| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "Profiling/BsProfilerCPU.h" |
| 4 | #include "Debug/BsDebug.h" |
| 5 | #include "Platform/BsPlatform.h" |
| 6 | #include <chrono> |
| 7 | |
| 8 | #if BS_COMPILER == BS_COMPILER_MSVC |
| 9 | #include <intrin.h> |
| 10 | #endif |
| 11 | |
| 12 | #if BS_COMPILER == BS_COMPILER_GNUC || BS_COMPILER == BS_COMPILER_CLANG |
| 13 | #include "BsCpuid.h" |
| 14 | #endif |
| 15 | |
| 16 | #if BS_COMPILER == BS_COMPILER_CLANG |
| 17 | #if BS_PLATFORM == BS_PLATFORM_WIN32 |
| 18 | #include "intrin.h" |
| 19 | #else |
| 20 | #include <x86intrin.h> |
| 21 | #endif |
| 22 | #endif |
| 23 | |
| 24 | using namespace std::chrono; |
| 25 | |
| 26 | namespace bs |
| 27 | { |
| 28 | ProfilerCPU::Timer::Timer() |
| 29 | { |
| 30 | time = 0.0f; |
| 31 | } |
| 32 | |
| 33 | void ProfilerCPU::Timer::start() |
| 34 | { |
| 35 | startTime = getCurrentTime(); |
| 36 | } |
| 37 | |
| 38 | void ProfilerCPU::Timer::stop() |
| 39 | { |
| 40 | time += getCurrentTime() - startTime; |
| 41 | } |
| 42 | |
| 43 | void ProfilerCPU::Timer::reset() |
| 44 | { |
| 45 | time = 0.0f; |
| 46 | } |
| 47 | |
| 48 | inline double ProfilerCPU::Timer::getCurrentTime() const |
| 49 | { |
| 50 | high_resolution_clock::time_point timeNow = mHRClock.now(); |
| 51 | nanoseconds timeNowNs = timeNow.time_since_epoch(); |
| 52 | |
| 53 | return timeNowNs.count() * 0.000001; |
| 54 | } |
| 55 | |
| 56 | ProfilerCPU::TimerPrecise::TimerPrecise() |
| 57 | { |
| 58 | cycles = 0; |
| 59 | } |
| 60 | |
| 61 | void ProfilerCPU::TimerPrecise::start() |
| 62 | { |
| 63 | startCycles = getNumCycles(); |
| 64 | } |
| 65 | |
| 66 | void ProfilerCPU::TimerPrecise::stop() |
| 67 | { |
| 68 | cycles += getNumCycles() - startCycles; |
| 69 | } |
| 70 | |
| 71 | void ProfilerCPU::TimerPrecise::reset() |
| 72 | { |
| 73 | cycles = 0; |
| 74 | } |
| 75 | |
| 76 | inline UINT64 ProfilerCPU::TimerPrecise::getNumCycles() |
| 77 | { |
| 78 | #if BS_COMPILER == BS_COMPILER_GNUC || BS_COMPILER == BS_COMPILER_CLANG |
| 79 | unsigned int a = 0; |
| 80 | unsigned int b[4]; |
| 81 | __get_cpuid(a, &b[0], &b[1], &b[2], &b[3]); |
| 82 | |
| 83 | #if BS_ARCH_TYPE == BS_ARCHITECTURE_x86_64 |
| 84 | UINT32 __a, __d; |
| 85 | __asm__ __volatile__ ("rdtsc" : "=a" (__a), "=d" (__d)); |
| 86 | return (UINT64(__a) | UINT64(__d) << 32); |
| 87 | #else |
| 88 | UINT64 x; |
| 89 | __asm__ volatile (".byte 0x0f, 0x31" : "=A" (x)); |
| 90 | return x; |
| 91 | #endif |
| 92 | #elif BS_COMPILER == BS_COMPILER_MSVC |
| 93 | int a[4]; |
| 94 | int b = 0; |
| 95 | __cpuid(a, b); |
| 96 | return __rdtsc(); |
| 97 | #else |
| 98 | static_assert(false, "Unsupported compiler" ); |
| 99 | #endif |
| 100 | } |
| 101 | |
| 102 | ProfilerCPU::ProfileData::ProfileData(FrameAlloc* alloc) |
| 103 | :samples(alloc) |
| 104 | { } |
| 105 | |
| 106 | void ProfilerCPU::ProfileData::beginSample() |
| 107 | { |
| 108 | memAllocs = MemoryCounter::getNumAllocs(); |
| 109 | memFrees = MemoryCounter::getNumFrees(); |
| 110 | |
| 111 | timer.reset(); |
| 112 | timer.start(); |
| 113 | } |
| 114 | |
| 115 | void ProfilerCPU::ProfileData::endSample() |
| 116 | { |
| 117 | timer.stop(); |
| 118 | |
| 119 | UINT64 numAllocs = MemoryCounter::getNumAllocs() - memAllocs; |
| 120 | UINT64 numFrees = MemoryCounter::getNumFrees() - memFrees; |
| 121 | |
| 122 | samples.push_back(ProfileSample(timer.time, numAllocs, numFrees)); |
| 123 | } |
| 124 | |
| 125 | void ProfilerCPU::ProfileData::resumeLastSample() |
| 126 | { |
| 127 | timer.start(); |
| 128 | samples.erase(samples.end() - 1); |
| 129 | } |
| 130 | |
| 131 | ProfilerCPU::PreciseProfileData::PreciseProfileData(FrameAlloc* alloc) |
| 132 | :samples(alloc) |
| 133 | { } |
| 134 | |
| 135 | void ProfilerCPU::PreciseProfileData::beginSample() |
| 136 | { |
| 137 | memAllocs = MemoryCounter::getNumAllocs(); |
| 138 | memFrees = MemoryCounter::getNumFrees(); |
| 139 | |
| 140 | timer.reset(); |
| 141 | timer.start(); |
| 142 | } |
| 143 | |
| 144 | void ProfilerCPU::PreciseProfileData::endSample() |
| 145 | { |
| 146 | timer.stop(); |
| 147 | |
| 148 | UINT64 numAllocs = MemoryCounter::getNumAllocs() - memAllocs; |
| 149 | UINT64 numFrees = MemoryCounter::getNumFrees() - memFrees; |
| 150 | |
| 151 | samples.push_back(PreciseProfileSample(timer.cycles, numAllocs, numFrees)); |
| 152 | } |
| 153 | |
