsigned int)sizeof(size_t), |
| 6462 | (long unsigned int)sizeof(int)); |
| 6463 | } |
| 6464 | #if __LITTLE_ENDIAN__ |
| 6465 | // This is what we expect! |
| 6466 | // printf("you have little endian machine"); |
| 6467 | #endif |
| 6468 | #if __BIG_ENDIAN__ |
| 6469 | printf("you have a big endian machine" ); |
| 6470 | #endif |
| 6471 | #if __CHAR_BIT__ |
| 6472 | if (__CHAR_BIT__ != 8) printf("on your machine, chars don't have 8bits???" ); |
| 6473 | #endif |
| 6474 | } |
| 6475 | |
| 6476 | #endif |
| 6477 | |
| 6478 | #endif /* INCLUDE_MISC_CONFIGREPORT_H_ */ |
| 6479 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/misc/configreport.h */ |
| 6480 | /* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring.h */ |
| 6481 | /* |
| 6482 | An implementation of Roaring Bitmaps in C. |
| 6483 | */ |
| 6484 | |
| 6485 | #ifndef ROARING_H |
| 6486 | #define ROARING_H |
| 6487 | #ifdef __cplusplus |
| 6488 | extern "C" { |
| 6489 | #endif |
| 6490 | |
| 6491 | #include <stdbool.h> |
| 6492 | |
| 6493 | typedef struct roaring_bitmap_s { |
| 6494 | roaring_array_t high_low_container; |
| 6495 | bool copy_on_write; /* copy_on_write: whether you want to use copy-on-write |
| 6496 | (saves memory and avoids |
| 6497 | copies but needs more care in a threaded context). |
| 6498 | Most users should ignore this flag. |
| 6499 | Note: if you do turn this flag to 'true', enabling |
| 6500 | COW, then ensure that you do so for all of your bitmaps since |
| 6501 | interactions between bitmaps with and without COW is unsafe. */ |
| 6502 | } roaring_bitmap_t; |
| 6503 | |
| 6504 | |
| 6505 | void *containerptr_roaring_bitmap_add(roaring_bitmap_t *r, |
| 6506 | uint32_t val, |
| 6507 | uint8_t *typecode, |
| 6508 | int *index); |
| 6509 | /** |
| 6510 | * Creates a new bitmap (initially empty) |
| 6511 | */ |
| 6512 | roaring_bitmap_t *roaring_bitmap_create(void); |
| 6513 | |
| 6514 | /** |
| 6515 | * Add all the values between min (included) and max (excluded) that are at a |
| 6516 | * distance k*step from min. |
| 6517 | */ |
| 6518 | roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max, |
| 6519 | uint32_t step); |
| 6520 | |
| 6521 | /** |
| 6522 | * Creates a new bitmap (initially empty) with a provided |
| 6523 | * container-storage capacity (it is a performance hint). |
| 6524 | */ |
| 6525 | roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap); |
| 6526 | |
| 6527 | /** |
| 6528 | * Creates a new bitmap from a pointer of uint32_t integers |
| 6529 | */ |
| 6530 | roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals); |
| 6531 | |
| 6532 | /** |
| 6533 | * Describe the inner structure of the bitmap. |
| 6534 | */ |
| 6535 | void roaring_bitmap_printf_describe(const roaring_bitmap_t *ra); |
| 6536 | |
| 6537 | /** |
| 6538 | * Creates a new bitmap from a list of uint32_t integers |
| 6539 | */ |
| 6540 | roaring_bitmap_t *roaring_bitmap_of(size_t n, ...); |
| 6541 | |
| 6542 | /** |
| 6543 | * Copies a bitmap. This does memory allocation. The caller is responsible for |
| 6544 | * memory management. |
| 6545 | * |
| 6546 | */ |
| 6547 | roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r); |
| 6548 | |
| 6549 | |
| 6550 | /** |
| 6551 | * Copies a bitmap from src to dest. It is assumed that the pointer dest |
| 6552 | * is to an already allocated bitmap. The content of the dest bitmap is |
| 6553 | * freed/deleted. |
| 6554 | * |
| 6555 | * It might be preferable and simpler to call roaring_bitmap_copy except |
| 6556 | * that roaring_bitmap_overwrite can save on memory allocations. |
| 6557 | * |
| 6558 | */ |
| 6559 | bool roaring_bitmap_overwrite(roaring_bitmap_t *dest, |
| 6560 | const roaring_bitmap_t *src); |
| 6561 | |
| 6562 | /** |
