| 1 | // Aseprite Render Library |
| 2 | // Copyright (c) 2020 Igara Studio S.A. |
| 3 | // Copyright (c) 2001-2015 David Capello |
| 4 | // |
| 5 | // This file is released under the terms of the MIT license. |
| 6 | // Read LICENSE.txt for more information. |
| 7 | |
| 8 | #ifndef RENDER_COLOR_HISTOGRAM_H_INCLUDED |
| 9 | #define RENDER_COLOR_HISTOGRAM_H_INCLUDED |
| 10 | #pragma once |
| 11 | |
| 12 | #include <limits> |
| 13 | #include <vector> |
| 14 | |
| 15 | #include "doc/color.h" |
| 16 | #include "doc/image.h" |
| 17 | #include "doc/image_traits.h" |
| 18 | #include "doc/palette.h" |
| 19 | |
| 20 | #include "render/median_cut.h" |
| 21 | |
| 22 | namespace render { |
| 23 | using namespace doc; |
| 24 | |
| 25 | template<int RBits, // Number of bits for each component in the histogram |
| 26 | int GBits, |
| 27 | int BBits, |
| 28 | int ABits> |
| 29 | class ColorHistogram { |
| 30 | public: |
| 31 | // Number of elements in histogram for each RGB component |
| 32 | enum { |
| 33 | RElements = 1 << RBits, |
| 34 | GElements = 1 << GBits, |
| 35 | BElements = 1 << BBits, |
| 36 | AElements = 1 << ABits |
| 37 | }; |
| 38 | |
| 39 | ColorHistogram() |
| 40 | : m_histogram(RElements*GElements*BElements*AElements, 0) |
| 41 | , m_useHighPrecision(true) { |
| 42 | } |
| 43 | |
| 44 | // Returns the number of points in the specified histogram |
| 45 | // entry. Each rgba-index is in the range of the histogram, e.g. |
| 46 | // r=[0,RElements), g=[0,GElements), etc. |
| 47 | std::size_t at(int r, int g, int b, int a) const { |
| 48 | return m_histogram[histogramIndex(r, g, b, a)]; |
| 49 | } |
| 50 | |
| 51 | // Add the specified "color" in the histogram as many times as the |
| 52 | // specified value in "count". |
| 53 | void addSamples(doc::color_t color, std::size_t count = 1) { |
| 54 | int i = histogramIndex(color); |
| 55 | |
| 56 | if (m_histogram[i] < std::numeric_limits<std::size_t>::max()-count) // Avoid overflow |
| 57 | m_histogram[i] += count; |
| 58 | else |
| 59 | m_histogram[i] = std::numeric_limits<std::size_t>::max(); |
| 60 | |
| 61 | // Accurate colors are used only for less than 256 colors. If the |
| 62 | // image has more than 256 colors the m_histogram is used |
| 63 | // instead. |
| 64 | if (m_useHighPrecision) { |
| 65 | std::vector<doc::color_t>::iterator it = |
| 66 | std::find(m_highPrecision.begin(), m_highPrecision.end(), color); |
| 67 | |
| 68 | // The color is not in the high-precision table |
| 69 | if (it == m_highPrecision.end()) { |
| 70 | if (m_highPrecision.size() < 256) { |
| 71 | m_highPrecision.push_back(color); |
| 72 | } |
| 73 | else { |
| 74 | // In this case we reach the limit for the high-precision histogram. |
| 75 | m_useHighPrecision = false; |
| 76 | } |
| 77 | } |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | // Creates a set of entries for the given palette in the given range |
| 82 | // with the more important colors in the histogram. Returns the |
| 83 | // number of used entries in the palette (maybe the range [from,to] |
| 84 | // is more than necessary). |
| 85 | int createOptimizedPalette(Palette* palette) { |
| 86 | // Can we use the high-precision table? |
| 87 | if (m_useHighPrecision && int(m_highPrecision.size()) <= palette->size()) { |
| 88 | for (int i=0; i<(int)m_highPrecision.size(); ++i) |
| 89 | palette->setEntry(i, m_highPrecision[i]); |
| 90 | |
| 91 | return m_highPrecision.size(); |
| 92 | } |
| 93 | // OK, we have to use the histogram and some algorithm (like |
| 94 | // median-cut) to quantize "optimal" colors. |
| 95 | else { |
| 96 | std::vector<doc::color_t> result; |
| 97 | median_cut(*this, palette->size(), result); |
| 98 | |
| 99 | for (int i=0; i<(int)result.size(); ++i) |
| 100 | palette->setEntry(i, result[i]); |
| 101 | |
| 102 | return result.size(); |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | bool isHighPrecision() { return m_useHighPrecision; } |
| 107 | int highPrecisionSize() { return m_highPrecision.size(); } |
| 108 | |
| 109 | private: |
| 110 | // Converts input color in a index for the histogram. It reduces |
| 111 | // each 8-bit component to the resolution given in the template |
| 112 | // parameters. |
| 113 | std::size_t histogramIndex(doc::color_t color) const { |
| 114 | return histogramIndex((rgba_getr(color) >> (8 - RBits)), |
| 115 | (rgba_getg(color) >> (8 - GBits)), |
| 116 | (rgba_getb(color) >> (8 - BBits)), |
| 117 | (rgba_geta(color) >> (8 - ABits))); |
| 118 | } |
| 119 | |
| 120 | std::size_t histogramIndex(int r, int g, int b, int a) const { |
| 121 | return |
| 122 | r |
| 123 | | (g << RBits) |
| 124 | | (b << (RBits+GBits)) |
| 125 | | (a << (RBits+GBits+BBits)); |
| 126 | } |
| 127 | |
| 128 | // 3D histogram (the index in the histogram is calculated through histogramIndex() function). |
| 129 | std::vector<std::size_t> m_histogram; |
| 130 | |
| 131 | // High precision histogram to create an accurate palette if RGB |
| 132 | // source images contains less than 256 colors. |
| 133 | std::vector<doc::color_t> m_highPrecision; |
| 134 | |
| 135 | // True if we can use m_highPrecision still (it means that the |
| 136 | // number of different samples is less than 256 colors still). |
| 137 | bool m_useHighPrecision; |
| 138 | }; |
| 139 | |
| 140 | } // namespace render |
| 141 | |
| 142 | #endif |
| 143 | |