| 1 | /* |
| 2 | * hardware.c |
| 3 | * |
| 4 | * Copyright (C) 2016-2017 Aerospike, Inc. |
| 5 | * |
| 6 | * Portions may be licensed to Aerospike, Inc. under one or more contributor |
| 7 | * license agreements. |
| 8 | * |
| 9 | * This program is free software: you can redistribute it and/or modify it under |
| 10 | * the terms of the GNU Affero General Public License as published by the Free |
| 11 | * Software Foundation, either version 3 of the License, or (at your option) any |
| 12 | * later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 16 | * FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more |
| 17 | * details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU Affero General Public License |
| 20 | * along with this program. If not, see http://www.gnu.org/licenses/ |
| 21 | */ |
| 22 | |
| 23 | #include "hardware.h" |
| 24 | |
| 25 | #include <ctype.h> |
| 26 | #include <dirent.h> |
| 27 | #include <errno.h> |
| 28 | #include <fcntl.h> |
| 29 | #include <inttypes.h> |
| 30 | #include <libgen.h> |
| 31 | #include <limits.h> |
| 32 | #include <mntent.h> |
| 33 | #include <regex.h> |
| 34 | #include <sched.h> |
| 35 | #include <stdbool.h> |
| 36 | #include <stddef.h> |
| 37 | #include <stdint.h> |
| 38 | #include <stdio.h> |
| 39 | #include <stdlib.h> |
| 40 | #include <string.h> |
| 41 | #include <syscall.h> |
| 42 | #include <unistd.h> |
| 43 | |
| 44 | #include <sys/ioctl.h> |
| 45 | #include <sys/socket.h> |
| 46 | #include <sys/stat.h> |
| 47 | #include <sys/statvfs.h> |
| 48 | #include <sys/sysmacros.h> |
| 49 | #include <sys/types.h> |
| 50 | #include <sys/vfs.h> |
| 51 | |
| 52 | #include <linux/capability.h> |
| 53 | #include <linux/ethtool.h> |
| 54 | #include <linux/if.h> |
| 55 | #include <linux/limits.h> |
| 56 | #include <linux/mempolicy.h> |
| 57 | #include <linux/sockios.h> |
| 58 | |
| 59 | #include "cf_mutex.h" |
| 60 | #include "daemon.h" |
| 61 | #include "fault.h" |
| 62 | #include "shash.h" |
| 63 | #include "socket.h" |
| 64 | |
| 65 | #include "citrusleaf/alloc.h" |
| 66 | #include "citrusleaf/cf_clock.h" |
| 67 | |
| 68 | #include "warnings.h" |
| 69 | |
| 70 | // Only available in Linux kernel version 3.19 and later; but we'd like to |
| 71 | // allow compilation with older kernel headers. |
| 72 | #if !defined SO_INCOMING_CPU |
| 73 | #define SO_INCOMING_CPU 49 |
| 74 | #endif |
| 75 | |
| 76 | // Only available in Linux kernel version 4.12 and later; but we'd like to |
| 77 | // allow compilation with older kernel headers. |
| 78 | #if !defined SO_INCOMING_NAPI_ID |
| 79 | #define SO_INCOMING_NAPI_ID 56 |
| 80 | #endif |
| 81 | |
| 82 | // The linux/nvme_ioctl.h kernel header came in Linux 4.4, but we'd like to |
| 83 | // allow compilation with older kernel headers. |
| 84 | // |
| 85 | // Also, we need to be prepared for this IOCTL to fail with EINVAL, when we |
| 86 | // run on older kernels that don't support it. |
| 87 | |
| 88 | #define NVME_IOCTL_ADMIN_CMD _IOWR('N', 0x41, struct nvme_admin_cmd) |
| 89 | #define NVME_SC_INVALID_LOG_PAGE 0x109 |
| 90 | |
| 91 | struct nvme_admin_cmd { |
| 92 | uint8_t opcode; |
| 93 | uint8_t flags; |
| 94 | uint16_t rsvd1; |
| 95 | uint32_t nsid; |
| 96 | uint32_t cdw2; |
| 97 | uint32_t cdw3; |
| 98 | uint64_t metadata; |
| 99 | uint64_t addr; |
| 100 | uint32_t metadata_len; |
| 101 | uint32_t data_len; |
| 102 | uint32_t cdw10; |
| 103 | uint32_t cdw11; |
| 104 | uint32_t cdw12; |
| 105 | uint32_t cdw13; |
| 106 | uint32_t cdw14; |
| 107 | uint32_t cdw15; |
| 108 | uint32_t timeout_ms; |
| 109 | uint32_t result; |
| 110 | }; |
| 111 | |
| 112 | #define INVALID_INDEX ((uint16_t)-1) |
| 113 | #define POLICY_SCRIPT "/etc/aerospike/irqbalance-ban.sh" |
| 114 | |
| 115 | #define MEM_PAGE_SIZE (4096L) |
| 116 | |
| 117 | typedef enum { |
| 118 | FILE_RES_OK, |
| 119 | FILE_RES_NOT_FOUND, |
| 120 | FILE_RES_ERROR |
| 121 | } file_res; |
| 122 | |
| 123 | typedef enum { |
| 124 | CHECK_PROC_PRESENT, |
| 125 | CHECK_PROC_PRESENT_NO_ARG, |
| 126 | CHECK_PROC_ABSENT |
| 127 | } check_proc_res; |
| 128 | |
| 129 | typedef uint16_t os_numa_node_index; |
| 130 | typedef uint16_t os_package_index; |
| 131 | typedef uint16_t os_core_index; |
| 132 | |
| 133 | typedef uint16_t irq_number; |
| 134 | |
| 135 | typedef struct { |
| 136 | uint16_t n_irqs; |
| 137 | irq_number irqs[CPU_SETSIZE]; |
| 138 | uint16_t per_cpu; |
| 139 | } irq_list; |
| 140 | |
| 141 | static cpu_set_t g_os_cpus_online; |
| 142 | static cpu_set_t g_numa_node_os_cpus_online[CPU_SETSIZE]; |
| 143 | |
| 144 | static uint16_t g_n_numa_nodes; |
| 145 | static uint16_t g_n_cores; |
| 146 | static uint16_t g_n_os_cpus; |
| 147 | static uint16_t g_n_cpus; |
| 148 | static uint16_t g_n_irq_cpus; |
| 149 | |
| 150 | static os_numa_node_index g_numa_node_index_to_os_numa_node_index[CPU_SETSIZE]; |
| 151 | static cf_topo_os_cpu_index g_core_index_to_os_cpu_index[CPU_SETSIZE]; |
| 152 | static cf_topo_os_cpu_index g_cpu_index_to_os_cpu_index[CPU_SETSIZE]; |
| 153 | static cf_topo_cpu_index g_os_cpu_index_to_cpu_index[CPU_SETSIZE]; |
| 154 | |
| 155 | static cf_topo_numa_node_index g_i_numa_node; |
| 156 | |
| 157 | #define DEVICE_PATH_SIZE 1024 |
| 158 | #define DEVICE_NAME_SIZE 256 |
| 159 | |
| 160 | #define MAX_DEVICE_CHILDREN 100 |
| 161 | #define MAX_DEVICE_SCHEDULERS 100 |
| 162 | |
| 163 | typedef struct dev_key_s { |
| 164 | uint32_t major; |
| 165 | uint32_t minor; |
| 166 | } dev_key_t; |
| 167 | |
| 168 | typedef struct dev_node_s { |
| 169 | uint32_t n_children; |
| 170 | struct dev_node_s *children[MAX_DEVICE_CHILDREN]; |
| 171 | |
| 172 | char name[DEVICE_NAME_SIZE]; |
| 173 | char dev_path[DEVICE_PATH_SIZE]; |
| 174 | |
| 175 | char sys_home[DEVICE_PATH_SIZE]; |
| 176 | char sys_sched[DEVICE_PATH_SIZE]; |
| 177 | } dev_node_t; |
| 178 | |
| 179 | typedef struct path_data_s { |
| 180 | cf_storage_device_info info; |
| 181 | |
| 182 | uint32_t n_sys_scheds; |
| 183 | const char *sys_scheds[MAX_DEVICE_SCHEDULERS]; |
| 184 | |
| 185 | cf_clock mod_time; |
| 186 | } path_data_t; |
| 187 | |
| 188 | static cf_shash *g_dev_graph; |
| 189 | |
| 190 | static cf_mutex g_path_data_lock = CF_MUTEX_INIT; |
| 191 | static cf_shash *g_path_data; |
| 192 | |
| 193 | static file_res |
| 194 | read_file(const char *path, void *buff, size_t *limit) |
| 195 | { |
| 196 | cf_detail(CF_HARDWARE, "reading file %s with buffer size %zu" , path, *limit); |
| 197 | int32_t fd = open(path, O_RDONLY); |
| 198 | |
| 199 | if (fd < 0) { |
| 200 | if (errno == ENOENT) { |
| 201 | cf_detail(CF_HARDWARE, "file %s not found" , path); |
| 202 | return FILE_RES_NOT_FOUND; |
| 203 | } |
| 204 | |
| 205 | cf_warning(CF_HARDWARE, "error while opening file %s for reading: %d (%s)" , |
| 206 | path, errno, cf_strerror(errno)); |
| 207 | return FILE_RES_ERROR; |
| 208 | } |
| 209 | |
| 210 | size_t total = 0; |
| 211 | |
| 212 | while (total < *limit) { |
| 213 | cf_detail(CF_HARDWARE, "reading %zd byte(s) at offset %zu" , *limit - total, total); |
| 214 | ssize_t len = read(fd, (uint8_t *)buff + total, *limit - total); |
| 215 | CF_NEVER_FAILS(len); |
| 216 | |
| 217 | if (len == 0) { |
| 218 | cf_detail(CF_HARDWARE, "EOF" ); |
| 219 | break; |
| 220 | } |
| 221 | |
| 222 | total += (size_t)len; |
| 223 | } |
| 224 | |
| 225 | cf_detail(CF_HARDWARE, "read %zu byte(s) from file %s" , total, path); |
| 226 | file_res res; |
| 227 | |
| 228 | if (total == *limit) { |
| 229 | cf_warning(CF_HARDWARE, "read buffer too small for file %s" , path); |
| 230 | res = FILE_RES_ERROR; |
| 231 | } |
| 232 | else { |
| 233 | res = FILE_RES_OK; |
| 234 | *limit = total; |
| 235 | } |
| 236 | |
| 237 | CF_NEVER_FAILS(close(fd)); |
| 238 | return res; |
| 239 | } |
| 240 | |
| 241 | static file_res |
| 242 | write_file(const char *path, const void *buff, size_t limit) |
| 243 | { |
| 244 | cf_detail(CF_HARDWARE, "writing file %s with buffer size %zu" , path, limit); |
| 245 | int32_t fd = open(path, O_WRONLY | O_CREAT | O_TRUNC, 0600); |
| 246 | |
| 247 | if (fd < 0) { |
| 248 | if (errno == ENOENT) { |
| 249 | cf_detail(CF_HARDWARE, "file %s not found" , path); |
| 250 | return FILE_RES_NOT_FOUND; |
| 251 | } |
| 252 | |
| 253 | cf_warning(CF_HARDWARE, "error while opening file %s for writing: %d (%s)" , |
| 254 | path, errno, cf_strerror(errno)); |
| 255 | return FILE_RES_ERROR; |
| 256 | } |
| 257 | |
| 258 | size_t total = 0; |
| 259 | |
| 260 | while (total < limit) { |
| 261 | cf_detail(CF_HARDWARE, "writing %zd byte(s) at offset %zu" , limit - total, total); |
| 262 | ssize_t len = write(fd, (uint8_t *)buff + total, limit - total); |
| 263 | |
| 264 | if (len < 0) { |
| 265 | cf_warning(CF_HARDWARE, "error while writing to file %s: %d (%s)" , |
| 266 | path, errno, cf_strerror(errno)); |
| 267 | CF_NEVER_FAILS(close(fd)); |
| 268 | return FILE_RES_ERROR; |
| 269 | } |
| 270 | |
| 271 | total += (size_t)len; |
| 272 | } |
| 273 | |
| 274 | cf_detail(CF_HARDWARE, "done writing" ); |
| 275 | CF_NEVER_FAILS(close(fd)); |
| 276 | return FILE_RES_OK; |
| 277 | } |
| 278 | |
| 279 | static void |
| 280 | write_file_safe(const char *path, const void *buff, size_t limit) |
| 281 | { |
| 282 | if (write_file(path, buff, limit) != FILE_RES_OK) { |
| 283 | cf_crash(CF_HARDWARE, "write failed unexpectedly" ); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | static DIR * |
| 288 | opendir_safe(const char *path) |
| 289 | { |
| 290 | DIR *dir = opendir(path); |
| 291 | |
| 292 | if (dir == NULL) { |
| 293 | cf_crash(CF_HARDWARE, "error while opening directory %s: %d (%s)" , |
| 294 | path, errno, cf_strerror(errno)); |
| 295 | } |
| 296 | |
| 297 | return dir; |
| 298 | } |
| 299 | |
| 300 | static int32_t |
| 301 | readdir_safe(DIR *dir, struct dirent *ent) |
| 302 | { |
| 303 | while (true) { |
| 304 | errno = 0; |
| 305 | struct dirent *tmp = readdir(dir); |
| 306 | |
| 307 | if (tmp == NULL) { |
| 308 | if (errno != 0) { |
| 309 | cf_crash(CF_HARDWARE, "error while reading directory: %d (%s)" , |
| 310 | errno, cf_strerror(errno)); |
| 311 | } |
| 312 | |
| 313 | return -1; |
| 314 | } |
| 315 | |
| 316 | if (strcmp(tmp->d_name, "." ) == 0 || strcmp(tmp->d_name, ".." ) == 0) { |
| 317 | continue; |
| 318 | } |
| 319 | |
| 320 | memcpy(ent, tmp, sizeof(struct dirent)); |
| 321 | return 0; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | static void |