| 154 | void ProfilerCPU::PreciseProfileData::resumeLastSample() |
| 155 | { |
| 156 | timer.start(); |
| 157 | samples.erase(samples.end() - 1); |
| 158 | } |
| 159 | |
| 160 | BS_THREADLOCAL ProfilerCPU::ThreadInfo* ProfilerCPU::ThreadInfo::activeThread = nullptr; |
| 161 | |
| 162 | ProfilerCPU::ThreadInfo::ThreadInfo() |
| 163 | :frameAlloc(1024 * 512) |
| 164 | { |
| 165 | |
| 166 | } |
| 167 | |
| 168 | void ProfilerCPU::ThreadInfo::begin(const char* _name) |
| 169 | { |
| 170 | if(isActive) |
| 171 | { |
| 172 | LOGWRN("Profiler::beginThread called on a thread that was already being sampled" ); |
| 173 | return; |
| 174 | } |
| 175 | |
| 176 | if(rootBlock == nullptr) |
| 177 | rootBlock = getBlock(_name); |
| 178 | |
| 179 | activeBlock = ActiveBlock(ActiveSamplingType::Basic, rootBlock); |
| 180 | if (activeBlocks == nullptr) |
| 181 | activeBlocks = frameAlloc.construct<Stack<ActiveBlock, StdFrameAlloc<ActiveBlock>>> |
| 182 | (StdFrameAlloc<ActiveBlock>(&frameAlloc)); |
| 183 | |
| 184 | activeBlocks->push(activeBlock); |
| 185 | |
| 186 | rootBlock->basic.beginSample(); |
| 187 | isActive = true; |
| 188 | } |
| 189 | |
| 190 | void ProfilerCPU::ThreadInfo::end() |
| 191 | { |
| 192 | if(activeBlock.type == ActiveSamplingType::Basic) |
| 193 | activeBlock.block->basic.endSample(); |
| 194 | else |
| 195 | activeBlock.block->precise.endSample(); |
| 196 | |
| 197 | activeBlocks->pop(); |
| 198 | |
| 199 | if(!isActive) |
| 200 | LOGWRN("Profiler::endThread called on a thread that isn't being sampled." ); |
| 201 | |
| 202 | if (activeBlocks->size() > 0) |
| 203 | { |
| 204 | LOGWRN("Profiler::endThread called but not all sample pairs were closed. Sampling data will not be valid." ); |
| 205 | |
| 206 | while (activeBlocks->size() > 0) |
| 207 | { |
| 208 | ActiveBlock& curBlock = activeBlocks->top(); |
| 209 | if(curBlock.type == ActiveSamplingType::Basic) |
| 210 | curBlock.block->basic.endSample(); |
| 211 | else |
| 212 | curBlock.block->precise.endSample(); |
| 213 | |
| 214 | activeBlocks->pop(); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | isActive = false; |
| 219 | activeBlock = ActiveBlock(); |
| 220 | |
| 221 | frameAlloc.free(activeBlocks); |
| 222 | activeBlocks = nullptr; |
| 223 | } |
| 224 | |
| 225 | void ProfilerCPU::ThreadInfo::reset() |
| 226 | { |
| 227 | if(isActive) |
| 228 | end(); |
| 229 | |
| 230 | if(rootBlock != nullptr) |
| 231 | releaseBlock(rootBlock); |
| 232 | |
| 233 | rootBlock = nullptr; |
| 234 | frameAlloc.clear(); // Note: This never actually frees memory |
| 235 | } |
| 236 | |
| 237 | ProfilerCPU::ProfiledBlock* ProfilerCPU::ThreadInfo::getBlock(const char* name) |
| 238 | { |
| 239 | ProfiledBlock* block = frameAlloc.construct<ProfiledBlock>(&frameAlloc); |
| 240 | block->name = (char*)frameAlloc.alloc(((UINT32)strlen(name) + 1) * sizeof(char)); |
| 241 | strcpy(block->name, name); |
| 242 | |
| 243 | return block; |
| 244 | } |
| 245 | |
| 246 | void ProfilerCPU::ThreadInfo::releaseBlock(ProfiledBlock* block) |
| 247 | { |
| 248 | frameAlloc.free((UINT8*)block->name); |
| 249 | frameAlloc.free(block); |
| 250 | } |
| 251 | |
| 252 | ProfilerCPU::ProfiledBlock::ProfiledBlock(FrameAlloc* alloc) |
| 253 | :basic(alloc), precise(alloc), children(alloc) |
| 254 | { } |
| 255 | |
| 256 | ProfilerCPU::ProfiledBlock::~ProfiledBlock() |
| 257 | { |
| 258 | ThreadInfo* thread = ThreadInfo::activeThread; |
| 259 | |
| 260 | for(auto& child : children) |
| 261 | thread->releaseBlock(child); |
| 262 | |
| 263 | children.clear(); |
| 264 | } |
| 265 | |
| 266 | ProfilerCPU::ProfiledBlock* ProfilerCPU::ProfiledBlock::findChild(const char* name) const |
| 267 | { |
| 268 | for(auto& child : children) |
| 269 | { |
| 270 | if(strcmp(child->name, name) == 0) |
| 271 | return child; |
| 272 | } |
| 273 | |
| 274 | return nullptr; |
| 275 | } |
| 276 | |
| 277 | ProfilerCPU::ProfilerCPU() |
| 278 | { |
| 279 | // TODO - We only estimate overhead on program start. It might be better to estimate it each time beginThread is called, |
| 280 | // and keep separate values per thread. |
| 281 | estimateTimerOverhead(); |
| 282 | } |
| 283 | |
| 284 | ProfilerCPU::~ProfilerCPU() |
| 285 | { |
| 286 | reset(); |
| 287 | |
| 288 | Lock lock(mThreadSync); |
| 289 | |
| 290 | for(auto& threadInfo : mActiveThreads) |
| 291 | bs_delete<ThreadInfo, ProfilerAlloc>(threadInfo); |