| 6563 | * Print the content of the bitmap. |
| 6564 | */ |
| 6565 | void roaring_bitmap_printf(const roaring_bitmap_t *ra); |
| 6566 | |
| 6567 | /** |
| 6568 | * Computes the intersection between two bitmaps and returns new bitmap. The |
| 6569 | * caller is |
| 6570 | * responsible for memory management. |
| 6571 | * |
| 6572 | */ |
| 6573 | roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1, |
| 6574 | const roaring_bitmap_t *x2); |
| 6575 | |
| 6576 | /** |
| 6577 | * Computes the size of the intersection between two bitmaps. |
| 6578 | * |
| 6579 | */ |
| 6580 | uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1, |
| 6581 | const roaring_bitmap_t *x2); |
| 6582 | |
| 6583 | |
| 6584 | /** |
| 6585 | * Check whether two bitmaps intersect. |
| 6586 | * |
| 6587 | */ |
| 6588 | bool roaring_bitmap_intersect(const roaring_bitmap_t *x1, |
| 6589 | const roaring_bitmap_t *x2); |
| 6590 | |
| 6591 | /** |
| 6592 | * Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto |
| 6593 | * distance, |
| 6594 | * or the Jaccard similarity coefficient) |
| 6595 | * |
| 6596 | * The Jaccard index is undefined if both bitmaps are empty. |
| 6597 | * |
| 6598 | */ |
| 6599 | double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1, |
| 6600 | const roaring_bitmap_t *x2); |
| 6601 | |
| 6602 | /** |
| 6603 | * Computes the size of the union between two bitmaps. |
| 6604 | * |
| 6605 | */ |
| 6606 | uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1, |
| 6607 | const roaring_bitmap_t *x2); |
| 6608 | |
| 6609 | /** |
| 6610 | * Computes the size of the difference (andnot) between two bitmaps. |
| 6611 | * |
| 6612 | */ |
| 6613 | uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1, |
| 6614 | const roaring_bitmap_t *x2); |
| 6615 | |
| 6616 | /** |
| 6617 | * Computes the size of the symmetric difference (andnot) between two bitmaps. |
| 6618 | * |
| 6619 | */ |
| 6620 | uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1, |
| 6621 | const roaring_bitmap_t *x2); |
| 6622 | |
| 6623 | /** |
| 6624 | * Inplace version modifies x1, x1 == x2 is allowed |
| 6625 | */ |
| 6626 | void roaring_bitmap_and_inplace(roaring_bitmap_t *x1, |
| 6627 | const roaring_bitmap_t *x2); |
| 6628 | |
| 6629 | /** |
| 6630 | * Computes the union between two bitmaps and returns new bitmap. The caller is |
| 6631 | * responsible for memory management. |
| 6632 | */ |
| 6633 | roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1, |
| 6634 | const roaring_bitmap_t *x2); |
| 6635 | |
| 6636 | /** |
| 6637 | * Inplace version of roaring_bitmap_or, modifies x1. TDOO: decide whether x1 == |
| 6638 | *x2 ok |
| 6639 | * |
| 6640 | */ |
| 6641 | void roaring_bitmap_or_inplace(roaring_bitmap_t *x1, |
| 6642 | const roaring_bitmap_t *x2); |
| 6643 | |
| 6644 | /** |
| 6645 | * Compute the union of 'number' bitmaps. See also roaring_bitmap_or_many_heap. |
| 6646 | * Caller is responsible for freeing the |
| 6647 | * result. |
| 6648 | * |
| 6649 | */ |
| 6650 | roaring_bitmap_t *roaring_bitmap_or_many(size_t number, |
| 6651 | const roaring_bitmap_t **x); |
| 6652 | |
| 6653 | /** |
| 6654 | * Compute the union of 'number' bitmaps using a heap. This can |
| 6655 | * sometimes be faster than roaring_bitmap_or_many which uses |
| 6656 | * a naive algorithm. Caller is responsible for freeing the |
| 6657 | * result. |
| 6658 | * |
| 6659 | */ |
| 6660 | roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number, |
| 6661 | const roaring_bitmap_t **x); |
| 6662 | |
| 6663 | /** |
| 6664 | * Computes the symmetric difference (xor) between two bitmaps |
| 6665 | * and returns new bitmap. The caller is responsible for memory management. |
| 6666 | */ |