| 326 | closedir_safe(DIR *dir) |
| 327 | { |
| 328 | if (closedir(dir) < 0) { |
| 329 | cf_crash(CF_HARDWARE, "error while closing PCI device directory: %d (%s)" , |
| 330 | errno, cf_strerror(errno)); |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | static bool |
| 335 | path_exists(const char *path) |
| 336 | { |
| 337 | struct stat st; |
| 338 | |
| 339 | if (stat(path, &st) < 0) { |
| 340 | if (errno == ENOENT) { |
| 341 | cf_detail(CF_HARDWARE, "path %s does not exist" , path); |
| 342 | return false; |
| 343 | } |
| 344 | |
| 345 | cf_crash(CF_HARDWARE, "error while checking for path %s: %d (%s)" , |
| 346 | path, errno, cf_strerror(errno)); |
| 347 | } |
| 348 | |
| 349 | cf_detail(CF_HARDWARE, "path %s exists" , path); |
| 350 | return true; |
| 351 | } |
| 352 | |
| 353 | static bool |
| 354 | path_is_dir(const char *path) |
| 355 | { |
| 356 | struct stat st; |
| 357 | |
| 358 | if (stat(path, &st) < 0) { |
| 359 | cf_crash(CF_HARDWARE, "error while checking path %s: %d (%s)" , |
| 360 | path, errno, cf_strerror(errno)); |
| 361 | } |
| 362 | |
| 363 | bool is_dir = S_ISDIR(st.st_mode); |
| 364 | |
| 365 | cf_detail(CF_HARDWARE, "path %s is %s directory" , path, is_dir ? |
| 366 | "a" : "not a" ); |
| 367 | |
| 368 | return is_dir; |
| 369 | } |
| 370 | |
| 371 | static bool |
| 372 | path_works(const char *path) |
| 373 | { |
| 374 | int32_t fd = open(path, O_RDONLY); |
| 375 | |
| 376 | if (fd < 0) { |
| 377 | if (errno == ENOENT || errno == EINVAL) { |
| 378 | cf_detail(CF_HARDWARE, "path %s does not work (open): %d (%s)" , |
| 379 | path, errno, cf_strerror(errno)); |
| 380 | return false; |
| 381 | } |
| 382 | |
| 383 | cf_crash(CF_HARDWARE, "error while verifying path %s (open): %d (%s)" , |
| 384 | path, errno, cf_strerror(errno)); |
| 385 | } |
| 386 | |
| 387 | uint8_t buff[1000]; |
| 388 | |
| 389 | if (read(fd, buff, sizeof(buff)) < 0) { |
| 390 | if (errno == EINVAL) { |
| 391 | cf_detail(CF_HARDWARE, "path %s does not work (read): %d (%s)" , |
| 392 | path, errno, cf_strerror(errno)); |
| 393 | CF_NEVER_FAILS(close(fd)); |
| 394 | return false; |
| 395 | } |
| 396 | |
| 397 | cf_crash(CF_HARDWARE, "error while verifying path %s (read): %d (%s)" , |
| 398 | path, errno, cf_strerror(errno)); |
| 399 | } |
| 400 | |
| 401 | cf_detail(CF_HARDWARE, "path %s works" , path); |
| 402 | CF_NEVER_FAILS(close(fd)); |
| 403 | return true; |
| 404 | } |
| 405 | |
| 406 | static void |
| 407 | set_mempolicy_safe(uint32_t mode, uint64_t *node_mask, size_t max_node) |
| 408 | { |
| 409 | if (syscall(__NR_set_mempolicy, mode, node_mask, max_node) < 0) { |
| 410 | cf_crash(CF_HARDWARE, "set_mempolicy() system call failed: %d (%s)" , |
| 411 | errno, cf_strerror(errno)); |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | static void |
| 416 | migrate_pages_safe(pid_t pid, size_t max_node, uint64_t *from_mask, uint64_t *to_mask) |
| 417 | { |
| 418 | int64_t res = syscall(__NR_migrate_pages, pid, max_node, from_mask, to_mask); |
| 419 | |
| 420 | if (res < 0) { |
| 421 | cf_crash(CF_HARDWARE, "migrate_pages() syscall failed: %d (%s)" , |
| 422 | errno, cf_strerror(errno)); |
| 423 | } |
| 424 | |
| 425 | if (res > 0) { |
| 426 | cf_warning(CF_HARDWARE, "could not NUMA-migrate %" PRId64 " page(s)" , res); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | static void |
| 431 | mask_to_string(cpu_set_t *mask, char *buff, size_t limit) |
| 432 | { |
| 433 | cf_topo_os_cpu_index max; |
| 434 | |
| 435 | for (max = CPU_SETSIZE - 1; max > 0; --max) { |
| 436 | if (CPU_ISSET(max, mask)) { |
| 437 | break; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | int32_t words = max / 32 + 1; |
| 442 | size_t size = (size_t)words * 9; |
| 443 | |
| 444 | if (size > limit) { |
| 445 | cf_crash(CF_HARDWARE, "CPU mask buffer overflow: %zu vs. %zu" , size, limit); |
| 446 | } |
| 447 | |
| 448 | for (int32_t i = words - 1; i >= 0; --i) { |
| 449 | uint32_t val = 0; |
| 450 | |
| 451 | for (int32_t k = 0; k < 32; ++k) { |
| 452 | if (CPU_ISSET((size_t)(i * 32 + k), mask)) { |
| 453 | val |= 1u << k; |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | snprintf(buff, limit, "%08x" , val); |
| 458 | |
| 459 | if (i > 0) { |
| 460 | buff[8] = ','; |
| 461 | } |
| 462 | |
| 463 | buff += 9; |
| 464 | limit -= 9; |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | static file_res |
| 469 | read_value(const char *path, int64_t *val) |
| 470 | { |
| 471 | cf_detail(CF_HARDWARE, "reading value from file %s" , path); |
| 472 | |
| 473 | char buff[100]; |
| 474 | size_t limit = sizeof(buff); |
| 475 | file_res res = read_file(path, buff, &limit); |
| 476 | |
| 477 | if (res != FILE_RES_OK) { |
| 478 | return res; |
| 479 | } |
| 480 | |
| 481 | buff[limit - 1] = '\0'; |
| 482 | |
| 483 | cf_detail(CF_HARDWARE, "parsing value \"%s\"" , buff); |
| 484 | |
| 485 | char *end; |
| 486 | int64_t x = strtol(buff, &end, 10); |
| 487 | |
| 488 | if (*end != '\0' || x >= CPU_SETSIZE) { |
| 489 | cf_warning(CF_HARDWARE, "invalid value \"%s\" in %s" , buff, path); |
| 490 | return FILE_RES_ERROR; |
| 491 | } |
| 492 | |
| 493 | *val = x; |
| 494 | return FILE_RES_OK; |
| 495 | } |
| 496 | |
| 497 | static file_res |
| 498 | read_index(const char *path, uint16_t *val) |
| 499 | { |
| 500 | int64_t x; |
| 501 | file_res res = read_value(path, &x); |
| 502 | |
| 503 | if (res != FILE_RES_OK) { |
| 504 | return res; |
| 505 | } |
| 506 | |
| 507 | if (x < 0) { |
| 508 | cf_warning(CF_HARDWARE, "invalid index in %s" , path); |
| 509 | return FILE_RES_ERROR; |
| 510 | } |
| 511 | |
| 512 | *val = (uint16_t)x; |
| 513 | return FILE_RES_OK; |
| 514 | } |
| 515 | |
| 516 | static file_res |
| 517 | read_numa_node(const char *path, cf_topo_numa_node_index *i_numa_node) |
| 518 | { |
| 519 | int64_t x; |
| 520 | file_res res = read_value(path, &x); |
| 521 | |
| 522 | if (res != FILE_RES_OK) { |
| 523 | return res; |
| 524 | } |
| 525 | |
| 526 | if (x < 0) { |
| 527 | cf_detail(CF_HARDWARE, "no NUMA node in %s" , path); |
| 528 | return FILE_RES_ERROR; |
| 529 | } |
| 530 | |
| 531 | *i_numa_node = (cf_topo_numa_node_index)x; |
| 532 | return FILE_RES_OK; |
| 533 | } |
| 534 | |
| 535 | static file_res |
| 536 | read_device_numbers(const char *path, uint32_t *major, uint32_t *minor) |
| 537 | { |
| 538 | cf_detail(CF_HARDWARE, "reading device numbers from file %s" , path); |
| 539 | |
| 540 | char buff[100]; |
| 541 | size_t limit = sizeof(buff); |
| 542 | file_res res = read_file(path, buff, &limit); |
| 543 | |
| 544 | if (res != FILE_RES_OK) { |
| 545 | return res; |
| 546 | } |
| 547 | |
| 548 | buff[limit - 1] = '\0'; |
| 549 | |
| 550 | cf_detail(CF_HARDWARE, "parsing device numbers \"%s\"" , buff); |
| 551 | |
| 552 | if (sscanf(buff, "%u:%u\n" , major, minor) != 2) { |
| 553 | cf_warning(CF_HARDWARE, "invalid device numbers \"%s\" in %s" , buff, |
| 554 | path); |
| 555 | return FILE_RES_ERROR; |
| 556 | } |
| 557 | |
| 558 | return FILE_RES_OK; |
| 559 | } |
| 560 | |
| 561 | static file_res |
| 562 | read_list(const char *path, cpu_set_t *mask) |
| 563 | { |
| 564 | cf_detail(CF_HARDWARE, "reading list from file %s" , path); |
| 565 | char buff[1000]; |
| 566 | size_t limit = sizeof(buff); |
| 567 | file_res res = read_file(path, buff, &limit); |
| 568 | |
| 569 | if (res != FILE_RES_OK) { |
| 570 | return res; |
| 571 | } |
| 572 | |
| 573 | buff[limit - 1] = '\0'; |
| 574 | cf_detail(CF_HARDWARE, "parsing list \"%s\"" , buff); |
| 575 | |
| 576 | CPU_ZERO(mask); |
| 577 | char *walker = buff; |
| 578 | |
| 579 | while (true) { |
| 580 | char *delim; |
| 581 | uint64_t from = strtoul(walker, &delim, 10); |
| 582 | uint64_t thru; |
| 583 | |
| 584 | if (*delim == ',' || *delim == '\0'){ |
| 585 | thru = from; |
| 586 | } |
| 587 | else if (*delim == '-') { |
| 588 | walker = delim + 1; |
| 589 | thru = strtoul(walker, &delim, 10); |
| 590 | } |
| 591 | else { |
| 592 | cf_warning(CF_HARDWARE, "invalid list \"%s\" in %s" , buff, path); |
| 593 | return FILE_RES_ERROR; |
| 594 | } |
| 595 | |
| 596 | if (from >= CPU_SETSIZE || thru >= CPU_SETSIZE || from > thru) { |
| 597 | cf_warning(CF_HARDWARE, "invalid list \"%s\" in %s" , buff, path); |
| 598 | return FILE_RES_ERROR; |
| 599 | } |
| 600 | |
| 601 | cf_detail(CF_HARDWARE, "marking %d through %d" , (int32_t)from, (int32_t)thru); |
| 602 | |
| 603 | for (size_t i = from; i <= thru; ++i) { |
| 604 | CPU_SET(i, mask); |
| 605 | } |
| 606 | |
| 607 | if (*delim == '\0') { |
| 608 | break; |
| 609 | } |
| 610 | |
| 611 | walker = delim + 1; |
| 612 | } |
| 613 | |
| 614 | char buff2[1000]; |
| 615 | mask_to_string(mask, buff2, sizeof(buff2)); |
| 616 | cf_detail(CF_HARDWARE, "list \"%s\" -> mask %s" , buff, buff2); |
| 617 | |
| 618 | return FILE_RES_OK; |
| 619 | } |
| 620 | |
| 621 | static void |
| 622 | detect(cf_topo_numa_node_index a_numa_node) |
| 623 | { |
| 624 | if (a_numa_node == INVALID_INDEX) { |
| 625 | cf_detail(CF_HARDWARE, "detecting online CPUs" ); |
| 626 | } |
| 627 | else { |
| 628 | cf_detail(CF_HARDWARE, "detecting online CPUs on NUMA node %hu" , a_numa_node); |
| 629 | } |
| 630 | |
| 631 | if (read_list("/sys/devices/system/cpu/online" , &g_os_cpus_online) != FILE_RES_OK) { |
| 632 | cf_crash(CF_HARDWARE, "error while reading list of online CPUs" ); |
| 633 | } |
| 634 | |
| 635 | cf_detail(CF_HARDWARE, "learning CPU topology" ); |
| 636 | |
| 637 | cf_topo_numa_node_index os_numa_node_index_to_numa_node_index[CPU_SETSIZE]; |
| 638 | |
| 639 | for (int32_t i = 0; i < CPU_SETSIZE; ++i) { |
| 640 | CPU_ZERO(&g_numa_node_os_cpus_online[i]); |
| 641 | |
| 642 | g_core_index_to_os_cpu_index[i] = INVALID_INDEX; |
| 643 | g_cpu_index_to_os_cpu_index[i] = INVALID_INDEX; |
| 644 | g_os_cpu_index_to_cpu_index[i] = INVALID_INDEX; |
| 645 | |
| 646 | os_numa_node_index_to_numa_node_index[i] = INVALID_INDEX; |
| 647 | g_numa_node_index_to_os_numa_node_index[i] = INVALID_INDEX; |
| 648 | } |
| 649 | |
| 650 | cpu_set_t covered_numa_nodes; |
| 651 | cpu_set_t covered_cores[CPU_SETSIZE]; // One mask per package. |
| 652 | |
| 653 | CPU_ZERO(&covered_numa_nodes); |
| 654 | |
| 655 | for (int32_t i = 0; i < CPU_SETSIZE; ++i) { |
| 656 | CPU_ZERO(&covered_cores[i]); |
| 657 | } |
| 658 | |
| 659 | g_n_numa_nodes = 0; |
| 660 | g_n_cores = 0; |
| 661 | g_n_os_cpus = 0; |
