| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #include "s2regioncoverer.h" |
| 4 | |
| 5 | #include <pthread.h> |
| 6 | |
| 7 | #include <algorithm> |
| 8 | using std::min; |
| 9 | using std::max; |
| 10 | using std::swap; |
| 11 | using std::reverse; |
| 12 | |
| 13 | #include <functional> |
| 14 | using std::less; |
| 15 | |
| 16 | #include <hash_set> |
| 17 | using __gnu_cxx::hash_set; |
| 18 | |
| 19 | #include <queue> |
| 20 | using std::priority_queue; |
| 21 | |
| 22 | #include <vector> |
| 23 | using std::vector; |
| 24 | |
| 25 | |
| 26 | #include "base/logging.h" |
| 27 | #include "s2.h" |
| 28 | #include "s2cap.h" |
| 29 | #include "s2cellunion.h" |
| 30 | |
| 31 | // Define storage for header file constants (the values are not needed here). |
| 32 | int const S2RegionCoverer::kDefaultMaxCells; |
| 33 | |
| 34 | // We define our own own comparison function on QueueEntries in order to |
| 35 | // make the results deterministic. Using the default less<QueueEntry>, |
| 36 | // entries of equal priority would be sorted according to the memory address |
| 37 | // of the candidate. |
| 38 | |
| 39 | struct S2RegionCoverer::CompareQueueEntries : public less<QueueEntry> { |
| 40 | bool operator()(QueueEntry const& x, QueueEntry const& y) { |
| 41 | return x.first < y.first; |
| 42 | } |
| 43 | }; |
| 44 | |
| 45 | static S2Cell face_cells[6]; |
| 46 | |
| 47 | void Init() { |
| 48 | for (int face = 0; face < 6; ++face) { |
| 49 | face_cells[face] = S2Cell::FromFacePosLevel(face, 0, 0); |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | static pthread_once_t init_once = PTHREAD_ONCE_INIT; |
| 54 | inline static void MaybeInit() { |
| 55 | pthread_once(&init_once, Init); |
| 56 | } |
| 57 | |
| 58 | S2RegionCoverer::S2RegionCoverer() : |
| 59 | min_level_(0), |
| 60 | max_level_(S2CellId::kMaxLevel), |
| 61 | level_mod_(1), |
| 62 | max_cells_(kDefaultMaxCells), |
| 63 | region_(NULL), |
| 64 | result_(new vector<S2CellId>), |
| 65 | pq_(new CandidateQueue) { |
| 66 | // Initialize the constants |
| 67 | MaybeInit(); |
| 68 | } |
| 69 | |
| 70 | S2RegionCoverer::~S2RegionCoverer() { |
| 71 | // Need to declare explicitly because of scoped pointers. |
| 72 | } |
| 73 | |
| 74 | void S2RegionCoverer::set_min_level(int min_level) { |
| 75 | DCHECK_GE(min_level, 0); |
| 76 | DCHECK_LE(min_level, S2CellId::kMaxLevel); |
| 77 | min_level_ = max(0, min(S2CellId::kMaxLevel, min_level)); |
| 78 | } |
| 79 | |
| 80 | void S2RegionCoverer::set_max_level(int max_level) { |
| 81 | DCHECK_GE(max_level, 0); |
| 82 | DCHECK_LE(max_level, S2CellId::kMaxLevel); |
| 83 | max_level_ = max(0, min(S2CellId::kMaxLevel, max_level)); |
| 84 | } |
| 85 | |
| 86 | void S2RegionCoverer::set_level_mod(int level_mod) { |
| 87 | DCHECK_GE(level_mod, 1); |
| 88 | DCHECK_LE(level_mod, 3); |
| 89 | level_mod_ = max(1, min(3, level_mod)); |
| 90 | } |
| 91 | |
| 92 | void S2RegionCoverer::set_max_cells(int max_cells) { |
| 93 | max_cells_ = max_cells; |
| 94 | } |
| 95 | |
| 96 | S2RegionCoverer::Candidate* S2RegionCoverer::NewCandidate(S2Cell const& cell) { |
| 97 | if (!region_->MayIntersect(cell)) return NULL; |
| 98 | |
| 99 | bool is_terminal = false; |
| 100 | size_t size = sizeof(Candidate); |
| 101 | if (cell.level() >= min_level_) { |
| 102 | if (interior_covering_) { |
| 103 | if (region_->Contains(cell)) { |
| 104 | is_terminal = true; |
| 105 | } else if (cell.level() + level_mod_ > max_level_) { |
| 106 | return NULL; |
| 107 | } |