| 292 | } |
| 293 | |
| 294 | void ProfilerCPU::beginThread(const char* name) |
| 295 | { |
| 296 | ThreadInfo* thread = ThreadInfo::activeThread; |
| 297 | if(thread == nullptr) |
| 298 | { |
| 299 | ThreadInfo::activeThread = bs_new<ThreadInfo, ProfilerAlloc>(); |
| 300 | thread = ThreadInfo::activeThread; |
| 301 | |
| 302 | { |
| 303 | Lock lock(mThreadSync); |
| 304 | |
| 305 | mActiveThreads.push_back(thread); |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | thread->begin(name); |
| 310 | } |
| 311 | |
| 312 | void ProfilerCPU::endThread() |
| 313 | { |
| 314 | // I don't do a nullcheck where on purpose, so endSample can be called ASAP |
| 315 | ThreadInfo::activeThread->end(); |
| 316 | } |
| 317 | |
| 318 | void ProfilerCPU::beginSample(const char* name) |
| 319 | { |
| 320 | ThreadInfo* thread = ThreadInfo::activeThread; |
| 321 | if(thread == nullptr || !thread->isActive) |
| 322 | { |
| 323 | beginThread("Unknown" ); |
| 324 | thread = ThreadInfo::activeThread; |
| 325 | } |
| 326 | |
| 327 | ProfiledBlock* parent = thread->activeBlock.block; |
| 328 | ProfiledBlock* block = nullptr; |
| 329 | |
| 330 | if(parent != nullptr) |
| 331 | block = parent->findChild(name); |
| 332 | |
| 333 | if(block == nullptr) |
| 334 | { |
| 335 | block = thread->getBlock(name); |
| 336 | |
| 337 | if(parent != nullptr) |
| 338 | parent->children.push_back(block); |
| 339 | else |
| 340 | thread->rootBlock->children.push_back(block); |
| 341 | } |
| 342 | |
| 343 | thread->activeBlock = ActiveBlock(ActiveSamplingType::Basic, block); |
| 344 | thread->activeBlocks->push(thread->activeBlock); |
| 345 | |
| 346 | block->basic.beginSample(); |
| 347 | } |
| 348 | |
| 349 | void ProfilerCPU::endSample(const char* name) |
| 350 | { |
| 351 | ThreadInfo* thread = ThreadInfo::activeThread; |
| 352 | ProfiledBlock* block = thread->activeBlock.block; |
| 353 | |
| 354 | #if BS_DEBUG_MODE |
| 355 | if(block == nullptr) |
| 356 | { |
| 357 | LOGWRN("Mismatched CPUProfiler::endSample. No beginSample was called." ); |
| 358 | return; |
| 359 | } |
| 360 | |
| 361 | if(thread->activeBlock.type == ActiveSamplingType::Precise) |
| 362 | { |
| 363 | LOGWRN("Mismatched CPUProfiler::endSample. Was expecting Profiler::endSamplePrecise." ); |
| 364 | return; |
| 365 | } |
| 366 | |
| 367 | if(strcmp(block->name, name) != 0) |
| 368 | { |
| 369 | LOGWRN("Mismatched CPUProfiler::endSample. Was expecting \"" + String(block->name) + |
| 370 | "\" but got \"" + String(name) + "\". Sampling data will not be valid." ); |
| 371 | return; |
| 372 | } |
| 373 | #endif |
| 374 | |
| 375 | block->basic.endSample(); |
| 376 | |
| 377 | thread->activeBlocks->pop(); |
| 378 | |
| 379 | if (!thread->activeBlocks->empty()) |
| 380 | thread->activeBlock = thread->activeBlocks->top(); |
| 381 | else |
| 382 | thread->activeBlock = ActiveBlock(); |
| 383 | } |
| 384 | |
| 385 | void ProfilerCPU::beginSamplePrecise(const char* name) |
| 386 | { |
| 387 | // Note: There is a (small) possibility a context switch will happen during this measurement in which case result will be skewed. |
| 388 | // Increasing thread priority might help. This is generally only a problem with code that executes a long time (10-15+ ms - depending on OS quant length) |
| 389 | |
| 390 | ThreadInfo* thread = ThreadInfo::activeThread; |
| 391 | if(thread == nullptr || !thread->isActive) |
| 392 | beginThread("Unknown" ); |
| 393 | |
| 394 | ProfiledBlock* parent = thread->activeBlock.block; |
| 395 | ProfiledBlock* block = nullptr; |
| 396 | |
| 397 | if(parent != nullptr) |
| 398 | block = parent->findChild(name); |
| 399 | |
| 400 | if(block == nullptr) |
| 401 | { |
| 402 | block = thread->getBlock(name); |
| 403 | |
| 404 | if(parent != nullptr) |
| 405 | parent->children.push_back(block); |
| 406 | else |
| 407 | thread->rootBlock->children.push_back(block); |
| 408 | } |
| 409 | |
| 410 | thread->activeBlock = ActiveBlock(ActiveSamplingType::Precise, block); |
| 411 | thread->activeBlocks->push(thread->activeBlock); |
| 412 | |
| 413 | block->precise.beginSample(); |
| 414 | } |
| 415 | |
| 416 | void ProfilerCPU::endSamplePrecise(const char* name) |
| 417 | { |
| 418 | ThreadInfo* thread = ThreadInfo::activeThread; |
| 419 | ProfiledBlock* block = thread->activeBlock.block; |
| 420 | |
| 421 | #if BS_DEBUG_MODE |
| 422 | if(block == nullptr) |