| 662 | g_n_cpus = 0; |
| 663 | char path[1000]; |
| 664 | bool no_numa = false; |
| 665 | |
| 666 | // Loop through all CPUs in the system by looping through OS CPU indexes. |
| 667 | |
| 668 | for (g_n_os_cpus = 0; g_n_os_cpus < CPU_SETSIZE; ++g_n_os_cpus) { |
| 669 | cf_detail(CF_HARDWARE, "querying OS CPU index %hu" , g_n_os_cpus); |
| 670 | |
| 671 | // Let's look at the CPU's package. |
| 672 | |
| 673 | snprintf(path, sizeof(path), |
| 674 | "/sys/devices/system/cpu/cpu%hu/topology/physical_package_id" , |
| 675 | g_n_os_cpus); |
| 676 | os_package_index i_os_package; |
| 677 | file_res res = read_index(path, &i_os_package); |
| 678 | |
| 679 | // The entry doesn't exist. We've processed all available CPUs. Stop |
| 680 | // looping through the CPUs. |
| 681 | |
| 682 | if (res == FILE_RES_NOT_FOUND) { |
| 683 | break; |
| 684 | } |
| 685 | |
| 686 | if (res != FILE_RES_OK) { |
| 687 | cf_crash(CF_HARDWARE, "error while reading OS package index from %s" , path); |
| 688 | break; |
| 689 | } |
| 690 | |
| 691 | cf_detail(CF_HARDWARE, "OS package index is %hu" , i_os_package); |
| 692 | |
| 693 | // Only consider CPUs that are actually in use. |
| 694 | |
| 695 | if (!CPU_ISSET(g_n_os_cpus, &g_os_cpus_online)) { |
| 696 | cf_detail(CF_HARDWARE, "OS CPU index %hu is offline" , g_n_os_cpus); |
| 697 | continue; |
| 698 | } |
| 699 | |
| 700 | // Let's look at the CPU's underlying core. In Hyper Threading systems, |
| 701 | // two (logical) CPUs share one (physical) core. |
| 702 | |
| 703 | snprintf(path, sizeof(path), |
| 704 | "/sys/devices/system/cpu/cpu%hu/topology/core_id" , |
| 705 | g_n_os_cpus); |
| 706 | os_core_index i_os_core; |
| 707 | res = read_index(path, &i_os_core); |
| 708 | |
| 709 | if (res != FILE_RES_OK) { |
| 710 | cf_crash(CF_HARDWARE, "error while reading OS core index from %s" , path); |
| 711 | break; |
| 712 | } |
| 713 | |
| 714 | cf_detail(CF_HARDWARE, "OS core index is %hu" , i_os_core); |
| 715 | |
| 716 | // Consider a core when we see it for the first time. In other words, we |
| 717 | // consider the first Hyper Threading peer of each core to be that core. |
| 718 | |
| 719 | bool new_core; |
| 720 | |
| 721 | if (CPU_ISSET(i_os_core, &covered_cores[i_os_package])) { |
| 722 | cf_detail(CF_HARDWARE, "core (%hu, %hu) already covered" , i_os_core, i_os_package); |
| 723 | new_core = false; |
| 724 | } |
| 725 | else { |
| 726 | cf_detail(CF_HARDWARE, "core (%hu, %hu) is new" , i_os_core, i_os_package); |
| 727 | new_core = true; |
| 728 | CPU_SET(i_os_core, &covered_cores[i_os_package]); |
| 729 | } |
| 730 | |
| 731 | // Identify the NUMA node of the current CPU. We simply look for the |
| 732 | // current CPU's topology info subtree in each NUMA node's subtree. |
| 733 | // Specifically, we look for the current CPU's "core_id" entry. |
| 734 | |
| 735 | os_numa_node_index i_os_numa_node; |
| 736 | |
| 737 | for (i_os_numa_node = 0; i_os_numa_node < CPU_SETSIZE; ++i_os_numa_node) { |
| 738 | snprintf(path, sizeof(path), |
| 739 | "/sys/devices/system/cpu/cpu%hu/node%hu/cpu%hu/topology/core_id" , |
| 740 | g_n_os_cpus, i_os_numa_node, g_n_os_cpus); |
| 741 | uint16_t dummy; |
| 742 | res = read_index(path, &dummy); |
| 743 | |
| 744 | // We found the NUMA node that has the current CPU in its subtree. |
| 745 | |
| 746 | if (res == FILE_RES_OK) { |
| 747 | break; |
| 748 | } |
| 749 | |
| 750 | if (res != FILE_RES_NOT_FOUND) { |
| 751 | cf_crash(CF_HARDWARE, "error while reading core number from %s" , path); |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | // Some Docker installations seem to not have any NUMA information |
| 756 | // in /sys. In this case, assume a system with a single NUMA node. |
| 757 | |
| 758 | if (i_os_numa_node == CPU_SETSIZE) { |
| 759 | cf_detail(CF_HARDWARE, "OS CPU index %hu does not have a NUMA node" , g_n_os_cpus); |
| 760 | no_numa = true; |
| 761 | i_os_numa_node = 0; |
| 762 | } |
| 763 | |
| 764 | cf_detail(CF_HARDWARE, "OS NUMA node index is %hu" , i_os_numa_node); |
| 765 | |
| 766 | // Again, just like with cores, we consider a NUMA node when we encounter |
| 767 | // it for the first time. |
| 768 | |
| 769 | bool new_numa_node; |
| 770 | |
| 771 | if (CPU_ISSET(i_os_numa_node, &covered_numa_nodes)) { |
| 772 | cf_detail(CF_HARDWARE, "OS NUMA node index %hu already covered" , i_os_numa_node); |
| 773 | new_numa_node = false; |
| 774 | } |
| 775 | else { |
| 776 | cf_detail(CF_HARDWARE, "OS NUMA node index %hu is new" , i_os_numa_node); |
| 777 | new_numa_node = true; |
| 778 | CPU_SET(i_os_numa_node, &covered_numa_nodes); |
| 779 | |
| 780 | // For now, we only support a 64-bit bitmask (= one uint64_t). |
| 781 | |
| 782 | if (i_os_numa_node >= 64) { |
| 783 | cf_crash(CF_HARDWARE, "OS NUMA node index %hu too high" , i_os_numa_node); |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | // Now we know that the CPU is online and we know, whether it is in a newly |
| 788 | // seen core (new_core) and/or a newly seen NUMA node (new_numa_node). |
| 789 | |
| 790 | cf_topo_numa_node_index i_numa_node; |
| 791 | |
| 792 | if (new_numa_node) { |
| 793 | i_numa_node = g_n_numa_nodes; |
| 794 | ++g_n_numa_nodes; |
| 795 | os_numa_node_index_to_numa_node_index[i_os_numa_node] = i_numa_node; |
| 796 | g_numa_node_index_to_os_numa_node_index[i_numa_node] = i_os_numa_node; |
| 797 | cf_detail(CF_HARDWARE, "OS NUMA node index %hu -> new NUMA node index %hu" , |
| 798 | i_os_numa_node, i_numa_node); |
| 799 | } |
| 800 | else { |
| 801 | i_numa_node = os_numa_node_index_to_numa_node_index[i_os_numa_node]; |
| 802 | cf_detail(CF_HARDWARE, "OS NUMA node index %hu -> existing NUMA node index %hu" , |
| 803 | i_os_numa_node, i_numa_node); |
| 804 | } |
| 805 | |
| 806 | cf_detail(CF_HARDWARE, "OS CPU index %hu on NUMA node index %hu" , g_n_os_cpus, i_numa_node); |
| 807 | CPU_SET(g_n_os_cpus, &g_numa_node_os_cpus_online[i_numa_node]); |
| 808 | |
| 809 | // If we're in NUMA mode and the CPU isn't on the NUMA mode that we're |
| 810 | // running on, then ignore the CPU. |
| 811 | |
| 812 | if (a_numa_node != INVALID_INDEX && a_numa_node != i_numa_node) { |
| 813 | cf_detail(CF_HARDWARE, "skipping unwanted NUMA node index %hu" , i_numa_node); |
| 814 | continue; |
| 815 | } |
| 816 | |
| 817 | // If the CPU is a new core, then map a new core index to the OS CPU index. |
| 818 | |
| 819 | if (new_core) { |
| 820 | g_core_index_to_os_cpu_index[g_n_cores] = g_n_os_cpus; |
| 821 | cf_detail(CF_HARDWARE, "core index %hu -> OS CPU index %hu" , g_n_cores, g_n_os_cpus); |
| 822 | ++g_n_cores; |
| 823 | } |
| 824 | |
| 825 | // Map the OS CPU index to a new CPU index and vice versa. |
| 826 | |
| 827 | g_os_cpu_index_to_cpu_index[g_n_os_cpus] = g_n_cpus; |
| 828 | g_cpu_index_to_os_cpu_index[g_n_cpus] = g_n_os_cpus; |
| 829 | |
| 830 | cf_detail(CF_HARDWARE, "OS CPU index %hu <-> CPU index %hu" , g_n_os_cpus, g_n_cpus); |
| 831 | ++g_n_cpus; |
| 832 | } |
| 833 | |
| 834 | if (g_n_os_cpus == CPU_SETSIZE) { |
| 835 | cf_crash(CF_HARDWARE, "too many CPUs" ); |
| 836 | } |
| 837 | |
| 838 | if (a_numa_node != INVALID_INDEX && no_numa) { |
| 839 | cf_warning(CF_HARDWARE, "no NUMA information found in /sys" ); |
| 840 | } |
| 841 | |
| 842 | g_i_numa_node = a_numa_node; |
| 843 | } |
| 844 | |
| 845 | static void |
| 846 | pin_to_numa_node(cf_topo_numa_node_index a_numa_node) |
| 847 | { |
| 848 | cf_info(CF_HARDWARE, "pinning to NUMA node %hu" , a_numa_node); |
| 849 | |
| 850 | // Move the current thread (and all of its future descendants) to the CPUs |
| 851 | // on the selected NUMA node. |
| 852 | |
| 853 | cpu_set_t cpu_set; |
| 854 | CPU_ZERO(&cpu_set); |
| 855 | |
| 856 | for (cf_topo_cpu_index i_cpu = 0; i_cpu < g_n_cpus; ++i_cpu) { |
| 857 | cf_topo_os_cpu_index i_os_cpu = g_cpu_index_to_os_cpu_index[i_cpu]; |
| 858 | CPU_SET(i_os_cpu, &cpu_set); |
| 859 | } |
| 860 | |
| 861 | char buff[1000]; |
| 862 | mask_to_string(&cpu_set, buff, sizeof(buff)); |
| 863 | cf_detail(CF_HARDWARE, "NUMA node %hu CPU mask: %s" , a_numa_node, buff); |
| 864 | |
| 865 | if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) { |
| 866 | cf_crash(CF_HARDWARE, "error while pinning thread to NUMA node %hu: %d (%s)" , |
| 867 | a_numa_node, errno, cf_strerror(errno)); |
| 868 | } |
| 869 | |
| 870 | // Force future memory allocations to the selected NUMA node. |
| 871 | |
| 872 | os_numa_node_index i_os_numa_node = g_numa_node_index_to_os_numa_node_index[a_numa_node]; |
| 873 | uint64_t to_mask = 1UL << i_os_numa_node; |
| 874 | cf_detail(CF_HARDWARE, "NUMA node mask (to): %016" PRIx64, to_mask); |
| 875 | |
| 876 | // Unlike select(), we have to pass "number of valid bits + 1". |
| 877 | set_mempolicy_safe(MPOL_BIND, &to_mask, 65); |
| 878 | |
| 879 | // Make sure we can migrate shared memory that we later attach and map. |
| 880 | cf_process_add_startup_cap(CAP_SYS_NICE); |
| 881 | } |
| 882 | |
| 883 | static uint32_t |
| 884 | pick_random(uint32_t limit) |
| 885 | { |
| 886 | static __thread uint64_t state = 0; |
| 887 | |
| 888 | if (state == 0) { |
| 889 | state = (uint64_t)syscall(SYS_gettid); |
| 890 | } |
| 891 | |
| 892 | state = state * 6364136223846793005 + 1; |
| 893 | |
| 894 | if (state == 0) { |
| 895 | state = 1; |
| 896 | } |
| 897 | |
| 898 | return (uint32_t)((state >> 32) % limit); |
| 899 | } |
| 900 | |
| 901 | uint16_t |
| 902 | cf_topo_count_cores(void) |
| 903 | { |
| 904 | return g_n_cores; |
| 905 | } |
| 906 | |
| 907 | uint16_t |
| 908 | cf_topo_count_cpus(void) |
| 909 | { |
| 910 | return g_n_cpus; |
| 911 | } |
| 912 | |
| 913 | static cf_topo_cpu_index |
| 914 | os_cpu_index_to_cpu_index(cf_topo_os_cpu_index i_os_cpu) |
| 915 | { |
| 916 | cf_detail(CF_HARDWARE, "translating OS CPU index %hu" , i_os_cpu); |
| 917 | |
| 918 | if (i_os_cpu >= g_n_os_cpus) { |
| 919 | cf_crash(CF_HARDWARE, "invalid OS CPU index %hu" , i_os_cpu); |
| 920 | } |
| 921 | |
| 922 | cf_topo_cpu_index i_cpu = g_os_cpu_index_to_cpu_index[i_os_cpu]; |
| 923 | |
| 924 | if (i_cpu == INVALID_INDEX) { |
| 925 | cf_detail(CF_HARDWARE, "foreign OS CPU index %hu" , i_os_cpu); |
| 926 | } |
| 927 | else { |
| 928 | cf_detail(CF_HARDWARE, "CPU index is %hu" , i_cpu); |
| 929 | } |
| 930 | |
| 931 | return i_cpu; |
| 932 | } |
| 933 | |
| 934 | cf_topo_cpu_index |
| 935 | cf_topo_current_cpu(void) |
| 936 | { |