| 108 | } else { |
| 109 | if (cell.level() + level_mod_ > max_level_ || region_->Contains(cell)) { |
| 110 | is_terminal = true; |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | if (!is_terminal) { |
| 115 | size += sizeof(Candidate*) << max_children_shift(); |
| 116 | } |
| 117 | Candidate* candidate = static_cast<Candidate*>(malloc(size)); |
| 118 | memset(candidate, 0, size); |
| 119 | candidate->cell = cell; |
| 120 | candidate->is_terminal = is_terminal; |
| 121 | ++candidates_created_counter_; |
| 122 | return candidate; |
| 123 | } |
| 124 | |
| 125 | void S2RegionCoverer::DeleteCandidate(Candidate* candidate, |
| 126 | bool delete_children) { |
| 127 | if (delete_children) { |
| 128 | for (int i = 0; i < candidate->num_children; ++i) |
| 129 | DeleteCandidate(candidate->children[i], true); |
| 130 | } |
| 131 | free(candidate); |
| 132 | } |
| 133 | |
| 134 | int S2RegionCoverer::ExpandChildren(Candidate* candidate, |
| 135 | S2Cell const& cell, int num_levels) { |
| 136 | num_levels--; |
| 137 | S2Cell child_cells[4]; |
| 138 | cell.Subdivide(child_cells); |
| 139 | int num_terminals = 0; |
| 140 | for (int i = 0; i < 4; ++i) { |
| 141 | if (num_levels > 0) { |
| 142 | if (region_->MayIntersect(child_cells[i])) { |
| 143 | num_terminals += ExpandChildren(candidate, child_cells[i], num_levels); |
| 144 | } |
| 145 | continue; |
| 146 | } |
| 147 | Candidate* child = NewCandidate(child_cells[i]); |
| 148 | if (child) { |
| 149 | candidate->children[candidate->num_children++] = child; |
| 150 | if (child->is_terminal) ++num_terminals; |
| 151 | } |
| 152 | } |
| 153 | return num_terminals; |
| 154 | } |
| 155 | |
| 156 | void S2RegionCoverer::AddCandidate(Candidate* candidate) { |
| 157 | if (candidate == NULL) return; |
| 158 | |
| 159 | if (candidate->is_terminal) { |
| 160 | result_->push_back(candidate->cell.id()); |
| 161 | DeleteCandidate(candidate, true); |
| 162 | return; |
| 163 | } |
| 164 | DCHECK_EQ(0, candidate->num_children); |
| 165 | |
| 166 | // Expand one level at a time until we hit min_level_ to ensure that |
| 167 | // we don't skip over it. |
| 168 | int num_levels = (candidate->cell.level() < min_level_) ? 1 : level_mod_; |
| 169 | int num_terminals = ExpandChildren(candidate, candidate->cell, num_levels); |
| 170 | |
| 171 | if (candidate->num_children == 0) { |
| 172 | DeleteCandidate(candidate, false); |
| 173 | |
| 174 | } else if (!interior_covering_ && |
| 175 | num_terminals == 1 << max_children_shift() && |
| 176 | candidate->cell.level() >= min_level_) { |
| 177 | // Optimization: add the parent cell rather than all of its children. |
| 178 | // We can't do this for interior coverings, since the children just |
| 179 | // intersect the region, but may not be contained by it - we need to |
| 180 | // subdivide them further. |
| 181 | candidate->is_terminal = true; |
| 182 | AddCandidate(candidate); |
| 183 | |
| 184 | } else { |
| 185 | // We negate the priority so that smaller absolute priorities are returned |
| 186 | // first. The heuristic is designed to refine the largest cells first, |
| 187 | // since those are where we have the largest potential gain. Among cells |
| 188 | // at the same level, we prefer the cells with the smallest number of |
| 189 | // intersecting children. Finally, we prefer cells that have the smallest |
| 190 | // number of children that cannot be refined any further. |
| 191 | int priority = -((((candidate->cell.level() << max_children_shift()) |