| 423 | { |
| 424 | LOGWRN("Mismatched Profiler::endSamplePrecise. No beginSamplePrecise was called." ); |
| 425 | return; |
| 426 | } |
| 427 | |
| 428 | if(thread->activeBlock.type == ActiveSamplingType::Basic) |
| 429 | { |
| 430 | LOGWRN("Mismatched CPUProfiler::endSamplePrecise. Was expecting Profiler::endSample." ); |
| 431 | return; |
| 432 | } |
| 433 | |
| 434 | if (strcmp(block->name, name) != 0) |
| 435 | { |
| 436 | LOGWRN("Mismatched Profiler::endSamplePrecise. Was expecting \"" + String(block->name) + |
| 437 | "\" but got \"" + String(name) + "\". Sampling data will not be valid." ); |
| 438 | return; |
| 439 | } |
| 440 | #endif |
| 441 | |
| 442 | block->precise.endSample(); |
| 443 | |
| 444 | thread->activeBlocks->pop(); |
| 445 | |
| 446 | if (!thread->activeBlocks->empty()) |
| 447 | thread->activeBlock = thread->activeBlocks->top(); |
| 448 | else |
| 449 | thread->activeBlock = ActiveBlock(); |
| 450 | } |
| 451 | |
| 452 | void ProfilerCPU::reset() |
| 453 | { |
| 454 | ThreadInfo* thread = ThreadInfo::activeThread; |
| 455 | |
| 456 | if(thread != nullptr) |
| 457 | thread->reset(); |
| 458 | } |
| 459 | |
| 460 | CPUProfilerReport ProfilerCPU::generateReport() |
| 461 | { |
| 462 | CPUProfilerReport report; |
| 463 | |
| 464 | ThreadInfo* thread = ThreadInfo::activeThread; |
| 465 | if(thread == nullptr) |
| 466 | return report; |
| 467 | |
| 468 | if(thread->isActive) |
| 469 | thread->end(); |
| 470 | |
| 471 | // We need to separate out basic and precise data and form two separate hierarchies |
| 472 | if(thread->rootBlock == nullptr) |
| 473 | return report; |
| 474 | |
| 475 | struct TempEntry |
| 476 | { |
| 477 | TempEntry(ProfiledBlock* _parentBlock, UINT32 _entryIdx) |
| 478 | :parentBlock(_parentBlock), entryIdx(_entryIdx) |
| 479 | { } |
| 480 | |
| 481 | ProfiledBlock* parentBlock; |
| 482 | UINT32 entryIdx; |
| 483 | ProfilerVector<UINT32> childIndexes; |
| 484 | }; |
| 485 | |
| 486 | ProfilerVector<CPUProfilerBasicSamplingEntry> basicEntries; |
| 487 | ProfilerVector<CPUProfilerPreciseSamplingEntry> preciseEntries; |
| 488 | |
| 489 | // Fill up flatHierarchy array in a way so we always process children before parents |
| 490 | ProfilerStack<UINT32> todo; |
| 491 | ProfilerVector<TempEntry> flatHierarchy; |
| 492 | |
| 493 | UINT32 entryIdx = 0; |
| 494 | todo.push(entryIdx); |
| 495 | flatHierarchy.push_back(TempEntry(thread->rootBlock, entryIdx)); |
| 496 | |
| 497 | entryIdx++; |
| 498 | while(!todo.empty()) |
| 499 | { |
| 500 | UINT32 curDataIdx = todo.top(); |
| 501 | ProfiledBlock* curBlock = flatHierarchy[curDataIdx].parentBlock; |
| 502 | |
| 503 | todo.pop(); |
| 504 | |
| 505 | for(auto& child : curBlock->children) |
| 506 | { |
| 507 | flatHierarchy[curDataIdx].childIndexes.push_back(entryIdx); |
| 508 | |
| 509 | todo.push(entryIdx); |
| 510 | flatHierarchy.push_back(TempEntry(child, entryIdx)); |
| 511 | |
| 512 | entryIdx++; |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | // Calculate sampling data for all entries |
| 517 | basicEntries.resize(flatHierarchy.size()); |
| 518 | preciseEntries.resize(flatHierarchy.size()); |
| 519 | |
| 520 | for(auto iter = flatHierarchy.rbegin(); iter != flatHierarchy.rend(); ++iter) |
| 521 | { |
| 522 | TempEntry& curData = *iter; |
| 523 | ProfiledBlock* curBlock = curData.parentBlock; |
| 524 | |
| 525 | CPUProfilerBasicSamplingEntry* entryBasic = &basicEntries[curData.entryIdx]; |
| 526 | CPUProfilerPreciseSamplingEntry* entryPrecise = &preciseEntries[curData.entryIdx]; |
| 527 | |
| 528 | // Calculate basic data |
| 529 | entryBasic->data.name = String(curBlock->name); |
| 530 | |
| 531 | entryBasic->data.memAllocs = 0; |
| 532 | entryBasic->data.memFrees = 0; |
| 533 | entryBasic->data.totalTimeMs = 0.0; |
| 534 | entryBasic->data.maxTimeMs = 0.0; |
| 535 | for(auto& sample : curBlock->basic.samples) |
| 536 | { |
| 537 | entryBasic->data.totalTimeMs += sample.time; |
| 538 | entryBasic->data.maxTimeMs = std::max(entryBasic->data.maxTimeMs, sample.time); |
| 539 | entryBasic->data.memAllocs += sample.numAllocs; |
| 540 | entryBasic->data.memFrees += sample.numFrees; |
| 541 | } |
| 542 | |
| 543 | entryBasic->data.numCalls = (UINT32)curBlock->basic.samples.size(); |
| 544 | |
| 545 | if(entryBasic->data.numCalls > 0) |
| 546 | entryBasic->data.avgTimeMs = entryBasic->data.totalTimeMs / entryBasic->data.numCalls; |