| 937 | cf_detail(CF_HARDWARE, "getting current OS CPU index" ); |
| 938 | int32_t os = sched_getcpu(); |
| 939 | |
| 940 | if (os < 0) { |
| 941 | cf_crash(CF_HARDWARE, "error while getting OS CPU index: %d (%s)" , |
| 942 | errno, cf_strerror(errno)); |
| 943 | } |
| 944 | |
| 945 | return os_cpu_index_to_cpu_index((cf_topo_os_cpu_index)os); |
| 946 | } |
| 947 | |
| 948 | cf_topo_cpu_index |
| 949 | cf_topo_socket_cpu(const cf_socket *sock) |
| 950 | { |
| 951 | cf_detail(CF_HARDWARE, "determining CPU index for socket FD %d" , CSFD(sock)); |
| 952 | |
| 953 | int32_t os; |
| 954 | socklen_t len = sizeof(os); |
| 955 | |
| 956 | if (getsockopt(sock->fd, SOL_SOCKET, SO_INCOMING_CPU, &os, &len) < 0) { |
| 957 | cf_crash(CF_HARDWARE, "error while determining incoming OS CPU index: %d (%s)" , |
| 958 | errno, cf_strerror(errno)); |
| 959 | } |
| 960 | |
| 961 | cf_detail(CF_HARDWARE, "OS CPU index is %d" , os); |
| 962 | cf_topo_cpu_index i_cpu = os_cpu_index_to_cpu_index((cf_topo_os_cpu_index)os); |
| 963 | |
| 964 | // 1. The incoming connection was handled on the wrong NUMA node. In this case, |
| 965 | // pick a random CPU on the correct NUMA node. |
| 966 | |
| 967 | if (i_cpu == INVALID_INDEX) { |
| 968 | i_cpu = (cf_topo_cpu_index)pick_random(g_n_cpus); |
| 969 | cf_detail(CF_HARDWARE, "picking random CPU index %hu" , i_cpu); |
| 970 | return i_cpu; |
| 971 | } |
| 972 | |
| 973 | // 2. The incoming connection was handled on a CPU that doesn't get any NIC |
| 974 | // interrupts. This should not happen for connections from other machines, but |
| 975 | // it does happen for connections from the local machine, because they don't |
| 976 | // go through the NIC hardware. In this case, pick a random CPU. |
| 977 | |
| 978 | if (i_cpu >= g_n_irq_cpus) { |
| 979 | i_cpu = (cf_topo_cpu_index)pick_random(g_n_cpus); |
| 980 | cf_detail(CF_HARDWARE, "randomizing unexpected CPU index >%hu to %hu" , |
| 981 | g_n_irq_cpus - 1, i_cpu); |
| 982 | return i_cpu; |
| 983 | } |
| 984 | |
| 985 | // 3. Otherwise, redistribute. The first g_n_irq_cpus CPUs out of a total of |
| 986 | // g_n_cpus CPUs get NIC interrupts. Suppose we have 2 NIC queues and 8 CPUs, |
| 987 | // i.e., that g_n_irq_cpus == 2 and g_n_cpus == 8. We want to redistribute |
| 988 | // evenly across the 8 CPUs, i.e., each CPU should be picked with a probability |
| 989 | // of 0.125. |
| 990 | |
| 991 | // We're currently running on one of the 2 CPUs that get NIC interrupts, on |
| 992 | // either with a probability of p1 = 0.5. We want to stay on the current CPU |
| 993 | // with a probability of p2 = g_n_irq_cpus / g_n_cpus == 2 / 8 == 0.25, which |
| 994 | // yields the desired total probability of p1 * p2 = 0.5 * 0.25 = 0.125. |
| 995 | |
| 996 | if (pick_random(100000) < g_n_irq_cpus * (uint32_t)100000 / g_n_cpus) { |
| 997 | cf_detail(CF_HARDWARE, "staying on CPU index %hu" , i_cpu); |
| 998 | return i_cpu; |
| 999 | } |
| 1000 | |
| 1001 | // 4. Otherwise, if we switch CPUs, then we jump to a CPU that doesn't receive |
| 1002 | // NIC interrupts, i.e., one of the remaining 6 CPUs [2 .. 8] in our example. |
| 1003 | // This reaches each CPU with a probability of (1 - p2) / 6 = 0.125. |
| 1004 | |
| 1005 | i_cpu = (cf_topo_cpu_index)(g_n_irq_cpus + |
| 1006 | pick_random((uint32_t)g_n_cpus - (uint32_t)g_n_irq_cpus)); |
| 1007 | cf_detail(CF_HARDWARE, "redirecting to CPU index %hu" , i_cpu); |
| 1008 | return i_cpu; |
| 1009 | } |
| 1010 | |
| 1011 | cf_topo_napi_id |
| 1012 | cf_topo_socket_napi_id(const cf_socket *sock) |
| 1013 | { |
| 1014 | cf_topo_napi_id id; |
| 1015 | socklen_t len = sizeof(id); |
| 1016 | |
| 1017 | if (getsockopt(sock->fd, SOL_SOCKET, SO_INCOMING_NAPI_ID, &id, &len) < 0) { |
| 1018 | cf_crash(CF_HARDWARE, "SO_INCOMING_NAPI_ID failed: %d (%s)" , errno, |
| 1019 | cf_strerror(errno)); |
| 1020 | } |
| 1021 | |
| 1022 | cf_detail(CF_HARDWARE, "incoming connection with NAPI-id %d" , id); |
| 1023 | return id; |
| 1024 | } |
| 1025 | |
| 1026 | static void |
| 1027 | pin_to_os_cpu(cf_topo_os_cpu_index i_os_cpu) |
| 1028 | { |
| 1029 | cf_detail(CF_HARDWARE, "pinning to OS CPU index %hu" , i_os_cpu); |
| 1030 | |
| 1031 | cpu_set_t cpu_set; |
| 1032 | CPU_ZERO(&cpu_set); |
| 1033 | CPU_SET(i_os_cpu, &cpu_set); |
| 1034 | |
| 1035 | if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) { |
| 1036 | cf_crash(CF_HARDWARE, "error while pinning thread to OS CPU %hu: %d (%s)" , |
| 1037 | i_os_cpu, errno, cf_strerror(errno)); |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | void |
| 1042 | cf_topo_pin_to_core(cf_topo_core_index i_core) |
| 1043 | { |
| 1044 | cf_detail(CF_HARDWARE, "pinning to core index %hu" , i_core); |
| 1045 | |
| 1046 | if (i_core >= g_n_cores) { |
| 1047 | cf_crash(CF_HARDWARE, "invalid core index %hu" , i_core); |
| 1048 | } |
| 1049 | |
| 1050 | pin_to_os_cpu(g_core_index_to_os_cpu_index[i_core]); |
| 1051 | } |
| 1052 | |
| 1053 | void |
| 1054 | cf_topo_pin_to_cpu(cf_topo_cpu_index i_cpu) |
| 1055 | { |
| 1056 | cf_detail(CF_HARDWARE, "pinning to CPU index %hu" , i_cpu); |
| 1057 | |
| 1058 | if (i_cpu >= g_n_cpus) { |
| 1059 | cf_crash(CF_HARDWARE, "invalid CPU index %hu" , i_cpu); |
| 1060 | } |
| 1061 | |
| 1062 | pin_to_os_cpu(g_cpu_index_to_os_cpu_index[i_cpu]); |
| 1063 | } |
| 1064 | |
| 1065 | static check_proc_res |
| 1066 | check_proc(const char *name, int32_t argc, const char *argv[]) |
| 1067 | { |
| 1068 | cf_detail(CF_HARDWARE, "looking for process %s" , name); |
| 1069 | |
| 1070 | for (int32_t i = 0; i < argc; ++i) { |
| 1071 | cf_detail(CF_HARDWARE, "argv[%d]: %s" , i, argv[i]); |
| 1072 | } |
| 1073 | |
| 1074 | DIR *dir = opendir_safe("/proc" ); |
| 1075 | struct dirent ent; |
| 1076 | char cmd[10000]; |
| 1077 | size_t limit; |
| 1078 | bool found = false; |
| 1079 | |
| 1080 | while (readdir_safe(dir, &ent) >= 0) { |
| 1081 | bool numeric = true; |
| 1082 | |
| 1083 | for (int32_t i = 0; ent.d_name[i] != 0; ++i) { |
| 1084 | if (!isascii(ent.d_name[i]) || !isdigit(ent.d_name[i])) { |
| 1085 | numeric = false; |
| 1086 | break; |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | if (!numeric) { |
| 1091 | continue; |
| 1092 | } |
| 1093 | |
| 1094 | char path[500]; |
| 1095 | snprintf(path, sizeof(path), "/proc/%s/cmdline" , ent.d_name); |
| 1096 | |
| 1097 | limit = sizeof(cmd) - 1; |
| 1098 | file_res rfr = read_file(path, cmd, &limit); |
| 1099 | |
| 1100 | // Can legitimately happen, if the process has exited in the meantime. |
| 1101 | if (rfr == FILE_RES_NOT_FOUND) { |
| 1102 | continue; |
| 1103 | } |
| 1104 | |
| 1105 | if (rfr == FILE_RES_ERROR) { |
| 1106 | cf_crash(CF_HARDWARE, "error while reading file %s" , path); |
| 1107 | } |
| 1108 | |
| 1109 | if (limit > 0 && cmd[limit - 1] != 0) { |
| 1110 | cmd[limit] = 0; |
| 1111 | } |
| 1112 | |
| 1113 | const char *name2 = strrchr(cmd, '/'); |
| 1114 | |
| 1115 | if (name2 != NULL) { |
| 1116 | ++name2; |
| 1117 | } |
| 1118 | else { |
| 1119 | name2 = cmd; |
| 1120 | } |
| 1121 | |
| 1122 | if (strcmp(name2, name) == 0) { |
| 1123 | found = true; |
| 1124 | break; |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | closedir_safe(dir); |
| 1129 | |
| 1130 | if (!found) { |
| 1131 | cf_detail(CF_HARDWARE, "process %s absent" , name); |
| 1132 | return CHECK_PROC_ABSENT; |
| 1133 | } |
| 1134 | |
| 1135 | cf_detail(CF_HARDWARE, "process %s is %s" , name, cmd); |
| 1136 | |
| 1137 | if (argc > 0) { |
| 1138 | int32_t i_arg = 0; |
| 1139 | |
| 1140 | for (size_t off = strlen(cmd) + 1; off < limit; off += strlen(cmd + off) + 1) { |
| 1141 | cf_detail(CF_HARDWARE, "checking argument %s against %s" , cmd + off, argv[i_arg]); |
| 1142 | |
| 1143 | if (strcmp(cmd + off, argv[i_arg]) == 0) { |
| 1144 | ++i_arg; |
| 1145 | |
| 1146 | if (i_arg >= argc) { |
| 1147 | break; |
| 1148 | } |
| 1149 | } |
| 1150 | else { |
| 1151 | i_arg = 0; |
| 1152 | } |
| 1153 | } |
| 1154 | |
| 1155 | if (i_arg >= argc) { |
| 1156 | cf_detail(CF_HARDWARE, "process %s present with argument" , name); |
| 1157 | return CHECK_PROC_PRESENT; |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | cf_detail(CF_HARDWARE, "process %s present" , name); |
| 1162 | return CHECK_PROC_PRESENT_NO_ARG; |
| 1163 | } |
| 1164 | |
| 1165 | static uint16_t |
| 1166 | interface_queues(const char *if_name, const char *format) |
| 1167 | { |
| 1168 | uint16_t n_queues = 0; |
| 1169 | |
| 1170 | while (true) { |
| 1171 | char path[1000]; |
| 1172 | snprintf(path, sizeof(path), format, if_name, n_queues); |
| 1173 | cf_detail(CF_HARDWARE, "checking for working path %s" , path); |
| 1174 | |
| 1175 | if (!path_works(path)) { |
| 1176 | cf_detail(CF_HARDWARE, "path does not work" ); |
| 1177 | break; |
| 1178 | } |
| 1179 | |
| 1180 | ++n_queues; |
| 1181 | } |
| 1182 | |
| 1183 | cf_assert(n_queues != 0, CF_HARDWARE, "interface %s has no queues" , if_name); |
| 1184 | |
| 1185 | return n_queues; |
| 1186 | } |
| 1187 | |
| 1188 | static uint16_t |
| 1189 | interface_rx_queues(const char *if_name) |
| 1190 | { |
| 1191 | cf_detail(CF_HARDWARE, "getting receive queues for interface %s" , if_name); |
| 1192 | return interface_queues(if_name, "/sys/class/net/%s/queues/rx-%hu/rps_cpus" ); |
| 1193 | } |
| 1194 | |
| 1195 | static uint16_t |
| 1196 | interface_tx_queues(const char *if_name) |
| 1197 | { |
| 1198 | cf_detail(CF_HARDWARE, "getting transmit queues for interface %s" , if_name); |
| 1199 | return interface_queues(if_name, "/sys/class/net/%s/queues/tx-%hu/xps_cpus" ); |
| 1200 | } |
| 1201 | |
| 1202 | static int |
| 1203 | comp_irq_number(const void *lhs, const void *rhs) |
| 1204 | { |
| 1205 | return *(irq_number *)lhs - *(irq_number *)rhs; |
| 1206 | } |
| 1207 | |
| 1208 | static void |
| 1209 | interface_irqs(const char *if_name, irq_list *irqs) |
| 1210 | { |
| 1211 | cf_detail(CF_HARDWARE, "getting IRQs for interface %s" , if_name); |
| 1212 | |
| 1213 | DIR *dir = opendir_safe("/sys/bus/pci/devices" ); |
| 1214 | struct dirent ent; |
| 1215 | char path[PATH_MAX]; |
| 1216 | bool found = false; |
| 1217 | |
| 1218 | while (readdir_safe(dir, &ent) >= 0) { |
| 1219 | snprintf(path, sizeof(path), "/sys/bus/pci/devices/%s/net/%s/ifindex" , |
| 1220 | ent.d_name, if_name); |
| 1221 | bool exists = path_exists(path); |
| 1222 | |
| 1223 | if (!exists) { |
| 1224 | for (int32_t i = 0; i < 100; ++i) { |