| 6667 | roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1, |
| 6668 | const roaring_bitmap_t *x2); |
| 6669 | |
| 6670 | /** |
| 6671 | * Inplace version of roaring_bitmap_xor, modifies x1. x1 != x2. |
| 6672 | * |
| 6673 | */ |
| 6674 | void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1, |
| 6675 | const roaring_bitmap_t *x2); |
| 6676 | |
| 6677 | /** |
| 6678 | * Compute the xor of 'number' bitmaps. |
| 6679 | * Caller is responsible for freeing the |
| 6680 | * result. |
| 6681 | * |
| 6682 | */ |
| 6683 | roaring_bitmap_t *roaring_bitmap_xor_many(size_t number, |
| 6684 | const roaring_bitmap_t **x); |
| 6685 | |
| 6686 | /** |
| 6687 | * Computes the difference (andnot) between two bitmaps |
| 6688 | * and returns new bitmap. The caller is responsible for memory management. |
| 6689 | */ |
| 6690 | roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1, |
| 6691 | const roaring_bitmap_t *x2); |
| 6692 | |
| 6693 | /** |
| 6694 | * Inplace version of roaring_bitmap_andnot, modifies x1. x1 != x2. |
| 6695 | * |
| 6696 | */ |
| 6697 | void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1, |
| 6698 | const roaring_bitmap_t *x2); |
| 6699 | |
| 6700 | /** |
| 6701 | * TODO: consider implementing: |
| 6702 | * Compute the xor of 'number' bitmaps using a heap. This can |
| 6703 | * sometimes be faster than roaring_bitmap_xor_many which uses |
| 6704 | * a naive algorithm. Caller is responsible for freeing the |
| 6705 | * result. |
| 6706 | * |
| 6707 | * roaring_bitmap_t *roaring_bitmap_xor_many_heap(uint32_t number, |
| 6708 | * const roaring_bitmap_t **x); |
| 6709 | */ |
| 6710 | |
| 6711 | /** |
| 6712 | * Frees the memory. |
| 6713 | */ |
| 6714 | void roaring_bitmap_free(roaring_bitmap_t *r); |
| 6715 | |
| 6716 | /** |
| 6717 | * Add value n_args from pointer vals, faster than repeatedly calling |
| 6718 | * roaring_bitmap_add |
| 6719 | * |
| 6720 | */ |
| 6721 | void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args, |
| 6722 | const uint32_t *vals); |
| 6723 | |
| 6724 | /** |
| 6725 | * Add value x |
| 6726 | * |
| 6727 | */ |
| 6728 | void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t x); |
| 6729 | |
| 6730 | /** |
| 6731 | * Add value x |
| 6732 | * Returns true if a new value was added, false if the value was already existing. |
| 6733 | */ |
| 6734 | bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t x); |
| 6735 | |
| 6736 | /** |
| 6737 | * Add all values in range [min, max] |
| 6738 | */ |
| 6739 | void roaring_bitmap_add_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max); |
| 6740 | |
| 6741 | /** |
| 6742 | * Add all values in range [min, max) |
| 6743 | */ |
| 6744 | inline void roaring_bitmap_add_range(roaring_bitmap_t *ra, uint64_t min, uint64_t max) { |
| 6745 | if(max == min) return; |
| 6746 | roaring_bitmap_add_range_closed(ra, (uint32_t)min, (uint32_t)(max - 1)); |
| 6747 | } |
| 6748 | |
| 6749 | /** |
| 6750 | * Remove value x |
| 6751 | * |
| 6752 | */ |
| 6753 | void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t x); |
| 6754 | |
| 6755 | /** Remove all values in range [min, max] */ |
| 6756 | void roaring_bitmap_remove_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max); |
| 6757 | |
| 6758 | /** Remove all values in range [min, max) */ |
| 6759 | inline void roaring_bitmap_remove_range(roaring_bitmap_t *ra, uint64_t min, uint64_t max) { |
| 6760 | if(max == min) return; |
| 6761 | roaring_bitmap_remove_range_closed(ra, (uint32_t)min, (uint32_t)(max - 1)); |
| 6762 | } |
| 6763 | |
| 6764 | /** Remove multiple values */ |
| 6765 | void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args, |
| 6766 | const uint32_t *vals); |
| 6767 | |
| 6768 | /** |
| 6769 | * Remove value x |