| 547 | |
| 548 | double totalChildTime = 0.0; |
| 549 | for(auto& childIdx : curData.childIndexes) |
| 550 | { |
| 551 | CPUProfilerBasicSamplingEntry* childEntry = &basicEntries[childIdx]; |
| 552 | totalChildTime += childEntry->data.totalTimeMs; |
| 553 | childEntry->data.pctOfParent = (float)(childEntry->data.totalTimeMs / entryBasic->data.totalTimeMs); |
| 554 | |
| 555 | entryBasic->data.estimatedOverheadMs += childEntry->data.estimatedOverheadMs; |
| 556 | } |
| 557 | |
| 558 | entryBasic->data.estimatedOverheadMs += curBlock->basic.samples.size() * mBasicSamplingOverheadMs; |
| 559 | entryBasic->data.estimatedOverheadMs += curBlock->precise.samples.size() * mPreciseSamplingOverheadMs; |
| 560 | |
| 561 | entryBasic->data.totalSelfTimeMs = entryBasic->data.totalTimeMs - totalChildTime; |
| 562 | |
| 563 | if(entryBasic->data.numCalls > 0) |
| 564 | entryBasic->data.avgSelfTimeMs = entryBasic->data.totalSelfTimeMs / entryBasic->data.numCalls; |
| 565 | |
| 566 | entryBasic->data.estimatedSelfOverheadMs = mBasicTimerOverhead; |
| 567 | |
| 568 | // Calculate precise data |
| 569 | entryPrecise->data.name = String(curBlock->name); |
| 570 | |
| 571 | entryPrecise->data.memAllocs = 0; |
| 572 | entryPrecise->data.memFrees = 0; |
| 573 | entryPrecise->data.totalCycles = 0; |
| 574 | entryPrecise->data.maxCycles = 0; |
| 575 | for(auto& sample : curBlock->precise.samples) |
| 576 | { |
| 577 | entryPrecise->data.totalCycles += sample.cycles; |
| 578 | entryPrecise->data.maxCycles = std::max(entryPrecise->data.maxCycles, sample.cycles); |
| 579 | entryPrecise->data.memAllocs += sample.numAllocs; |
| 580 | entryPrecise->data.memFrees += sample.numFrees; |
| 581 | } |
| 582 | |
| 583 | entryPrecise->data.numCalls = (UINT32)curBlock->precise.samples.size(); |
| 584 | |
| 585 | if(entryPrecise->data.numCalls > 0) |
| 586 | entryPrecise->data.avgCycles = entryPrecise->data.totalCycles / entryPrecise->data.numCalls; |
| 587 | |
| 588 | UINT64 totalChildCycles = 0; |
| 589 | for(auto& childIdx : curData.childIndexes) |
| 590 | { |
| 591 | CPUProfilerPreciseSamplingEntry* childEntry = &preciseEntries[childIdx]; |
| 592 | totalChildCycles += childEntry->data.totalCycles; |
| 593 | childEntry->data.pctOfParent = childEntry->data.totalCycles / (float)entryPrecise->data.totalCycles; |
| 594 | |
| 595 | entryPrecise->data.estimatedOverhead += childEntry->data.estimatedOverhead; |
| 596 | } |
| 597 | |
| 598 | entryPrecise->data.estimatedOverhead += curBlock->precise.samples.size() * mPreciseSamplingOverheadCycles; |
| 599 | entryPrecise->data.estimatedOverhead += curBlock->basic.samples.size() * mBasicSamplingOverheadCycles; |
| 600 | |
| 601 | entryPrecise->data.totalSelfCycles = entryPrecise->data.totalCycles - totalChildCycles; |
| 602 | |
| 603 | if(entryPrecise->data.numCalls > 0) |
| 604 | entryPrecise->data.avgSelfCycles = entryPrecise->data.totalSelfCycles / entryPrecise->data.numCalls; |
| 605 | |
| 606 | entryPrecise->data.estimatedSelfOverhead = mPreciseTimerOverhead; |
| 607 | } |
| 608 | |
| 609 | // Prune empty basic entries |
| 610 | ProfilerStack<UINT32> finalBasicHierarchyTodo; |
| 611 | ProfilerStack<UINT32> parentBasicEntryIndexes; |
| 612 | ProfilerVector<TempEntry> newBasicEntries; |
| 613 | |
| 614 | finalBasicHierarchyTodo.push(0); |
| 615 | |
| 616 | entryIdx = 0; |
| 617 | parentBasicEntryIndexes.push(entryIdx); |
| 618 | newBasicEntries.push_back(TempEntry(nullptr, entryIdx)); |
| 619 | |
| 620 | entryIdx++; |
| 621 | |
| 622 | while(!finalBasicHierarchyTodo.empty()) |
| 623 | { |
| 624 | UINT32 parentEntryIdx = parentBasicEntryIndexes.top(); |
| 625 | parentBasicEntryIndexes.pop(); |
| 626 | |
| 627 | UINT32 curEntryIdx = finalBasicHierarchyTodo.top(); |
| 628 | TempEntry& curEntry = flatHierarchy[curEntryIdx]; |
| 629 | finalBasicHierarchyTodo.pop(); |
| 630 | |
| 631 | for(auto& childIdx : curEntry.childIndexes) |
| 632 | { |
| 633 | finalBasicHierarchyTodo.push(childIdx); |
| 634 | |
| 635 | CPUProfilerBasicSamplingEntry& basicEntry = basicEntries[childIdx]; |
| 636 | if(basicEntry.data.numCalls > 0) |
| 637 | { |
| 638 | newBasicEntries.push_back(TempEntry(nullptr, childIdx)); |
| 639 | newBasicEntries[parentEntryIdx].childIndexes.push_back(entryIdx); |
| 640 | |
| 641 | parentBasicEntryIndexes.push(entryIdx); |
| 642 | |