| 1225 | snprintf(path, sizeof(path), "/sys/bus/pci/devices/%s/virtio%d/net/%s/ifindex" , |
| 1226 | ent.d_name, i, if_name); |
| 1227 | exists = path_exists(path); |
| 1228 | |
| 1229 | if (exists) { |
| 1230 | break; |
| 1231 | } |
| 1232 | } |
| 1233 | } |
| 1234 | |
| 1235 | if (!exists) { |
| 1236 | continue; |
| 1237 | } |
| 1238 | |
| 1239 | snprintf(path, sizeof(path), "/sys/bus/pci/devices/%s/msi_irqs" , ent.d_name); |
| 1240 | |
| 1241 | if (!path_exists(path)) { |
| 1242 | cf_crash(CF_HARDWARE, "interface %s does not support MSIs" , if_name); |
| 1243 | } |
| 1244 | |
| 1245 | cf_detail(CF_HARDWARE, "interface %s is %s" , if_name, ent.d_name); |
| 1246 | found = true; |
| 1247 | break; |
| 1248 | } |
| 1249 | |
| 1250 | closedir_safe(dir); |
| 1251 | |
| 1252 | if (!found) { |
| 1253 | cf_crash(CF_HARDWARE, "interface %s does not have a PCI device entry" , if_name); |
| 1254 | } |
| 1255 | |
| 1256 | dir = opendir_safe(path); |
| 1257 | int32_t count = 0; |
| 1258 | irq_number irq_nums[CPU_SETSIZE]; |
| 1259 | |
| 1260 | while (readdir_safe(dir, &ent) >= 0) { |
| 1261 | char *end; |
| 1262 | uint64_t tmp = strtoul(ent.d_name, &end, 10); |
| 1263 | |
| 1264 | if (*end != 0 || tmp > 65535) { |
| 1265 | cf_crash(CF_HARDWARE, "invalid IRQ number %s in %s" , ent.d_name, path); |
| 1266 | } |
| 1267 | |
| 1268 | if (count >= CPU_SETSIZE) { |
| 1269 | cf_crash(CF_HARDWARE, "too many IRQs in %s" , path); |
| 1270 | } |
| 1271 | |
| 1272 | cf_detail(CF_HARDWARE, "interface %s has IRQ %hu" , if_name, (irq_number)tmp); |
| 1273 | irq_nums[count] = (irq_number)tmp; |
| 1274 | ++count; |
| 1275 | } |
| 1276 | |
| 1277 | closedir_safe(dir); |
| 1278 | |
| 1279 | // Sort IRQ numbers, so that RX and TX interrupts pair up nicely when |
| 1280 | // populating irqs->irqs[]. |
| 1281 | qsort(irq_nums, (size_t)count, sizeof(irq_number), comp_irq_number); |
| 1282 | |
| 1283 | char actions[count][100]; |
| 1284 | memset(actions, 0, sizeof(actions)); |
| 1285 | |
| 1286 | FILE *fh = fopen("/proc/interrupts" , "r" ); |
| 1287 | |
| 1288 | if (fh == NULL) { |
| 1289 | cf_crash(CF_HARDWARE, "error while opening /proc/interrupts" ); |
| 1290 | } |
| 1291 | |
| 1292 | int32_t line_no = 0; |
| 1293 | char line[25000]; |
| 1294 | |
| 1295 | while (fgets(line, sizeof(line), fh) != NULL) { |
| 1296 | ++line_no; |
| 1297 | |
| 1298 | if (line_no == 1) { |
| 1299 | continue; |
| 1300 | } |
| 1301 | |
| 1302 | int32_t i = 0; |
| 1303 | |
| 1304 | while (line[i] == ' ') { |
| 1305 | ++i; |
| 1306 | } |
| 1307 | |
| 1308 | irq_number irq_num = 0; |
| 1309 | |
| 1310 | while (line[i] >= '0' && line[i] <= '9') { |
| 1311 | irq_num = (irq_number)(irq_num * 10 + line[i] - '0'); |
| 1312 | ++i; |
| 1313 | } |
| 1314 | |
| 1315 | if (line[i] != ':') { |
| 1316 | continue; |
| 1317 | } |
| 1318 | |
| 1319 | while (line[i] != 0 && line[i] != '\n') { |
| 1320 | ++i; |
| 1321 | } |
| 1322 | |
| 1323 | line[i] = 0; |
| 1324 | |
| 1325 | while (i >= 0 && line[i] != ' ') { |
| 1326 | --i; |
| 1327 | } |
| 1328 | |
| 1329 | char *action = line + i + 1; |
| 1330 | |
| 1331 | if (strlen(action) >= sizeof(actions[0])) { |
| 1332 | cf_crash(CF_HARDWARE, "oversize action in line %d in /proc/interrupts: %s" , |
| 1333 | line_no, action); |
| 1334 | } |
| 1335 | |
| 1336 | cf_detail(CF_HARDWARE, "IRQ %hu has action %s" , irq_num, action); |
| 1337 | |
| 1338 | for (i = 0; i < count; ++i) { |
| 1339 | if (irq_nums[i] == irq_num) { |
| 1340 | int32_t m = 0; |
| 1341 | |
| 1342 | // Remove any digits, so that the queue index goes away and all queues |
| 1343 | // look alike. Also, normalize to lower case. For example: |
| 1344 | // |
| 1345 | // "i40e-em1-TxRx-0" -> "ie-em-txrx-" |
| 1346 | // "i40e-em1-TxRx-1" -> "ie-em-txrx-" |
| 1347 | // ... |
| 1348 | |
| 1349 | for (int32_t k = 0; action[k] != 0; ++k) { |
| 1350 | if (action[k] < '0' || action[k] > '9') { |
| 1351 | actions[i][m] = (char)tolower((uint8_t)action[k]); |
| 1352 | ++m; |
| 1353 | } |
| 1354 | } |
| 1355 | |
| 1356 | actions[i][m] = 0; |
| 1357 | cf_detail(CF_HARDWARE, "action pattern is %s" , actions[i]); |
| 1358 | break; |
| 1359 | } |
| 1360 | } |
| 1361 | } |
| 1362 | |
| 1363 | fclose(fh); |
| 1364 | |
| 1365 | int32_t n_groups = 0; |
| 1366 | int32_t group_sizes[count]; |
| 1367 | int32_t [count]; |
| 1368 | int32_t action_groups[count]; |
| 1369 | int32_t inactive_group = -1; |
| 1370 | |
| 1371 | for (int32_t i = 0; i < count; ++i) { |
| 1372 | group_sizes[i] = 0; |
| 1373 | group_extra[i] = 0; |
| 1374 | action_groups[i] = -1; |
| 1375 | } |
| 1376 | |
| 1377 | // Group by action pattern. |
| 1378 | |
| 1379 | for (int32_t i = 0; i < count; ++i) { |
| 1380 | if (action_groups[i] >= 0) { |
| 1381 | continue; |
| 1382 | } |
| 1383 | |
| 1384 | action_groups[i] = n_groups; |
| 1385 | ++group_sizes[n_groups]; |
| 1386 | |
| 1387 | if (actions[i][0] == 0) { |
| 1388 | inactive_group = n_groups; |
| 1389 | cf_detail(CF_HARDWARE, "inactive IRQs in new group %d" , n_groups); |
| 1390 | } |
| 1391 | else { |
| 1392 | cf_detail(CF_HARDWARE, "new group %d: %s" , n_groups, actions[i]); |
| 1393 | } |
| 1394 | |
| 1395 | for (int32_t k = i + 1; k < count; ++k) { |
| 1396 | if (strcmp(actions[i], actions[k]) == 0) { |
| 1397 | action_groups[k] = n_groups; |
| 1398 | ++group_sizes[n_groups]; |
| 1399 | } |
| 1400 | } |
| 1401 | |
| 1402 | cf_detail(CF_HARDWARE, "group %d has %d member(s)" , n_groups, group_sizes[n_groups]); |
| 1403 | |
| 1404 | // Prefer groups whose action patterns have "rx", "tx", "input", or "output" in them. |
| 1405 | |
| 1406 | if (strstr(actions[i], "rx" ) != NULL || strstr(actions[i], "tx" ) != NULL || |
| 1407 | strstr(actions[i], "input" ) != NULL || strstr(actions[i], "output" ) != NULL) { |
| 1408 | cf_detail(CF_HARDWARE, "preferring group %d" , n_groups); |
| 1409 | group_extra[n_groups] = 1; |
| 1410 | } |
| 1411 | |
| 1412 | ++n_groups; |
| 1413 | } |
| 1414 | |
| 1415 | // Find the two largest groups. |
| 1416 | |
| 1417 | int32_t a = -1; |
| 1418 | int32_t b = -1; |
| 1419 | |
| 1420 | for (int32_t i = 0; i < n_groups; ++i) { |
| 1421 | if (i != inactive_group && |
| 1422 | (a < 0 || group_sizes[i] + group_extra[i] > group_sizes[a] + group_extra[a])) { |
| 1423 | a = i; |
| 1424 | } |
| 1425 | } |
| 1426 | |
| 1427 | if (a < 0) { |
| 1428 | cf_crash(CF_HARDWARE, "no active interrupts for interface %s" , if_name); |
| 1429 | } |
| 1430 | |
| 1431 | for (int32_t i = 0; i < n_groups; ++i) { |
| 1432 | if (i != inactive_group && i != a && |
| 1433 | (b < 0 || group_sizes[i] + group_extra[i] > group_sizes[b] + group_extra[b])) { |
| 1434 | b = i; |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | cf_detail(CF_HARDWARE, "largest groups: %d, %d" , a, b); |
| 1439 | |
| 1440 | // If the two largest groups have an equal number of members, then we assume |
| 1441 | // that it's a NIC with separate RX and TX queue IRQs. |
| 1442 | |
| 1443 | if (b >= 0 && group_sizes[a] == group_sizes[b]) { |
| 1444 | cf_detail(CF_HARDWARE, "assuming %d separate RX and TX queue IRQ(s)" , |
| 1445 | group_sizes[a] + group_sizes[b]); |
| 1446 | int32_t ia = 0; |
| 1447 | int32_t ib = 0; |
| 1448 | |
| 1449 | // Make RX and TX queue IRQs take turns in the IRQ list. |
| 1450 | |
| 1451 | for (int32_t k = 0; k < count; ++k) { |
| 1452 | if (action_groups[k] == a) { |
| 1453 | irqs->irqs[ia * 2] = irq_nums[k]; |
| 1454 | cf_detail(CF_HARDWARE, "irqs[%d] = %hu" , ia * 2, irq_nums[k]); |
| 1455 | ++ia; |
| 1456 | } |
| 1457 | else if (action_groups[k] == b) { |
| 1458 | irqs->irqs[ib * 2 + 1] = irq_nums[k]; |
| 1459 | cf_detail(CF_HARDWARE, "irqs[%d] = %hu" , ib * 2 + 1, irq_nums[k]); |
| 1460 | ++ib; |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | irqs->n_irqs = (uint16_t)(group_sizes[a] + group_sizes[b]); |
| 1465 | |
| 1466 | // Send pairs of two consecutive IRQs in the IRQ list (= the RX and the |
| 1467 | // TX queue IRQ of a given NIC queue pair) to the same CPU. |
| 1468 | |
| 1469 | irqs->per_cpu = 2; |
| 1470 | return; |
| 1471 | } |
| 1472 | |
| 1473 | // Otherwise, we assume that it's a NIC with combined RX and TX queue IRQs |
| 1474 | // and that the largest group contains these IRQs. |
| 1475 | |
| 1476 | cf_detail(CF_HARDWARE, "assuming %d combined RX and TX queue IRQ(s)" , group_sizes[a]); |
| 1477 | int32_t ia = 0; |
| 1478 | |
| 1479 | for (int32_t k = 0; k < count; ++k) { |
| 1480 | if (action_groups[k] == a) { |
| 1481 | irqs->irqs[ia] = irq_nums[k]; |
| 1482 | cf_detail(CF_HARDWARE, "irqs[%d] = %hu" , ia, irq_nums[k]); |
| 1483 | ++ia; |
| 1484 | } |
| 1485 | } |
| 1486 | |
| 1487 | irqs->n_irqs = (uint16_t)group_sizes[a]; |
| 1488 | |
| 1489 | // Send each IRQ in the IRQ list to a different CPU. |
| 1490 | |
| 1491 | irqs->per_cpu = 1; |
| 1492 | } |
| 1493 | |
| 1494 | static void |
| 1495 | pin_irq(irq_number i_irq, cf_topo_os_cpu_index i_os_cpu) |
| 1496 | { |
| 1497 | cf_detail(CF_HARDWARE, "pinning IRQ number %hu to OS CPU index %hu" , i_irq, i_os_cpu); |
| 1498 | |
| 1499 | cpu_set_t mask; |
| 1500 | CPU_ZERO(&mask); |
| 1501 | CPU_SET(i_os_cpu, &mask); |
| 1502 | |
| 1503 | char mask_str[200]; |
| 1504 | mask_to_string(&mask, mask_str, sizeof(mask_str)); |
| 1505 | cf_detail(CF_HARDWARE, "CPU mask is %s" , mask_str); |
| 1506 | |
| 1507 | char path[1000]; |
| 1508 | snprintf(path, sizeof(path), "/proc/irq/%hu/smp_affinity" , i_irq); |
| 1509 | |
| 1510 | if (write_file(path, mask_str, strlen(mask_str)) != FILE_RES_OK) { |
| 1511 | cf_crash(CF_HARDWARE, "error while pinning IRQ, path %s" , path); |
| 1512 | } |
| 1513 | } |
| 1514 | |
| 1515 | static cf_topo_os_cpu_index |
| 1516 | fix_os_cpu_index(cf_topo_os_cpu_index i_os_cpu, const cpu_set_t *online) |
| 1517 | { |
| 1518 | while (true) { |
| 1519 | if (i_os_cpu >= g_n_os_cpus) { |
| 1520 | i_os_cpu = 0; |
| 1521 | } |
| 1522 | |
| 1523 | if (CPU_ISSET(i_os_cpu, online)) { |
| 1524 | return i_os_cpu; |
| 1525 | } |
| 1526 | |
| 1527 | ++i_os_cpu; |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | static void |
| 1532 | config_steering(const char *format, const char *if_name, uint16_t n_queues, bool enable) |
| 1533 | { |
| 1534 | uint16_t i_queue; |
| 1535 | cpu_set_t masks[n_queues]; |
| 1536 | |
| 1537 | for (i_queue = 0; i_queue < n_queues; ++i_queue) { |
| 1538 | CPU_ZERO(&masks[i_queue]); |
| 1539 | } |