| 6770 | * Returns true if a new value was removed, false if the value was not existing. |
| 6771 | */ |
| 6772 | bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t x); |
| 6773 | |
| 6774 | /** |
| 6775 | * Check if value x is present |
| 6776 | */ |
| 6777 | inline bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val) { |
| 6778 | const uint16_t hb = val >> 16; |
| 6779 | /* |
| 6780 | * the next function call involves a binary search and lots of branching. |
| 6781 | */ |
| 6782 | int32_t i = ra_get_index(&r->high_low_container, hb); |
| 6783 | if (i < 0) return false; |
| 6784 | |
| 6785 | uint8_t typecode; |
| 6786 | // next call ought to be cheap |
| 6787 | void *container = |
| 6788 | ra_get_container_at_index(&r->high_low_container, i, &typecode); |
| 6789 | // rest might be a tad expensive, possibly involving another round of binary search |
| 6790 | return container_contains(container, val & 0xFFFF, typecode); |
| 6791 | } |
| 6792 | |
| 6793 | /** |
| 6794 | * Check whether a range of values from range_start (included) to range_end (excluded) is present |
| 6795 | */ |
| 6796 | bool roaring_bitmap_contains_range(const roaring_bitmap_t *r, uint64_t range_start, uint64_t range_end); |
| 6797 | |
| 6798 | /** |
| 6799 | * Get the cardinality of the bitmap (number of elements). |
| 6800 | */ |
| 6801 | uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *ra); |
| 6802 | |
| 6803 | /** |
| 6804 | * Returns number of elements in range [range_start, range_end). |
| 6805 | */ |
| 6806 | uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *ra, |
| 6807 | uint64_t range_start, uint64_t range_end); |
| 6808 | |
| 6809 | /** |
| 6810 | * Returns true if the bitmap is empty (cardinality is zero). |
| 6811 | */ |
| 6812 | bool roaring_bitmap_is_empty(const roaring_bitmap_t *ra); |
| 6813 | |
| 6814 | |
| 6815 | /** |
| 6816 | * Empties the bitmap |
| 6817 | */ |
| 6818 | void roaring_bitmap_clear(roaring_bitmap_t *ra); |
| 6819 | |
| 6820 | /** |
| 6821 | * Convert the bitmap to an array. Write the output to "ans", |
| 6822 | * caller is responsible to ensure that there is enough memory |
| 6823 | * allocated |
| 6824 | * (e.g., ans = malloc(roaring_bitmap_get_cardinality(mybitmap) |
| 6825 | * * sizeof(uint32_t)) |
| 6826 | */ |
| 6827 | void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *ra, uint32_t *ans); |
| 6828 | |
| 6829 | |
| 6830 | /** |
| 6831 | * Convert the bitmap to an array from "offset" by "limit". Write the output to "ans". |
| 6832 | * so, you can get data in paging. |
| 6833 | * caller is responsible to ensure that there is enough memory |
| 6834 | * allocated |
| 6835 | * (e.g., ans = malloc(roaring_bitmap_get_cardinality(limit) |
| 6836 | * * sizeof(uint32_t)) |
| 6837 | * Return false in case of failure (e.g., insufficient memory) |
| 6838 | */ |
| 6839 | bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *ra, size_t offset, size_t limit, uint32_t *ans); |
| 6840 | |
| 6841 | /** |
| 6842 | * Remove run-length encoding even when it is more space efficient |
| 6843 | * return whether a change was applied |
| 6844 | */ |
| 6845 | bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r); |
| 6846 | |
| 6847 | /** convert array and bitmap containers to run containers when it is more |
| 6848 | * efficient; |
| 6849 | * also convert from run containers when more space efficient. Returns |
| 6850 | * true if the result has at least one run container. |
| 6851 | * Additional savings might be possible by calling shrinkToFit(). |
| 6852 | */ |
| 6853 | bool roaring_bitmap_run_optimize(roaring_bitmap_t *r); |
| 6854 | |
| 6855 | /** |
| 6856 | * If needed, reallocate memory to shrink the memory usage. Returns |