| 643 | entryIdx++; |
| 644 | } |
| 645 | else |
| 646 | parentBasicEntryIndexes.push(parentEntryIdx); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | if(newBasicEntries.size() > 0) |
| 651 | { |
| 652 | ProfilerVector<CPUProfilerBasicSamplingEntry*> finalBasicEntries; |
| 653 | |
| 654 | report.mBasicSamplingRootEntry = basicEntries[newBasicEntries[0].entryIdx]; |
| 655 | finalBasicEntries.push_back(&report.mBasicSamplingRootEntry); |
| 656 | |
| 657 | finalBasicHierarchyTodo.push(0); |
| 658 | |
| 659 | while(!finalBasicHierarchyTodo.empty()) |
| 660 | { |
| 661 | UINT32 curEntryIdx = finalBasicHierarchyTodo.top(); |
| 662 | finalBasicHierarchyTodo.pop(); |
| 663 | |
| 664 | TempEntry& curEntry = newBasicEntries[curEntryIdx]; |
| 665 | |
| 666 | CPUProfilerBasicSamplingEntry* basicEntry = finalBasicEntries[curEntryIdx]; |
| 667 | |
| 668 | basicEntry->childEntries.resize(curEntry.childIndexes.size()); |
| 669 | UINT32 idx = 0; |
| 670 | |
| 671 | for(auto& childIdx : curEntry.childIndexes) |
| 672 | { |
| 673 | TempEntry& childEntry = newBasicEntries[childIdx]; |
| 674 | basicEntry->childEntries[idx] = basicEntries[childEntry.entryIdx]; |
| 675 | |
| 676 | finalBasicEntries.push_back(&(basicEntry->childEntries[idx])); |
| 677 | finalBasicHierarchyTodo.push(childIdx); |
| 678 | idx++; |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | // Prune empty precise entries |
| 684 | ProfilerStack<UINT32> finalPreciseHierarchyTodo; |
| 685 | ProfilerStack<UINT32> parentPreciseEntryIndexes; |
| 686 | ProfilerVector<TempEntry> newPreciseEntries; |
| 687 | |
| 688 | finalPreciseHierarchyTodo.push(0); |
| 689 | |
| 690 | entryIdx = 0; |
| 691 | parentPreciseEntryIndexes.push(entryIdx); |
| 692 | newPreciseEntries.push_back(TempEntry(nullptr, entryIdx)); |
| 693 | |
| 694 | entryIdx++; |
| 695 | |
| 696 | while(!finalPreciseHierarchyTodo.empty()) |
| 697 | { |
| 698 | UINT32 parentEntryIdx = parentPreciseEntryIndexes.top(); |
| 699 | parentPreciseEntryIndexes.pop(); |
| 700 | |
| 701 | UINT32 curEntryIdx = finalPreciseHierarchyTodo.top(); |
| 702 | TempEntry& curEntry = flatHierarchy[curEntryIdx]; |
| 703 | finalPreciseHierarchyTodo.pop(); |
| 704 | |
| 705 | for(auto& childIdx : curEntry.childIndexes) |
| 706 | { |
| 707 | finalPreciseHierarchyTodo.push(childIdx); |
| 708 | |
| 709 | CPUProfilerPreciseSamplingEntry& preciseEntry = preciseEntries[childIdx]; |
| 710 | if(preciseEntry.data.numCalls > 0) |
| 711 | { |
| 712 | newPreciseEntries.push_back(TempEntry(nullptr, childIdx)); |
| 713 | newPreciseEntries[parentEntryIdx].childIndexes.push_back(entryIdx); |
| 714 | |
| 715 | parentPreciseEntryIndexes.push(entryIdx); |
| 716 | |
| 717 | entryIdx++; |
| 718 | } |
| 719 | else |
| 720 | parentPreciseEntryIndexes.push(parentEntryIdx); |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | if(newPreciseEntries.size() > 0) |
| 725 | { |
| 726 | ProfilerVector<CPUProfilerPreciseSamplingEntry*> finalPreciseEntries; |
| 727 | |
| 728 | report.mPreciseSamplingRootEntry = preciseEntries[newPreciseEntries[0].entryIdx]; |
| 729 | finalPreciseEntries.push_back(&report.mPreciseSamplingRootEntry); |
| 730 | |
| 731 | finalPreciseHierarchyTodo.push(0); |
| 732 | |
| 733 | while(!finalPreciseHierarchyTodo.empty()) |
| 734 | { |
| 735 | UINT32 curEntryIdx = finalPreciseHierarchyTodo.top(); |
| 736 | finalPreciseHierarchyTodo.pop(); |
| 737 | |
| 738 | TempEntry& curEntry = newPreciseEntries[curEntryIdx]; |
| 739 | |
| 740 | CPUProfilerPreciseSamplingEntry* preciseEntry = finalPreciseEntries[curEntryIdx]; |
| 741 | |
| 742 | preciseEntry->childEntries.resize(curEntry.childIndexes.size()); |
| 743 | UINT32 idx = 0; |
| 744 | |
| 745 | for(auto& childIdx : curEntry.childIndexes) |
| 746 | { |
| 747 | TempEntry& childEntry = newPreciseEntries[childIdx]; |
| 748 | preciseEntry->childEntries[idx] = preciseEntries[childEntry.entryIdx]; |
| 749 | |
| 750 | finalPreciseEntries.push_back(&preciseEntry->childEntries.back()); |
| 751 | finalPreciseHierarchyTodo.push(childIdx); |
| 752 | idx++; |
| 753 | } |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | return report; |
| 758 | } |
| 759 | |
| 760 | void ProfilerCPU::estimateTimerOverhead() |
| 761 | { |
| 762 | // Get an idea of how long timer calls and RDTSC takes |
| 763 | const UINT32 reps = 1000, sampleReps = 20; |
| 764 | |
| 765 | mBasicTimerOverhead = 1000000.0; |