| 192 | + candidate->num_children) << max_children_shift()) |
| 193 | + num_terminals); |
| 194 | pq_->push(make_pair(priority, candidate)); |
| 195 | VLOG(2) << "Push: " << candidate->cell.id() << " (" << priority << ") " ; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | void S2RegionCoverer::GetInitialCandidates() { |
| 200 | // Optimization: if at least 4 cells are desired (the normal case), |
| 201 | // start with a 4-cell covering of the region's bounding cap. This |
| 202 | // lets us skip quite a few levels of refinement when the region to |
| 203 | // be covered is relatively small. |
| 204 | if (max_cells() >= 4) { |
| 205 | // Find the maximum level such that the bounding cap contains at most one |
| 206 | // cell vertex at that level. |
| 207 | S2Cap cap = region_->GetCapBound(); |
| 208 | int level = min(S2::kMinWidth.GetMaxLevel(2 * cap.angle().radians()), |
| 209 | min(max_level(), S2CellId::kMaxLevel - 1)); |
| 210 | if (level_mod() > 1 && level > min_level()) { |
| 211 | level -= (level - min_level()) % level_mod(); |
| 212 | } |
| 213 | // We don't bother trying to optimize the level == 0 case, since more than |
| 214 | // four face cells may be required. |
| 215 | if (level > 0) { |
| 216 | // Find the leaf cell containing the cap axis, and determine which |
| 217 | // subcell of the parent cell contains it. |
| 218 | vector<S2CellId> base; |
| 219 | base.reserve(4); |
| 220 | S2CellId id = S2CellId::FromPoint(cap.axis()); |
| 221 | id.AppendVertexNeighbors(level, &base); |
| 222 | for (int i = 0; i < base.size(); ++i) { |
| 223 | AddCandidate(NewCandidate(S2Cell(base[i]))); |
| 224 | } |
| 225 | return; |
| 226 | } |
| 227 | } |
| 228 | // Default: start with all six cube faces. |
| 229 | for (int face = 0; face < 6; ++face) { |
| 230 | AddCandidate(NewCandidate(face_cells[face])); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | void S2RegionCoverer::GetCoveringInternal(S2Region const& region) { |
| 235 | // Strategy: Start with the 6 faces of the cube. Discard any |
| 236 | // that do not intersect the shape. Then repeatedly choose the |
| 237 | // largest cell that intersects the shape and subdivide it. |
| 238 | // |
| 239 | // result_ contains the cells that will be part of the output, while pq_ |
| 240 | // contains cells that we may still subdivide further. Cells that are |
| 241 | // entirely contained within the region are immediately added to the output, |
| 242 | // while cells that do not intersect the region are immediately discarded. |
| 243 | // Therefore pq_ only contains cells that partially intersect the region. |
| 244 | // Candidates are prioritized first according to cell size (larger cells |
| 245 | // first), then by the number of intersecting children they have (fewest |
| 246 | // children first), and then by the number of fully contained children |
| 247 | // (fewest children first). |
| 248 | |
| 249 | DCHECK(pq_->empty()); |
| 250 | DCHECK(result_->empty()); |
| 251 | region_ = ®ion; |
| 252 | candidates_created_counter_ = 0; |
| 253 | |
| 254 | GetInitialCandidates(); |
| 255 | while (!pq_->empty() && |
| 256 | (!interior_covering_ || result_->size() < max_cells_)) { |
| 257 | Candidate* candidate = pq_->top().second; |
| 258 | pq_->pop(); |
| 259 | VLOG(2) << "Pop: " << candidate->cell.id(); |
| 260 | if (candidate->cell.level() < min_level_ || |
| 261 | candidate->num_children == 1 || |
| 262 | result_->size() + (interior_covering_ ? 0 : pq_->size()) + |