| 6857 | * the number of bytes saved. |
| 6858 | */ |
| 6859 | size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r); |
| 6860 | |
| 6861 | /** |
| 6862 | * write the bitmap to an output pointer, this output buffer should refer to |
| 6863 | * at least roaring_bitmap_size_in_bytes(ra) allocated bytes. |
| 6864 | * |
| 6865 | * see roaring_bitmap_portable_serialize if you want a format that's compatible |
| 6866 | * with Java and Go implementations |
| 6867 | * |
| 6868 | * this format has the benefit of being sometimes more space efficient than |
| 6869 | * roaring_bitmap_portable_serialize |
| 6870 | * e.g., when the data is sparse. |
| 6871 | * |
| 6872 | * Returns how many bytes were written which should be |
| 6873 | * roaring_bitmap_size_in_bytes(ra). |
| 6874 | */ |
| 6875 | size_t roaring_bitmap_serialize(const roaring_bitmap_t *ra, char *buf); |
| 6876 | |
| 6877 | /** use with roaring_bitmap_serialize |
| 6878 | * see roaring_bitmap_portable_deserialize if you want a format that's |
| 6879 | * compatible with Java and Go implementations |
| 6880 | */ |
| 6881 | roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf); |
| 6882 | |
| 6883 | /** |
| 6884 | * How many bytes are required to serialize this bitmap (NOT compatible |
| 6885 | * with Java and Go versions) |
| 6886 | */ |
| 6887 | size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *ra); |
| 6888 | |
| 6889 | /** |
| 6890 | * read a bitmap from a serialized version. This is meant to be compatible with |
| 6891 | * the Java and Go versions. See format specification at |
| 6892 | * https://github.com/RoaringBitmap/RoaringFormatSpec |
| 6893 | * In case of failure, a null pointer is returned. |
| 6894 | * This function is unsafe in the sense that if there is no valid serialized |
| 6895 | * bitmap at the pointer, then many bytes could be read, possibly causing a buffer |
| 6896 | * overflow. For a safer approach, |
| 6897 | * call roaring_bitmap_portable_deserialize_safe. |
| 6898 | */ |
| 6899 | roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf); |
| 6900 | |
| 6901 | /** |
| 6902 | * read a bitmap from a serialized version in a safe manner (reading up to maxbytes). |
| 6903 | * This is meant to be compatible with |
| 6904 | * the Java and Go versions. See format specification at |
| 6905 | * https://github.com/RoaringBitmap/RoaringFormatSpec |
| 6906 | * In case of failure, a null pointer is returned. |
| 6907 | */ |
| 6908 | roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf, size_t maxbytes); |
| 6909 | |
| 6910 | /** |
| 6911 | * Check how many bytes would be read (up to maxbytes) at this pointer if there |
| 6912 | * is a bitmap, returns zero if there is no valid bitmap. |
| 6913 | * This is meant to be compatible with |
| 6914 | * the Java and Go versions. See format specification at |
| 6915 | * https://github.com/RoaringBitmap/RoaringFormatSpec |
| 6916 | */ |
| 6917 | size_t roaring_bitmap_portable_deserialize_size(const char *buf, size_t maxbytes); |
| 6918 | |
| 6919 | |
| 6920 | /** |
| 6921 | * How many bytes are required to serialize this bitmap (meant to be compatible |
| 6922 | * with Java and Go versions). See format specification at |
| 6923 | * https://github.com/RoaringBitmap/RoaringFormatSpec |
| 6924 | */ |
| 6925 | size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *ra); |
| 6926 | |
| 6927 | /** |
| 6928 | * write a bitmap to a char buffer. The output buffer should refer to at least |
| 6929 | * roaring_bitmap_portable_size_in_bytes(ra) bytes of allocated memory. |
| 6930 | * This is meant to be compatible with |
| 6931 | * the |
| 6932 | * Java and Go versions. Returns how many bytes were written which should be |