| 766 | mPreciseTimerOverhead = 1000000; |
| 767 | for (UINT32 tries = 0; tries < 20; tries++) |
| 768 | { |
| 769 | Timer timer; |
| 770 | for (UINT32 i = 0; i < reps; i++) |
| 771 | { |
| 772 | timer.start(); |
| 773 | timer.stop(); |
| 774 | } |
| 775 | |
| 776 | double avgTime = double(timer.time)/double(reps); |
| 777 | if (avgTime < mBasicTimerOverhead) |
| 778 | mBasicTimerOverhead = avgTime; |
| 779 | |
| 780 | TimerPrecise timerPrecise; |
| 781 | for (UINT32 i = 0; i < reps; i++) |
| 782 | { |
| 783 | timerPrecise.start(); |
| 784 | timerPrecise.stop(); |
| 785 | } |
| 786 | |
| 787 | UINT64 avgCycles = timerPrecise.cycles/reps; |
| 788 | if (avgCycles < mPreciseTimerOverhead) |
| 789 | mPreciseTimerOverhead = avgCycles; |
| 790 | } |
| 791 | |
| 792 | mBasicSamplingOverheadMs = 1000000.0; |
| 793 | mPreciseSamplingOverheadMs = 1000000.0; |
| 794 | mBasicSamplingOverheadCycles = 1000000; |
| 795 | mPreciseSamplingOverheadCycles = 1000000; |
| 796 | for (UINT32 tries = 0; tries < 3; tries++) |
| 797 | { |
| 798 | /************************************************************************/ |
| 799 | /* AVERAGE TIME IN MS FOR BASIC SAMPLING */ |
| 800 | /************************************************************************/ |
| 801 | |
| 802 | Timer timerA; |
| 803 | timerA.start(); |
| 804 | |
| 805 | beginThread("Main" ); |
| 806 | |
| 807 | // Two different cases that can effect performance, one where |
| 808 | // sample already exists and other where new one needs to be created |
| 809 | for (UINT32 i = 0; i < sampleReps; i++) |
| 810 | { |
| 811 | beginSample("TestAvg1" ); |
| 812 | endSample("TestAvg1" ); |
| 813 | beginSample("TestAvg2" ); |
| 814 | endSample("TestAvg2" ); |
| 815 | beginSample("TestAvg3" ); |
| 816 | endSample("TestAvg3" ); |
| 817 | beginSample("TestAvg4" ); |
| 818 | endSample("TestAvg4" ); |
| 819 | beginSample("TestAvg5" ); |
| 820 | endSample("TestAvg5" ); |
| 821 | beginSample("TestAvg6" ); |
| 822 | endSample("TestAvg6" ); |
| 823 | beginSample("TestAvg7" ); |
| 824 | endSample("TestAvg7" ); |
| 825 | beginSample("TestAvg8" ); |
| 826 | endSample("TestAvg8" ); |
| 827 | beginSample("TestAvg9" ); |
| 828 | endSample("TestAvg9" ); |
| 829 | beginSample("TestAvg10" ); |
| 830 | endSample("TestAvg10" ); |
| 831 | } |
| 832 | |
| 833 | for (UINT32 i = 0; i < sampleReps * 5; i++) |
| 834 | { |
| 835 | beginSample(("TestAvg#" + toString(i)).c_str()); |
| 836 | endSample(("TestAvg#" + toString(i)).c_str()); |
| 837 | } |
| 838 | |
| 839 | endThread(); |
| 840 | |
| 841 | timerA.stop(); |
| 842 | |
| 843 | reset(); |
| 844 | |
| 845 | double avgTimeBasic = double(timerA.time)/double(sampleReps * 10 + sampleReps * 5) - mBasicTimerOverhead; |
| 846 | if (avgTimeBasic < mBasicSamplingOverheadMs) |
| 847 | mBasicSamplingOverheadMs = avgTimeBasic; |
| 848 | |
| 849 | /************************************************************************/ |
| 850 | /* AVERAGE CYCLES FOR BASIC SAMPLING */ |
| 851 | /************************************************************************/ |
| 852 | |
| 853 | TimerPrecise timerPreciseA; |
| 854 | timerPreciseA.start(); |
| 855 | |
| 856 | beginThread("Main" ); |
| 857 | |
| 858 | // Two different cases that can effect performance, one where |
| 859 | // sample already exists and other where new one needs to be created |
| 860 | for (UINT32 i = 0; i < sampleReps; i++) |
| 861 | { |
| 862 | beginSample("TestAvg1" ); |
| 863 | endSample("TestAvg1" ); |
| 864 | beginSample("TestAvg2" ); |
| 865 | endSample("TestAvg2" ); |
| 866 | beginSample("TestAvg3" ); |
| 867 | endSample("TestAvg3" ); |
| 868 | beginSample("TestAvg4" ); |
| 869 | endSample("TestAvg4" ); |
| 870 | beginSample("TestAvg5" ); |
| 871 | endSample("TestAvg5" ); |
| 872 | beginSample("TestAvg6" ); |
| 873 | endSample("TestAvg6" ); |
| 874 | beginSample("TestAvg7" ); |
| 875 | endSample("TestAvg7" ); |
| 876 | beginSample("TestAvg8" ); |
| 877 | endSample("TestAvg8" ); |
| 878 | beginSample("TestAvg9" ); |
| 879 | endSample("TestAvg9" ); |
| 880 | beginSample("TestAvg10" ); |
| 881 | endSample("TestAvg10" ); |
| 882 | } |
| 883 | |
| 884 | for (UINT32 i = 0; i < sampleReps * 5; i++) |
| 885 | { |
| 886 | beginSample(("TestAvg#" + toString(i)).c_str()); |
| 887 | endSample(("TestAvg#" + toString(i)).c_str()); |
| 888 | } |
| 889 | |
| 890 | endThread(); |