| 1540 | |
| 1541 | if (enable) { |
| 1542 | i_queue = 0; |
| 1543 | |
| 1544 | for (cf_topo_os_cpu_index i_os_cpu = 0; i_os_cpu < g_n_os_cpus; ++i_os_cpu) { |
| 1545 | if (CPU_ISSET(i_os_cpu, &g_os_cpus_online)) { |
| 1546 | CPU_SET(i_os_cpu, &masks[i_queue % n_queues]); |
| 1547 | ++i_queue; |
| 1548 | } |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | for (i_queue = 0; i_queue < n_queues; ++i_queue) { |
| 1553 | char path[1000]; |
| 1554 | snprintf(path, sizeof(path), format, if_name, i_queue); |
| 1555 | cf_detail(CF_HARDWARE, "path is %s" , path); |
| 1556 | |
| 1557 | char mask_str[200]; |
| 1558 | mask_to_string(&masks[i_queue], mask_str, sizeof(mask_str)); |
| 1559 | cf_detail(CF_HARDWARE, "CPU mask is %s" , mask_str); |
| 1560 | |
| 1561 | write_file_safe(path, mask_str, strlen(mask_str)); |
| 1562 | } |
| 1563 | } |
| 1564 | |
| 1565 | static void |
| 1566 | enable_xps(const char *if_name) |
| 1567 | { |
| 1568 | cf_detail(CF_HARDWARE, "enabling XPS for interface %s" , if_name); |
| 1569 | uint16_t n_queues = interface_tx_queues(if_name); |
| 1570 | config_steering("/sys/class/net/%s/queues/tx-%hu/xps_cpus" , if_name, n_queues, true); |
| 1571 | } |
| 1572 | |
| 1573 | static void |
| 1574 | disable_rps(const char *if_name) |
| 1575 | { |
| 1576 | cf_detail(CF_HARDWARE, "disabling RPS for interface %s" , if_name); |
| 1577 | uint16_t n_queues = interface_rx_queues(if_name); |
| 1578 | config_steering("/sys/class/net/%s/queues/rx-%hu/rps_cpus" , if_name, n_queues, false); |
| 1579 | } |
| 1580 | |
| 1581 | static void |
| 1582 | config_rfs(const char *if_name, bool enable) |
| 1583 | { |
| 1584 | cf_detail(CF_HARDWARE, "%s RFS for interface %s" , enable ? "enabling" : "disabling" , if_name); |
| 1585 | |
| 1586 | uint16_t n_queues = interface_rx_queues(if_name); |
| 1587 | uint32_t sz_glob = enable ? 1000000 : 0; |
| 1588 | uint32_t sz_queue = sz_glob / n_queues; |
| 1589 | |
| 1590 | cf_detail(CF_HARDWARE, "global size is %u, per-queue size is %u" , sz_glob, sz_queue); |
| 1591 | |
| 1592 | char string[50]; |
| 1593 | snprintf(string, sizeof(string), "%u" , sz_glob); |
| 1594 | write_file_safe("/proc/sys/net/core/rps_sock_flow_entries" , string, strlen(string)); |
| 1595 | |
| 1596 | snprintf(string, sizeof(string), "%u" , sz_queue); |
| 1597 | |
| 1598 | for (uint16_t i_queue = 0; i_queue < n_queues; ++i_queue) { |
| 1599 | char path[1000]; |
| 1600 | snprintf(path, sizeof(path), "/sys/class/net/%s/queues/rx-%hu/rps_flow_cnt" , |
| 1601 | if_name, i_queue); |
| 1602 | write_file_safe(path, string, strlen(string)); |
| 1603 | } |
| 1604 | } |
| 1605 | |
| 1606 | static void |
| 1607 | enable_coalescing(const char *if_name) |
| 1608 | { |
| 1609 | cf_detail(CF_HARDWARE, "enabling interrupt coalescing for interface %s" , if_name); |
| 1610 | int32_t sock = socket(AF_INET, SOCK_DGRAM, 0); |
| 1611 | |
| 1612 | if (sock < 0) { |
| 1613 | cf_crash(CF_HARDWARE, "error while create ethtool socket: %d (%s)" , errno, cf_strerror(errno)); |
| 1614 | } |
| 1615 | |
| 1616 | struct ifreq req; |
| 1617 | memset(&req, 0, sizeof(req)); |
| 1618 | |
| 1619 | if (strlen(if_name) > IFNAMSIZ - 1) { |
| 1620 | cf_crash(CF_HARDWARE, "invalid interface name %s" , if_name); |
| 1621 | } |
| 1622 | |
| 1623 | strcpy(req.ifr_name, if_name); |
| 1624 | struct ethtool_coalesce coal = { .cmd = ETHTOOL_GCOALESCE }; |
| 1625 | req.ifr_data = &coal; |
| 1626 | |
| 1627 | if (ioctl(sock, SIOCETHTOOL, &req) < 0) { |
| 1628 | if (errno == EOPNOTSUPP) { |
| 1629 | cf_detail(CF_HARDWARE, "interface %s does not support ETHTOOL_GCOALESCE" , if_name); |
| 1630 | goto cleanup1; |
| 1631 | } |
| 1632 | |
| 1633 | cf_crash(CF_HARDWARE, "error while getting interface settings: %d (%s)" , |
| 1634 | errno, cf_strerror(errno)); |
| 1635 | } |
| 1636 | |
| 1637 | cf_detail(CF_HARDWARE, "current interface settings: adaptive = %u, usecs = %u" , |
| 1638 | coal.use_adaptive_rx_coalesce, coal.rx_coalesce_usecs); |
| 1639 | |
| 1640 | if (coal.use_adaptive_rx_coalesce != 0 || coal.rx_coalesce_usecs >= 100) { |
| 1641 | cf_detail(CF_HARDWARE, "leaving interface settings untouched" ); |
| 1642 | goto cleanup1; |
| 1643 | } |
| 1644 | |
| 1645 | cf_detail(CF_HARDWARE, "adjusting interface settings" ); |
| 1646 | coal = (struct ethtool_coalesce){ |
| 1647 | .cmd = ETHTOOL_SCOALESCE, |
| 1648 | .rx_coalesce_usecs = 100 // .1 ms for now, which adds .05 ms to a request on average. |
| 1649 | }; |
| 1650 | |
| 1651 | if (ioctl(sock, SIOCETHTOOL, &req) < 0) { |
| 1652 | if (errno == EOPNOTSUPP) { |
| 1653 | cf_detail(CF_HARDWARE, "interface %s does not support ETHTOOL_SCOALESCE" , if_name); |
| 1654 | goto cleanup1; |
| 1655 | } |
| 1656 | |
| 1657 | cf_crash(CF_HARDWARE, "error while adjusting interface settings: %d (%s)" , |
| 1658 | errno, cf_strerror(errno)); |
| 1659 | } |
| 1660 | |
| 1661 | cleanup1: |
| 1662 | CF_NEVER_FAILS(close(sock)); |
| 1663 | } |
| 1664 | |
| 1665 | static void |
| 1666 | check_irqbalance(void) |
| 1667 | { |
| 1668 | cf_detail(CF_HARDWARE, "checking irqbalance" ); |
| 1669 | |
| 1670 | check_proc_res res = check_proc("irqbalance" , 1, (const char *[]){ |
| 1671 | "--policyscript=" POLICY_SCRIPT |
| 1672 | }); |
| 1673 | |
| 1674 | if (res == CHECK_PROC_PRESENT_NO_ARG) { |
| 1675 | res = check_proc("irqbalance" , 2, (const char *[]){ |
| 1676 | "--policyscript" , |
| 1677 | POLICY_SCRIPT |
| 1678 | }); |
| 1679 | } |
| 1680 | |
| 1681 | if (res == CHECK_PROC_PRESENT_NO_ARG) { |
| 1682 | res = check_proc("irqbalance" , 1, (const char *[]){ |
| 1683 | "-l" POLICY_SCRIPT |
| 1684 | }); |
| 1685 | } |
| 1686 | |
| 1687 | if (res == CHECK_PROC_PRESENT_NO_ARG) { |
| 1688 | res = check_proc("irqbalance" , 2, (const char *[]){ |
| 1689 | "-l" , |
| 1690 | POLICY_SCRIPT |
| 1691 | }); |
| 1692 | } |
| 1693 | |
| 1694 | if (res == CHECK_PROC_PRESENT_NO_ARG) { |
| 1695 | cf_crash_nostack(CF_HARDWARE, "please disable irqbalance or run it with the Aerospike policy script, /etc/aerospike/irqbalance-ban.sh" ); |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | static void |
| 1700 | config_interface(const char *if_name, bool rfs, irq_list *irqs) |
| 1701 | { |
| 1702 | uint16_t n_irq_cpus = 0; |
| 1703 | cf_topo_os_cpu_index i_os_cpu = fix_os_cpu_index(0, &g_os_cpus_online); |
| 1704 | |
| 1705 | for (uint16_t i = 0; i < irqs->n_irqs; ++i) { |
| 1706 | pin_irq(irqs->irqs[i], i_os_cpu); |
| 1707 | |
| 1708 | if (i % irqs->per_cpu == irqs->per_cpu - 1) { |
| 1709 | ++n_irq_cpus; |
| 1710 | i_os_cpu = fix_os_cpu_index((cf_topo_os_cpu_index)(i_os_cpu + 1), &g_os_cpus_online); |
| 1711 | } |
| 1712 | } |
| 1713 | |
| 1714 | cf_detail(CF_HARDWARE, "interface %s with %hu RX interrupt(s)" , if_name, n_irq_cpus); |
| 1715 | |
| 1716 | if (g_n_irq_cpus == 0) { |
| 1717 | g_n_irq_cpus = n_irq_cpus; |
| 1718 | } |
| 1719 | else if (n_irq_cpus != g_n_irq_cpus) { |
| 1720 | cf_crash(CF_HARDWARE, "interface %s with inconsistent number of RX interrupts: %hu vs. %hu" , |
| 1721 | if_name, n_irq_cpus, g_n_irq_cpus); |
| 1722 | } |
| 1723 | |
| 1724 | disable_rps(if_name); |
| 1725 | config_rfs(if_name, rfs); |
| 1726 | enable_xps(if_name); |
| 1727 | |
| 1728 | // Redistributing packets with RFS causes inter-CPU interrupts, which increases |
| 1729 | // the interrupt load on the machine. For low-end systems, make sure that |
| 1730 | // interrupt coalescing is enabled. |
| 1731 | // |
| 1732 | // We consider a machine low-end, if we handle interrupts on 25% or less of the |
| 1733 | // available CPUs (i.e., if the number of NIC queues is 25% or less of the number |
| 1734 | // of available CPUs) and it has fewer than 4 NIC queues. |
| 1735 | // |
| 1736 | // Better (i.e., NUMA) machines typically come with adaptive interrupt coalescing |
| 1737 | // enabled by default. That's why we only do this here and not in the NUMA case. |
| 1738 | |
| 1739 | if (rfs && n_irq_cpus <= g_n_cpus / 4 && n_irq_cpus < 4) { |
| 1740 | enable_coalescing(if_name); |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | static void |
| 1745 | config_interface_numa(const char *if_name, irq_list *irqs) |
| 1746 | { |
| 1747 | uint16_t n_irq_cpus = 0; |
| 1748 | cf_topo_os_cpu_index i_os_cpu[g_n_numa_nodes]; |
| 1749 | uint16_t i_numa_node; |
| 1750 | |
| 1751 | for (i_numa_node = 0; i_numa_node < g_n_numa_nodes; ++i_numa_node) { |
| 1752 | i_os_cpu[i_numa_node] = fix_os_cpu_index(0, &g_numa_node_os_cpus_online[i_numa_node]); |
| 1753 | } |
| 1754 | |
| 1755 | i_numa_node = 0; |
| 1756 | |
| 1757 | // This configures the IRQs for all NUMA nodes. If multiple asd processes are |
| 1758 | // running, each process does this, but each does it identically. Hence there |
| 1759 | // isn't any conflict. |
| 1760 | |
| 1761 | for (uint16_t i = 0; i < irqs->n_irqs; ++i) { |
| 1762 | char mask_str[200]; |
| 1763 | mask_to_string(&g_numa_node_os_cpus_online[i_numa_node], mask_str, sizeof(mask_str)); |
| 1764 | cf_detail(CF_HARDWARE, "NUMA node index %hu CPU mask is %s" , i_numa_node, mask_str); |
| 1765 | |
| 1766 | pin_irq(irqs->irqs[i], i_os_cpu[i_numa_node]); |
| 1767 | |
| 1768 | if (i % irqs->per_cpu == irqs->per_cpu - 1) { |
| 1769 | // Only count CPUs on our NUMA node. |
| 1770 | |
| 1771 | if (i_numa_node == g_i_numa_node) { |
| 1772 | ++n_irq_cpus; |
| 1773 | } |
| 1774 | |
| 1775 | i_os_cpu[i_numa_node] = |
| 1776 | fix_os_cpu_index((cf_topo_os_cpu_index)(i_os_cpu[i_numa_node] + 1), |
| 1777 | &g_numa_node_os_cpus_online[i_numa_node]); |
| 1778 | i_numa_node = (uint16_t)((i_numa_node + 1) % g_n_numa_nodes); |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | cf_detail(CF_HARDWARE, "interface %s with %hu RX interrupt(s) on NUMA node %hu" , |
| 1783 | if_name, n_irq_cpus, g_i_numa_node); |
| 1784 | |
| 1785 | if (g_n_irq_cpus == 0) { |
| 1786 | g_n_irq_cpus = n_irq_cpus; |
| 1787 | } |
| 1788 | else if (n_irq_cpus != g_n_irq_cpus) { |
| 1789 | cf_crash(CF_HARDWARE, "interface %s with inconsistent number of RX interrupts: %hu vs. %hu" , |
| 1790 | if_name, n_irq_cpus, g_n_irq_cpus); |
| 1791 | } |
| 1792 | |
| 1793 | disable_rps(if_name); |
| 1794 | config_rfs(if_name, true); |
| 1795 | enable_xps(if_name); |
| 1796 | } |
| 1797 | |
| 1798 | static void |
| 1799 | optimize_interface(const char *if_name) |
| 1800 | { |
| 1801 | cf_detail(CF_HARDWARE, "optimizing interface %s" , if_name); |