| 6933 | * roaring_bitmap_portable_size_in_bytes(ra). See format specification at |
| 6934 | * https://github.com/RoaringBitmap/RoaringFormatSpec |
| 6935 | */ |
| 6936 | size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *ra, char *buf); |
| 6937 | |
| 6938 | /** |
| 6939 | * Iterate over the bitmap elements. The function iterator is called once for |
| 6940 | * all the values with ptr (can be NULL) as the second parameter of each call. |
| 6941 | * |
| 6942 | * roaring_iterator is simply a pointer to a function that returns bool |
| 6943 | * (true means that the iteration should continue while false means that it |
| 6944 | * should stop), |
| 6945 | * and takes (uint32_t,void*) as inputs. |
| 6946 | * |
| 6947 | * Returns true if the roaring_iterator returned true throughout (so that |
| 6948 | * all data points were necessarily visited). |
| 6949 | */ |
| 6950 | bool roaring_iterate(const roaring_bitmap_t *ra, roaring_iterator iterator, |
| 6951 | void *ptr); |
| 6952 | |
| 6953 | bool roaring_iterate64(const roaring_bitmap_t *ra, roaring_iterator64 iterator, |
| 6954 | uint64_t high_bits, void *ptr); |
| 6955 | |
| 6956 | /** |
| 6957 | * Return true if the two bitmaps contain the same elements. |
| 6958 | */ |
| 6959 | bool roaring_bitmap_equals(const roaring_bitmap_t *ra1, |
| 6960 | const roaring_bitmap_t *ra2); |
| 6961 | |
| 6962 | /** |
| 6963 | * Return true if all the elements of ra1 are also in ra2. |
| 6964 | */ |
| 6965 | bool roaring_bitmap_is_subset(const roaring_bitmap_t *ra1, |
| 6966 | const roaring_bitmap_t *ra2); |
| 6967 | |
| 6968 | /** |
| 6969 | * Return true if all the elements of ra1 are also in ra2 and ra2 is strictly |
| 6970 | * greater |
| 6971 | * than ra1. |
| 6972 | */ |
| 6973 | bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *ra1, |
| 6974 | const roaring_bitmap_t *ra2); |
| 6975 | |
| 6976 | /** |
| 6977 | * (For expert users who seek high performance.) |
| 6978 | * |
| 6979 | * Computes the union between two bitmaps and returns new bitmap. The caller is |
| 6980 | * responsible for memory management. |
| 6981 | * |
| 6982 | * The lazy version defers some computations such as the maintenance of the |
| 6983 | * cardinality counts. Thus you need |
| 6984 | * to call roaring_bitmap_repair_after_lazy after executing "lazy" computations. |
| 6985 | * It is safe to repeatedly call roaring_bitmap_lazy_or_inplace on the result. |
| 6986 | * The bitsetconversion conversion is a flag which determines |
| 6987 | * whether container-container operations force a bitset conversion. |
| 6988 | **/ |
| 6989 | roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1, |
| 6990 | const roaring_bitmap_t *x2, |
| 6991 | const bool bitsetconversion); |
| 6992 | |
| 6993 | /** |
| 6994 | * (For expert users who seek high performance.) |
| 6995 | * Inplace version of roaring_bitmap_lazy_or, modifies x1 |
| 6996 | * The bitsetconversion conversion is a flag which determines |
| 6997 | * whether container-container operations force a bitset conversion. |
| 6998 | */ |
| 6999 | void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1, |
| 7000 | const roaring_bitmap_t *x2, |
| 7001 | const bool bitsetconversion); |
| 7002 | |
| 7003 | /** |
| 7004 | * (For expert users who seek high performance.) |
| 7005 | * |
| 7006 | * Execute maintenance operations on a bitmap created from |
| 7007 | * roaring_bitmap_lazy_or |
| 7008 | * or modified with roaring_bitmap_lazy_or_inplace. |
| 7009 | */ |
| 7010 | void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *x1); |
| 7011 | |
| 7012 | /** |
| 7013 | * Computes the symmetric difference between two bitmaps and returns new bitmap. |
| 7014 | *The caller is |
| 7015 | * responsible for memory management. |
| 7016 | * |