| 263 | candidate->num_children <= max_cells_) { |
| 264 | // Expand this candidate into its children. |
| 265 | for (int i = 0; i < candidate->num_children; ++i) { |
| 266 | AddCandidate(candidate->children[i]); |
| 267 | } |
| 268 | DeleteCandidate(candidate, false); |
| 269 | } else if (interior_covering_) { |
| 270 | DeleteCandidate(candidate, true); |
| 271 | } else { |
| 272 | candidate->is_terminal = true; |
| 273 | AddCandidate(candidate); |
| 274 | } |
| 275 | } |
| 276 | VLOG(2) << "Created " << result_->size() << " cells, " << |
| 277 | candidates_created_counter_ << " candidates created, " << |
| 278 | pq_->size() << " left" ; |
| 279 | while (!pq_->empty()) { |
| 280 | DeleteCandidate(pq_->top().second, true); |
| 281 | pq_->pop(); |
| 282 | } |
| 283 | region_ = NULL; |
| 284 | } |
| 285 | |
| 286 | void S2RegionCoverer::GetCovering(S2Region const& region, |
| 287 | vector<S2CellId>* covering) { |
| 288 | |
| 289 | // Rather than just returning the raw list of cell ids generated by |
| 290 | // GetCoveringInternal(), we construct a cell union and then denormalize it. |
| 291 | // This has the effect of replacing four child cells with their parent |
| 292 | // whenever this does not violate the covering parameters specified |
| 293 | // (min_level, level_mod, etc). This strategy significantly reduces the |
| 294 | // number of cells returned in many cases, and it is cheap compared to |
| 295 | // computing the covering in the first place. |
| 296 | |
| 297 | S2CellUnion tmp; |
| 298 | GetCellUnion(region, &tmp); |
| 299 | tmp.Denormalize(min_level(), level_mod(), covering); |
| 300 | } |
| 301 | |
| 302 | void S2RegionCoverer::GetInteriorCovering(S2Region const& region, |
| 303 | vector<S2CellId>* interior) { |
| 304 | S2CellUnion tmp; |
| 305 | GetInteriorCellUnion(region, &tmp); |
| 306 | tmp.Denormalize(min_level(), level_mod(), interior); |
| 307 | } |
| 308 | |
| 309 | void S2RegionCoverer::GetCellUnion(S2Region const& region, |
| 310 | S2CellUnion* covering) { |
| 311 | interior_covering_ = false; |
| 312 | GetCoveringInternal(region); |
| 313 | covering->InitSwap(result_.get()); |
| 314 | } |
| 315 | |
| 316 | void S2RegionCoverer::GetInteriorCellUnion(S2Region const& region, |
| 317 | S2CellUnion* interior) { |
| 318 | interior_covering_ = true; |
| 319 | GetCoveringInternal(region); |
| 320 | interior->InitSwap(result_.get()); |
| 321 | } |
| 322 | |
| 323 | void S2RegionCoverer::FloodFill( |
| 324 | S2Region const& region, S2CellId const& start, vector<S2CellId>* output) { |
| 325 | hash_set<S2CellId> all; |
| 326 | vector<S2CellId> frontier; |
| 327 | output->clear(); |
| 328 | all.insert(start); |
| 329 | frontier.push_back(start); |
| 330 | while (!frontier.empty()) { |
| 331 | S2CellId id = frontier.back(); |
| 332 | frontier.pop_back(); |
| 333 | if (!region.MayIntersect(S2Cell(id))) continue; |
| 334 | output->push_back(id); |
| 335 | |
| 336 | S2CellId neighbors[4]; |
| 337 | id.GetEdgeNeighbors(neighbors); |
| 338 | for (int edge = 0; edge < 4; ++edge) { |
| 339 | S2CellId nbr = neighbors[edge]; |
| 340 | if (all.insert(nbr).second) { |
| 341 | frontier.push_back(nbr); |
| 342 | } |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | void S2RegionCoverer::GetSimpleCovering( |
| 348 | S2Region const& region, S2Point const& start, |
| 349 | int level, vector<S2CellId>* output) { |
| 350 | return FloodFill(region, S2CellId::FromPoint(start).parent(level), output); |
| 351 | } |
| 352 | |