| 891 | timerPreciseA.stop(); |
| 892 | |
| 893 | reset(); |
| 894 | |
| 895 | UINT64 avgCyclesBasic = timerPreciseA.cycles/(sampleReps * 10 + sampleReps * 5) - mPreciseTimerOverhead; |
| 896 | if (avgCyclesBasic < mBasicSamplingOverheadCycles) |
| 897 | mBasicSamplingOverheadCycles = avgCyclesBasic; |
| 898 | |
| 899 | /************************************************************************/ |
| 900 | /* AVERAGE TIME IN MS FOR PRECISE SAMPLING */ |
| 901 | /************************************************************************/ |
| 902 | |
| 903 | Timer timerB; |
| 904 | timerB.start(); |
| 905 | beginThread("Main" ); |
| 906 | |
| 907 | // Two different cases that can effect performance, one where |
| 908 | // sample already exists and other where new one needs to be created |
| 909 | for (UINT32 i = 0; i < sampleReps; i++) |
| 910 | { |
| 911 | beginSamplePrecise("TestAvg1" ); |
| 912 | endSamplePrecise("TestAvg1" ); |
| 913 | beginSamplePrecise("TestAvg2" ); |
| 914 | endSamplePrecise("TestAvg2" ); |
| 915 | beginSamplePrecise("TestAvg3" ); |
| 916 | endSamplePrecise("TestAvg3" ); |
| 917 | beginSamplePrecise("TestAvg4" ); |
| 918 | endSamplePrecise("TestAvg4" ); |
| 919 | beginSamplePrecise("TestAvg5" ); |
| 920 | endSamplePrecise("TestAvg5" ); |
| 921 | beginSamplePrecise("TestAvg6" ); |
| 922 | endSamplePrecise("TestAvg6" ); |
| 923 | beginSamplePrecise("TestAvg7" ); |
| 924 | endSamplePrecise("TestAvg7" ); |
| 925 | beginSamplePrecise("TestAvg8" ); |
| 926 | endSamplePrecise("TestAvg8" ); |
| 927 | beginSamplePrecise("TestAvg9" ); |
| 928 | endSamplePrecise("TestAvg9" ); |
| 929 | beginSamplePrecise("TestAvg10" ); |
| 930 | endSamplePrecise("TestAvg10" ); |
| 931 | } |
| 932 | |
| 933 | for (UINT32 i = 0; i < sampleReps * 5; i++) |
| 934 | { |
| 935 | beginSamplePrecise(("TestAvg#" + toString(i)).c_str()); |
| 936 | endSamplePrecise(("TestAvg#" + toString(i)).c_str()); |
| 937 | } |
| 938 | |
| 939 | endThread(); |
| 940 | timerB.stop(); |
| 941 | |
| 942 | reset(); |
| 943 | |
| 944 | double avgTimesPrecise = timerB.time/(sampleReps * 10 + sampleReps * 5); |
| 945 | if (avgTimesPrecise < mPreciseSamplingOverheadMs) |
| 946 | mPreciseSamplingOverheadMs = avgTimesPrecise; |
| 947 | |
| 948 | /************************************************************************/ |
| 949 | /* AVERAGE CYCLES FOR PRECISE SAMPLING */ |
| 950 | /************************************************************************/ |
| 951 | |
| 952 | TimerPrecise timerPreciseB; |
| 953 | timerPreciseB.start(); |
| 954 | beginThread("Main" ); |
| 955 | |
| 956 | // Two different cases that can effect performance, one where |
| 957 | // sample already exists and other where new one needs to be created |
| 958 | for (UINT32 i = 0; i < sampleReps; i++) |
| 959 | { |
| 960 | beginSamplePrecise("TestAvg1" ); |
| 961 | endSamplePrecise("TestAvg1" ); |
| 962 | beginSamplePrecise("TestAvg2" ); |
| 963 | endSamplePrecise("TestAvg2" ); |
| 964 | beginSamplePrecise("TestAvg3" ); |
| 965 | endSamplePrecise("TestAvg3" ); |
| 966 | beginSamplePrecise("TestAvg4" ); |
| 967 | endSamplePrecise("TestAvg4" ); |
| 968 | beginSamplePrecise("TestAvg5" ); |
| 969 | endSamplePrecise("TestAvg5" ); |
| 970 | beginSamplePrecise("TestAvg6" ); |
| 971 | endSamplePrecise("TestAvg6" ); |
| 972 | beginSamplePrecise("TestAvg7" ); |
| 973 | endSamplePrecise("TestAvg7" ); |
| 974 | beginSamplePrecise("TestAvg8" ); |
| 975 | endSamplePrecise("TestAvg8" ); |
| 976 | beginSamplePrecise("TestAvg9" ); |
| 977 | endSamplePrecise("TestAvg9" ); |
| 978 | beginSamplePrecise("TestAvg10" ); |
| 979 | endSamplePrecise("TestAvg10" ); |
| 980 | } |
| 981 | |
| 982 | for (UINT32 i = 0; i < sampleReps * 5; i++) |
| 983 | { |
| 984 | beginSamplePrecise(("TestAvg#" + toString(i)).c_str()); |
| 985 | endSamplePrecise(("TestAvg#" + toString(i)).c_str()); |
| 986 | } |
| 987 | |
| 988 | endThread(); |
| 989 | timerPreciseB.stop(); |
| 990 | |
| 991 | reset(); |
| 992 | |
| 993 | UINT64 avgCyclesPrecise = timerPreciseB.cycles/(sampleReps * 10 + sampleReps * 5); |
| 994 | if (avgCyclesPrecise < mPreciseSamplingOverheadCycles) |
| 995 | mPreciseSamplingOverheadCycles = avgCyclesPrecise; |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | ProfilerCPU& gProfilerCPU() |
| 1000 | { |
| 1001 | return ProfilerCPU::instance(); |
| 1002 | } |
| 1003 | } |
| 1004 | |