| 7017 | * The lazy version defers some computations such as the maintenance of the |
| 7018 | * cardinality counts. Thus you need |
| 7019 | * to call roaring_bitmap_repair_after_lazy after executing "lazy" computations. |
| 7020 | * It is safe to repeatedly call roaring_bitmap_lazy_xor_inplace on the result. |
| 7021 | * |
| 7022 | */ |
| 7023 | roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1, |
| 7024 | const roaring_bitmap_t *x2); |
| 7025 | |
| 7026 | /** |
| 7027 | * (For expert users who seek high performance.) |
| 7028 | * Inplace version of roaring_bitmap_lazy_xor, modifies x1. x1 != x2 |
| 7029 | * |
| 7030 | */ |
| 7031 | void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1, |
| 7032 | const roaring_bitmap_t *x2); |
| 7033 | |
| 7034 | /** |
| 7035 | * compute the negation of the roaring bitmap within a specified |
| 7036 | * interval: [range_start, range_end). The number of negated values is |
| 7037 | * range_end - range_start. |
| 7038 | * Areas outside the range are passed through unchanged. |
| 7039 | */ |
| 7040 | |
| 7041 | roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1, |
| 7042 | uint64_t range_start, uint64_t range_end); |
| 7043 | |
| 7044 | /** |
| 7045 | * compute (in place) the negation of the roaring bitmap within a specified |
| 7046 | * interval: [range_start, range_end). The number of negated values is |
| 7047 | * range_end - range_start. |
| 7048 | * Areas outside the range are passed through unchanged. |
| 7049 | */ |
| 7050 | |
| 7051 | void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start, |
| 7052 | uint64_t range_end); |
| 7053 | |
| 7054 | /** |
| 7055 | * If the size of the roaring bitmap is strictly greater than rank, then this |
| 7056 | function returns true and set element to the element of given rank. |
| 7057 | Otherwise, it returns false. |
| 7058 | */ |
| 7059 | bool roaring_bitmap_select(const roaring_bitmap_t *ra, uint32_t rank, |
| 7060 | uint32_t *element); |
| 7061 | /** |
| 7062 | * roaring_bitmap_rank returns the number of integers that are smaller or equal |
| 7063 | * to x. |
| 7064 | */ |
| 7065 | uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x); |
| 7066 | |
| 7067 | /** |
| 7068 | * roaring_bitmap_smallest returns the smallest value in the set. |
| 7069 | * Returns UINT32_MAX if the set is empty. |
| 7070 | */ |
| 7071 | uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm); |
| 7072 | |
| 7073 | /** |
| 7074 | * roaring_bitmap_smallest returns the greatest value in the set. |
| 7075 | * Returns 0 if the set is empty. |
| 7076 | */ |
| 7077 | uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm); |
| 7078 | |
| 7079 | /** |
| 7080 | * (For advanced users.) |
| 7081 | * Collect statistics about the bitmap, see roaring_types.h for |
| 7082 | * a description of roaring_statistics_t |
| 7083 | */ |
| 7084 | void roaring_bitmap_statistics(const roaring_bitmap_t *ra, |
| 7085 | roaring_statistics_t *stat); |
| 7086 | |
| 7087 | /********************* |
| 7088 | * What follows is code use to iterate through values in a roaring bitmap |
| 7089 | |
| 7090 | roaring_bitmap_t *ra =... |
| 7091 | roaring_uint32_iterator_t i; |
| 7092 | roaring_create_iterator(ra, &i); |
| 7093 | while(i.has_value) { |
| 7094 | printf("value = %d\n", i.current_value); |
| 7095 | roaring_advance_uint32_iterator(&i); |
| 7096 | } |
| 7097 | |
| 7098 | Obviously, if you modify the underlying bitmap, the iterator |
| 7099 | becomes invalid. So don't. |
| 7100 | */ |
| 7101 | |
| 7102 | typedef struct roaring_uint32_iterator_s { |
| 7103 | const roaring_bitmap_t *parent; // owner |
| 7104 | int32_t container_index; // point to the current container index |