| 1802 | uint16_t n_queues = interface_rx_queues(if_name); |
| 1803 | irq_list irqs; |
| 1804 | interface_irqs(if_name, &irqs); |
| 1805 | |
| 1806 | cf_info(CF_HARDWARE, "detected %hu NIC receive queue(s), %hu interrupt(s) for %s" , |
| 1807 | n_queues, irqs.n_irqs, if_name); |
| 1808 | |
| 1809 | // We either expect one interrupt per RX queue (shared with TX) or two |
| 1810 | // interrupts per RX queue (one RX, one TX). |
| 1811 | |
| 1812 | uint16_t n_irq_cpus = irqs.n_irqs / irqs.per_cpu; |
| 1813 | |
| 1814 | if (n_irq_cpus != n_queues) { |
| 1815 | cf_crash(CF_HARDWARE, "suspicious NIC interrupt count %hu with %hu NIC receive queue(s)" , |
| 1816 | irqs.n_irqs, n_queues); |
| 1817 | } |
| 1818 | |
| 1819 | if (n_irq_cpus == g_n_cpus) { |
| 1820 | if (g_i_numa_node != INVALID_INDEX) { |
| 1821 | cf_detail(CF_HARDWARE, "setting up for a fancy interface with NUMA" ); |
| 1822 | config_interface_numa(if_name, &irqs); |
| 1823 | } |
| 1824 | else { |
| 1825 | cf_detail(CF_HARDWARE, "setting up for a fancy interface, no NUMA" ); |
| 1826 | config_interface(if_name, false, &irqs); |
| 1827 | } |
| 1828 | } |
| 1829 | else { |
| 1830 | if (n_irq_cpus <= g_n_cpus / 4) { |
| 1831 | cf_warning(CF_HARDWARE, "%s has very few NIC queues; only %hu out of %hu CPUs handle(s) NIC interrupts" , |
| 1832 | if_name, n_irq_cpus, g_n_cpus); |
| 1833 | } |
| 1834 | |
| 1835 | if (g_i_numa_node != INVALID_INDEX) { |
| 1836 | cf_detail(CF_HARDWARE, "setting up for a lame interface with NUMA" ); |
| 1837 | config_interface_numa(if_name, &irqs); |
| 1838 | } |
| 1839 | else { |
| 1840 | cf_detail(CF_HARDWARE, "setting up for a lame interface, no NUMA" ); |
| 1841 | config_interface(if_name, true, &irqs); |
| 1842 | } |
| 1843 | } |
| 1844 | } |
| 1845 | |
| 1846 | // Make sure that we are running on appropriate kernel. |
| 1847 | static void |
| 1848 | check_socket_option(int optname, const char *tag) |
| 1849 | { |
| 1850 | int32_t fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); |
| 1851 | |
| 1852 | if (fd < 0) { |
| 1853 | cf_crash(CF_HARDWARE, "error while creating UDP test socket: %d (%s)" , |
| 1854 | errno, cf_strerror(errno)); |
| 1855 | } |
| 1856 | |
| 1857 | int32_t val; |
| 1858 | socklen_t val_len = sizeof(val); |
| 1859 | |
| 1860 | if (getsockopt(fd, SOL_SOCKET, optname, &val, &val_len) < 0) { |
| 1861 | if (errno == ENOPROTOOPT) { |
| 1862 | cf_crash_nostack(CF_HARDWARE, "auto-pin requires %s or later" , tag); |
| 1863 | } |
| 1864 | |
| 1865 | cf_crash(CF_HARDWARE, "error while testing for socket option: %d (%s)" , |
| 1866 | errno, cf_strerror(errno)); |
| 1867 | } |
| 1868 | |
| 1869 | CF_NEVER_FAILS(close(fd)); |
| 1870 | } |
| 1871 | |
| 1872 | // Reconfigure NIC queues and interrupts. |
| 1873 | static void |
| 1874 | optimize_interfaces(const cf_addr_list *addrs) |
| 1875 | { |
| 1876 | if (addrs->n_addrs == 0) { |
| 1877 | cf_crash_nostack(CF_HARDWARE, "auto-pinning requires binding the service to one or more network interfaces" ); |
| 1878 | } |
| 1879 | |
| 1880 | for (uint32_t i = 0; i < addrs->n_addrs; ++i) { |
| 1881 | const char *if_name = addrs->addrs[i]; |
| 1882 | |
| 1883 | if (!cf_inter_is_inter_name(if_name)) { |
| 1884 | cf_crash_nostack(CF_HARDWARE, "auto-pinning requires binding the service to network interfaces; \"%s\" isn't a network interface" , |
| 1885 | if_name); |
| 1886 | } |
| 1887 | |
| 1888 | char phys_name[50]; |
| 1889 | CF_NEVER_FAILS(cf_inter_get_physical(if_name, phys_name, sizeof(phys_name))); |
| 1890 | |
| 1891 | char *exp_names[100]; |
| 1892 | uint32_t n_exp = sizeof(exp_names) / sizeof(exp_names[0]); |
| 1893 | cf_inter_expand_bond(phys_name, exp_names, &n_exp); |
| 1894 | |
| 1895 | for (uint32_t k = 0; k < n_exp; ++k) { |
| 1896 | optimize_interface(exp_names[k]); |
| 1897 | cf_free(exp_names[k]); |
| 1898 | } |
| 1899 | } |
| 1900 | } |
| 1901 | |
| 1902 | void |
| 1903 | cf_topo_config(cf_topo_auto_pin auto_pin, cf_topo_numa_node_index a_numa_node, |
| 1904 | const cf_addr_list *addrs) |
| 1905 | { |
| 1906 | // Detect the NUMA topology. |
| 1907 | |
| 1908 | switch (auto_pin) { |
| 1909 | case CF_TOPO_AUTO_PIN_NONE: |
| 1910 | case CF_TOPO_AUTO_PIN_CPU: |
| 1911 | detect(INVALID_INDEX); |
| 1912 | break; |
| 1913 | |
| 1914 | case CF_TOPO_AUTO_PIN_NUMA: |
| 1915 | case CF_TOPO_AUTO_PIN_ADQ: |
| 1916 | detect(a_numa_node); |
| 1917 | |
| 1918 | // Clamp the given NUMA node index to the valid range. We can only do this |
| 1919 | // after we know what g_n_numa_nodes is, which is initialized by the above |
| 1920 | // call to detect(). |
| 1921 | |
| 1922 | if (a_numa_node >= g_n_numa_nodes) { |
| 1923 | cf_topo_numa_node_index orig = a_numa_node; |
| 1924 | a_numa_node = (cf_topo_numa_node_index)(a_numa_node % g_n_numa_nodes); |
| 1925 | cf_detail(CF_HARDWARE, "invalid NUMA node index: %hu, clamping to %hu" , orig, a_numa_node); |
| 1926 | detect(a_numa_node); |
| 1927 | } |
| 1928 | |
| 1929 | break; |
| 1930 | |
| 1931 | default: |
| 1932 | cf_crash(CF_HARDWARE, "bad auto-pin value %d" , auto_pin); |
| 1933 | break; |
| 1934 | } |
| 1935 | |
| 1936 | // If we don't do any pinning, then we're done after NUMA topology detection. |
| 1937 | if (auto_pin == CF_TOPO_AUTO_PIN_NONE) { |
| 1938 | return; |
| 1939 | } |
| 1940 | |
| 1941 | check_irqbalance(); // ensure irqbalance is disabled |
| 1942 | |
| 1943 | switch (auto_pin) { |
| 1944 | case CF_TOPO_AUTO_PIN_CPU: |
| 1945 | check_socket_option(SO_INCOMING_CPU, "Linux kernel 3.19" ); |
| 1946 | optimize_interfaces(addrs); |
| 1947 | break; |
| 1948 | case CF_TOPO_AUTO_PIN_NUMA: |
| 1949 | check_socket_option(SO_INCOMING_CPU, "Linux kernel 3.19" ); |
| 1950 | optimize_interfaces(addrs); |
| 1951 | pin_to_numa_node(a_numa_node); |
| 1952 | break; |
| 1953 | case CF_TOPO_AUTO_PIN_ADQ: |
| 1954 | check_socket_option(SO_INCOMING_NAPI_ID, "Linux kernel 4.12" ); |
| 1955 | pin_to_numa_node(a_numa_node); |
| 1956 | break; |
| 1957 | default: |
| 1958 | cf_crash(CF_HARDWARE, "bad auto-pin value %d" , auto_pin); |
| 1959 | break; |
| 1960 | } |
| 1961 | } |
| 1962 | |
| 1963 | void |
| 1964 | cf_topo_force_map_memory(const uint8_t *from, size_t size) |
| 1965 | { |
| 1966 | if (g_i_numa_node == INVALID_INDEX || size == 0) { |
| 1967 | return; |
| 1968 | } |
| 1969 | |
| 1970 | cf_assert(from, CF_HARDWARE, "invalid cf_topo_force_map_memory() call" ); |
| 1971 | |
| 1972 | // Read one byte per memory page to force otherwise lazy mapping. |
| 1973 | |
| 1974 | const uint8_t *start = (const uint8_t *) |
| 1975 | (((int64_t)from + (MEM_PAGE_SIZE - 1)) & -MEM_PAGE_SIZE); |
| 1976 | const uint8_t *end = from + size; |
| 1977 | const volatile uint8_t *p_byte; |
| 1978 | |
| 1979 | // In case 'from' was not page-aligned, take care of the partial page. |
| 1980 | if (start > from) { |
| 1981 | p_byte = from; |
| 1982 | p_byte[0]; |
| 1983 | } |
| 1984 | |
| 1985 | for (p_byte = start; p_byte < end; p_byte += MEM_PAGE_SIZE) { |
| 1986 | p_byte[0]; |
| 1987 | } |
| 1988 | } |
| 1989 | |
| 1990 | void |
| 1991 | cf_topo_migrate_memory(void) |
| 1992 | { |
| 1993 | if (g_i_numa_node == INVALID_INDEX) { |
| 1994 | return; |
| 1995 | } |
| 1996 | |
| 1997 | // Migrate existing memory allocations to the selected NUMA node. |
| 1998 | |
| 1999 | os_numa_node_index i_os_numa_node = g_numa_node_index_to_os_numa_node_index[g_i_numa_node]; |
| 2000 | uint64_t to_mask = 1UL << i_os_numa_node; |
| 2001 | cf_detail(CF_HARDWARE, "NUMA node mask (to): %016" PRIx64, to_mask); |
| 2002 | |
| 2003 | uint64_t from_mask = 0; |
| 2004 | |
| 2005 | for (cf_topo_numa_node_index i_numa_node = 0; i_numa_node < g_n_numa_nodes; ++i_numa_node) { |
| 2006 | i_os_numa_node = g_numa_node_index_to_os_numa_node_index[i_numa_node]; |
| 2007 | from_mask |= 1u << i_os_numa_node; |
| 2008 | } |
| 2009 | |
| 2010 | from_mask &= ~to_mask; |
| 2011 | cf_detail(CF_HARDWARE, "NUMA node mask (from): %016" PRIx64, from_mask); |
| 2012 | |
| 2013 | if (from_mask != 0) { |
| 2014 | cf_info(CF_HARDWARE, "migrating shared memory to local NUMA node - this may take a bit" ); |
| 2015 | // Unlike select(), we have to pass "number of valid bits + 1". |
| 2016 | migrate_pages_safe(0, 65, &from_mask, &to_mask); |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | void |
| 2021 | cf_topo_info(void) |
| 2022 | { |
| 2023 | if (g_i_numa_node == INVALID_INDEX) { |
| 2024 | cf_info(CF_HARDWARE, "detected %hu CPU(s), %hu core(s), %hu NUMA node(s)" , |
| 2025 | g_n_cpus, g_n_cores, g_n_numa_nodes); |
| 2026 | } |
| 2027 | else { |
| 2028 | cf_info(CF_HARDWARE, "detected %hu CPU(s), %hu core(s) on NUMA node %hu of %hu" , |
| 2029 | g_n_cpus, g_n_cores, g_i_numa_node, g_n_numa_nodes); |
| 2030 | } |
| 2031 | } |
| 2032 | |
| 2033 | static uint32_t |
| 2034 | dev_key_hash(const void *k) |
| 2035 | { |
| 2036 | const dev_key_t *key = k; |
| 2037 | return (1 + key->major) * (1 + key->minor); |
| 2038 | } |
| 2039 | |
| 2040 | static void |
| 2041 | add_child(const dev_key_t *key, dev_node_t *node, const dev_key_t *child_key, |
| 2042 | dev_node_t *child_node) |
| 2043 | { |
| 2044 | cf_detail(CF_HARDWARE, "parent %u:%u -> child %u:%u" , |
| 2045 | key->major, key->minor, child_key->major, child_key->minor); |
| 2046 | |
| 2047 | node->children[node->n_children] = child_node; |
| 2048 | ++node->n_children; |
| 2049 | } |
| 2050 | |
| 2051 | static void |
| 2052 | collect_edges(const char *sys_dir, const char *prefix, bool flip, |
| 2053 | const dev_key_t *key, dev_node_t *node) |
| 2054 | { |
| 2055 | cf_detail(CF_HARDWARE, "collecting devices in %s" , sys_dir); |
| 2056 | |
| 2057 | if (!path_exists(sys_dir)) { |
| 2058 | return; |
| 2059 | } |
| 2060 | |
| 2061 | size_t prefix_len = strlen(prefix); |
| 2062 | |
| 2063 | DIR *dir = opendir_safe(sys_dir); |
| 2064 | struct dirent ent; |
| 2065 | |
| 2066 | while (readdir_safe(dir, &ent) >= 0) { |
| 2067 | cf_detail(CF_HARDWARE, "considering %s" , ent.d_name); |
| 2068 | |
| 2069 | if (prefix_len > 0 && strncmp(ent.d_name, prefix, prefix_len) != 0) { |
| 2070 | cf_detail(CF_HARDWARE, "prefix mismatch" ); |
| 2071 | continue; |
| 2072 | } |
| 2073 | |
| 2074 | char sys_path[DEVICE_PATH_SIZE]; |
| 2075 | snprintf(sys_path, DEVICE_PATH_SIZE, "%s/%s" , sys_dir, ent.d_name); |
| 2076 | |
| 2077 | if (!path_is_dir(sys_path)) { |
| 2078 | cf_detail(CF_HARDWARE, "not a directory" ); |