| 7105 | int32_t in_container_index; // for bitset and array container, this is out |
| 7106 | // index |
| 7107 | int32_t run_index; // for run container, this points at the run |
| 7108 | uint32_t in_run_index; // within a run, this is our index (points at the |
| 7109 | // end of the current run) |
| 7110 | |
| 7111 | uint32_t current_value; |
| 7112 | bool has_value; |
| 7113 | |
| 7114 | const void |
| 7115 | *container; // should be: |
| 7116 | // parent->high_low_container.containers[container_index]; |
| 7117 | uint8_t typecode; // should be: |
| 7118 | // parent->high_low_container.typecodes[container_index]; |
| 7119 | uint32_t highbits; // should be: |
| 7120 | // parent->high_low_container.keys[container_index]) << |
| 7121 | // 16; |
| 7122 | |
| 7123 | } roaring_uint32_iterator_t; |
| 7124 | |
| 7125 | /** |
| 7126 | * Initialize an iterator object that can be used to iterate through the |
| 7127 | * values. If there is a value, then it->has_value is true. |
| 7128 | * The first value is in it->current_value. The iterator traverses the values |
| 7129 | * in increasing order. |
| 7130 | */ |
| 7131 | void roaring_init_iterator(const roaring_bitmap_t *ra, |
| 7132 | roaring_uint32_iterator_t *newit); |
| 7133 | |
| 7134 | /** |
| 7135 | * Create an iterator object that can be used to iterate through the |
| 7136 | * values. Caller is responsible for calling roaring_free_iterator. |
| 7137 | * The iterator is initialized. If there is a value, then it->has_value is true. |
| 7138 | * The first value is in it->current_value. The iterator traverses the values |
| 7139 | * in increasing order. |
| 7140 | * |
| 7141 | * This function calls roaring_init_iterator. |
| 7142 | */ |
| 7143 | roaring_uint32_iterator_t *roaring_create_iterator(const roaring_bitmap_t *ra); |
| 7144 | |
| 7145 | /** |
| 7146 | * Advance the iterator. If there is a new value, then it->has_value is true. |
| 7147 | * The new value is in it->current_value. Values are traversed in increasing |
| 7148 | * orders. For convenience, returns it->has_value. |
| 7149 | */ |
| 7150 | bool roaring_advance_uint32_iterator(roaring_uint32_iterator_t *it); |
| 7151 | |
| 7152 | /** |
| 7153 | * Move the iterator to the first value >= val. If there is a such a value, then it->has_value is true. |
| 7154 | * The new value is in it->current_value. For convenience, returns it->has_value. |
| 7155 | */ |
| 7156 | bool roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it, uint32_t val) ; |
| 7157 | /** |
| 7158 | * Creates a copy of an iterator. |
| 7159 | * Caller must free it. |
| 7160 | */ |
| 7161 | roaring_uint32_iterator_t *roaring_copy_uint32_iterator( |
| 7162 | const roaring_uint32_iterator_t *it); |
| 7163 | |
| 7164 | /** |
| 7165 | * Free memory following roaring_create_iterator |
| 7166 | */ |
| 7167 | void roaring_free_uint32_iterator(roaring_uint32_iterator_t *it); |
| 7168 | |
| 7169 | /* |
| 7170 | * Reads next ${count} values from iterator into user-supplied ${buf}. |
| 7171 | * Returns the number of read elements. |
| 7172 | * This number can be smaller than ${count}, which means that iterator is drained. |
| 7173 | * |
| 7174 | * This function satisfies semantics of iteration and can be used together with |
| 7175 | * other iterator functions. |
| 7176 | * - first value is copied from ${it}->current_value |
| 7177 | * - after function returns, iterator is positioned at the next element |
| 7178 | */ |
| 7179 | uint32_t roaring_read_uint32_iterator(roaring_uint32_iterator_t *it, uint32_t* buf, uint32_t count); |
| 7180 | |
| 7181 | #ifdef __cplusplus |
| 7182 | } |
| 7183 | #endif |
| 7184 | |
| 7185 | #endif |
| 7186 | |
| 7187 | /* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring.h */ |
| 7188 | |