| 2079 | continue; |
| 2080 | } |
| 2081 | |
| 2082 | snprintf(sys_path, DEVICE_PATH_SIZE, "%s/%s/dev" , sys_dir, ent.d_name); |
| 2083 | |
| 2084 | dev_key_t sub_key; |
| 2085 | |
| 2086 | if (read_device_numbers(sys_path, &sub_key.major, &sub_key.minor) != |
| 2087 | FILE_RES_OK) { |
| 2088 | cf_detail(CF_HARDWARE, "no device numbers" ); |
| 2089 | continue; |
| 2090 | } |
| 2091 | |
| 2092 | dev_node_t *sub_node; |
| 2093 | |
| 2094 | if (cf_shash_get(g_dev_graph, &sub_key, &sub_node) != CF_SHASH_OK) { |
| 2095 | cf_warning(CF_HARDWARE, "no node for sub device %s/%s (%u:%u)" , |
| 2096 | sys_dir, ent.d_name, sub_key.major, sub_key.minor); |
| 2097 | continue; |
| 2098 | } |
| 2099 | |
| 2100 | if (!flip) { |
| 2101 | add_child(&sub_key, sub_node, key, node); |
| 2102 | } |
| 2103 | else { |
| 2104 | add_child(key, node, &sub_key, sub_node); |
| 2105 | } |
| 2106 | } |
| 2107 | |
| 2108 | closedir_safe(dir); |
| 2109 | } |
| 2110 | |
| 2111 | static int32_t |
| 2112 | create_device_edges(const void *k, void *v, void *udata) |
| 2113 | { |
| 2114 | (void)udata; |
| 2115 | |
| 2116 | const dev_key_t *key = k; |
| 2117 | dev_node_t **node = v; |
| 2118 | |
| 2119 | cf_detail(CF_HARDWARE, "creating edges for %s" , (*node)->sys_home); |
| 2120 | |
| 2121 | // Collect partitions on a device. |
| 2122 | collect_edges((*node)->sys_home, (*node)->name, false, key, *node); |
| 2123 | |
| 2124 | char sys_slaves[DEVICE_PATH_SIZE + 7]; // +7 to silence the compiler |
| 2125 | snprintf(sys_slaves, DEVICE_PATH_SIZE + 7, "%s/slaves" , (*node)->sys_home); |
| 2126 | |
| 2127 | // Collect inter-device dependencies. |
| 2128 | collect_edges(sys_slaves, "" , true, key, *node); |
| 2129 | |
| 2130 | return CF_SHASH_OK; |
| 2131 | } |
| 2132 | |
| 2133 | static void |
| 2134 | build_device_graph(void) |
| 2135 | { |
| 2136 | // Step 1. Create a device map entry for each device. Don't yet link them |
| 2137 | // into a device dependency graph. |
| 2138 | |
| 2139 | static const char *sys_dirs[] = { |
| 2140 | "/sys/class/nvme" , |
| 2141 | "/sys/class/block" , |
| 2142 | NULL |
| 2143 | }; |
| 2144 | |
| 2145 | g_dev_graph = cf_shash_create(dev_key_hash, sizeof(dev_key_t), |
| 2146 | sizeof(dev_node_t *), 256, 0); |
| 2147 | |
| 2148 | for (int32_t i_dir = 0; sys_dirs[i_dir] != NULL; ++i_dir) { |
| 2149 | const char *sys_dir = sys_dirs[i_dir]; |
| 2150 | |
| 2151 | cf_detail(CF_HARDWARE, "collecting devices in %s" , sys_dir); |
| 2152 | |
| 2153 | if (!path_exists(sys_dir)) { |
| 2154 | cf_detail(CF_HARDWARE, "directory does not exist" ); |
| 2155 | continue; |
| 2156 | } |
| 2157 | |
| 2158 | DIR *dir = opendir_safe(sys_dir); |
| 2159 | struct dirent ent; |
| 2160 | |
| 2161 | while (readdir_safe(dir, &ent) >= 0) { |
| 2162 | cf_detail(CF_HARDWARE, "considering %s" , ent.d_name); |
| 2163 | |
| 2164 | char sys_path[DEVICE_PATH_SIZE]; |
| 2165 | snprintf(sys_path, DEVICE_PATH_SIZE, "%s/%s/dev" , sys_dir, |
| 2166 | ent.d_name); |
| 2167 | |
| 2168 | dev_key_t key; |
| 2169 | |
| 2170 | if (read_device_numbers(sys_path, &key.major, &key.minor) != |
| 2171 | FILE_RES_OK) { |
| 2172 | cf_detail(CF_HARDWARE, "no device numbers" ); |
| 2173 | continue; |
| 2174 | } |
| 2175 | |
| 2176 | dev_node_t *node = cf_malloc(sizeof(dev_node_t)); |
| 2177 | memset(node, 0, sizeof(dev_node_t)); |
| 2178 | |
| 2179 | snprintf(node->name, DEVICE_NAME_SIZE, "%s" , ent.d_name); |
| 2180 | snprintf(node->dev_path, DEVICE_PATH_SIZE, "/dev/%s" , ent.d_name); |
| 2181 | |
| 2182 | snprintf(node->sys_home, DEVICE_PATH_SIZE, "%s/%s" , sys_dir, |
| 2183 | ent.d_name); |
| 2184 | |
| 2185 | snprintf(sys_path, DEVICE_PATH_SIZE, "%s/%s/queue/scheduler" , |
| 2186 | sys_dir, ent.d_name); |
| 2187 | |
| 2188 | if (path_exists(sys_path)) { |
| 2189 | strcpy(node->sys_sched, sys_path); |
| 2190 | } |
| 2191 | |
| 2192 | cf_detail(CF_HARDWARE, "new device %s (%u:%u), home %s, " |
| 2193 | "scheduler %s" , node->dev_path, key.major, key.minor, |
| 2194 | node->sys_home, node->sys_sched[0] != 0 ? |
| 2195 | node->sys_sched : "-" ); |
| 2196 | |
| 2197 | if (cf_shash_put_unique(g_dev_graph, &key, &node) != CF_SHASH_OK) { |
| 2198 | cf_warning(CF_HARDWARE, "duplicate device %s (%u:%u)" , |
| 2199 | node->dev_path, key.major, key.minor); |
| 2200 | } |
| 2201 | } |
| 2202 | |
| 2203 | closedir_safe(dir); |
| 2204 | } |
| 2205 | |
| 2206 | // Step 2. Link the devices in the device map to create the device |
| 2207 | // dependency graph. Here's an example graph path for logical volume |
| 2208 | // lv_foo on encrypted partition sda3: |
| 2209 | // |
| 2210 | // lv_foo 253:1 -> sda3_crypt 253:0 -> sda3 8:3 -> sda 8:0 |
| 2211 | // |
| 2212 | // In short: Going from parents to children takes you closer to |
| 2213 | // physical devices. |
| 2214 | // |
| 2215 | // Devices can have multiple parents, e.g., sda could have sda1, sda2, |
| 2216 | // and sda3. |
| 2217 | // |
| 2218 | // Devices can also have multiple children, e.g., lv_bar could have |
| 2219 | // children sda1 and sdb1. |
| 2220 | |
| 2221 | cf_detail(CF_HARDWARE, "creating device edges" ); |
| 2222 | cf_shash_reduce(g_dev_graph, create_device_edges, NULL); |
| 2223 | } |
| 2224 | |
| 2225 | static char * |
| 2226 | get_mounted_device(const char *fs_path) |
| 2227 | { |
| 2228 | cf_detail(CF_HARDWARE, "mapping mount point %s" , fs_path); |
| 2229 | |
| 2230 | char *fs_real = realpath(fs_path, NULL); |
| 2231 | |
| 2232 | if (fs_real == NULL) { |
| 2233 | cf_warning(CF_HARDWARE, "failed to resolve path %s: %d (%s)" , |
| 2234 | fs_path, errno, cf_strerror(errno)); |
| 2235 | return NULL; |
| 2236 | } |
| 2237 | |
| 2238 | cf_detail(CF_HARDWARE, "resolved path %s" , fs_real); |
| 2239 | |
| 2240 | FILE *fh = setmntent("/proc/mounts" , "r" ); |
| 2241 | |
| 2242 | struct mntent mnt; |
| 2243 | char buff[1000]; |
| 2244 | |
| 2245 | size_t best_len = 0; |
| 2246 | char best_path[DEVICE_PATH_SIZE]; |
| 2247 | |
| 2248 | while (getmntent_r(fh, &mnt, buff, sizeof(buff)) != NULL) { |
| 2249 | cf_detail(CF_HARDWARE, "mount point %s" , mnt.mnt_dir); |
| 2250 | |
| 2251 | char *mount_real = realpath(mnt.mnt_dir, NULL); |
| 2252 | |
| 2253 | if (mount_real == NULL) { |
| 2254 | // Don't warn; current user may simply not be allowed access to all |
| 2255 | // mount points. |
| 2256 | cf_detail(CF_HARDWARE, |
| 2257 | "failed to resolve mount point %s: %d (%s)" , |
| 2258 | mnt.mnt_dir, errno, cf_strerror(errno)); |
| 2259 | continue; |
| 2260 | } |
| 2261 | |
| 2262 | cf_detail(CF_HARDWARE, "resolved mount point %s" , mount_real); |
| 2263 | |
| 2264 | size_t len = strlen(mount_real); |
| 2265 | |
| 2266 | if (len > best_len && strncmp(fs_real, mount_real, len) == 0) { |
| 2267 | strcpy(best_path, mnt.mnt_fsname); |
| 2268 | best_len = len; |
| 2269 | cf_detail(CF_HARDWARE, "new best %s with length %zu" , |
| 2270 | best_path, best_len); |
| 2271 | } |
| 2272 | |
| 2273 | free(mount_real); |
| 2274 | } |
| 2275 | |
| 2276 | endmntent(fh); |
| 2277 | free(fs_real); |
| 2278 | |
| 2279 | if (best_len == 0) { |
| 2280 | cf_warning(CF_HARDWARE, "no mount point found for %s" , fs_path); |
| 2281 | return NULL; |
| 2282 | } |
| 2283 | |
| 2284 | if (strncmp(best_path, "/dev" , 4) != 0) { |
| 2285 | // Don't warn; could be tmpfs, etc. |
| 2286 | cf_detail(CF_HARDWARE, "invalid device %s found for %s" , best_path, |
| 2287 | fs_path); |
| 2288 | return NULL; |
| 2289 | } |
| 2290 | |
| 2291 | char *best_real = realpath(best_path, NULL); |
| 2292 | |
| 2293 | if (best_real == NULL) { |
| 2294 | cf_warning(CF_HARDWARE, |
| 2295 | "failed to resolve mounted device %s: %d (%s)" , best_path, |
| 2296 | errno, cf_strerror(errno)); |
| 2297 | return NULL; |
| 2298 | } |
| 2299 | |
| 2300 | // Return a result allocated with the cf_*() allocation functions. |
| 2301 | |
| 2302 | char *res = cf_strdup(best_real); |
| 2303 | free(best_real); |
| 2304 | |
| 2305 | cf_detail(CF_HARDWARE, "mount point is %s" , res); |
| 2306 | return res; |
| 2307 | } |
| 2308 | |
| 2309 | static bool |
| 2310 | get_dev_key(const char *dev_path, dev_key_t *key) |
| 2311 | { |
| 2312 | cf_detail(CF_HARDWARE, "getting device key for %s" , dev_path); |
| 2313 | |
| 2314 | struct stat st; |
| 2315 | |
| 2316 | if (stat(dev_path, &st) < 0) { |
| 2317 | cf_warning(CF_HARDWARE, "failed to query meta data for %s: %d (%s)" , |
| 2318 | dev_path, errno, cf_strerror(errno)); |
| 2319 | return false; |
| 2320 | } |
| 2321 | |
| 2322 | if (!S_ISBLK(st.st_mode) && !S_ISCHR(st.st_mode)) { |
| 2323 | cf_warning(CF_HARDWARE, "%s is not a device" , dev_path); |
| 2324 | return false; |
| 2325 | } |
| 2326 | |
| 2327 | key->major = major(st.st_rdev); |
| 2328 | key->minor = minor(st.st_rdev); |
| 2329 | |
| 2330 | cf_detail(CF_HARDWARE, "device key %u:%u" , key->major, key->minor); |
| 2331 | return true; |
| 2332 | } |
| 2333 | |
| 2334 | static cf_topo_numa_node_index |
| 2335 | get_numa_node(const char *sys_path) |
| 2336 | { |
| 2337 | cf_detail(CF_HARDWARE, "finding NUMA node for %s" , sys_path); |
| 2338 | |
| 2339 | char *sys_real = realpath(sys_path, NULL); |
| 2340 | |
| 2341 | if (sys_real == NULL) { |
| 2342 | cf_warning(CF_HARDWARE, "failed to resolve path %s: %d (%s)" , |
| 2343 | sys_path, errno, cf_strerror(errno)); |
| 2344 | return INVALID_INDEX; |
| 2345 | } |
| 2346 | |
| 2347 | cf_topo_numa_node_index res = INVALID_INDEX; |
| 2348 | |
| 2349 | for (int32_t i = 0; i < 25; ++i) { |
| 2350 | cf_detail(CF_HARDWARE, "considering %s" , sys_real); |
| 2351 | |
| 2352 | char sys_numa[DEVICE_PATH_SIZE]; |
| 2353 | snprintf(sys_numa, DEVICE_PATH_SIZE, "%s/numa_node" , sys_real); |
| 2354 | |
| 2355 | cf_topo_numa_node_index tmp; |
| 2356 | |
| 2357 | if (read_numa_node(sys_numa, &tmp) == FILE_RES_OK) { |
| 2358 | cf_detail(CF_HARDWARE, "NUMA node found" ); |
| 2359 | res = tmp; |
| 2360 | break; |
| 2361 | } |
| 2362 | |
| 2363 | int32_t i_slash = -1; |
| 2364 | |
| 2365 | for (int32_t k = 0; sys_real[k] != 0; ++k) { |
| 2366 | if (sys_real[k] == '/') { |
| 2367 | i_slash = k; |
| 2368 | } |
| 2369 | } |
| 2370 | |
| 2371 | if (i_slash < 1) { |
| 2372 | break; |
| 2373 | } |
| 2374 | |
| 2375 | sys_real[i_slash] = 0; |
| 2376 | } |
| 2377 | |
| 2378 | free(sys_real); |
| 2379 | return res; |
| 2380 | } |
| 2381 | |
| 2382 | static int32_t |
| 2383 | get_nvme_age(const char *dev_path) |
| 2384 | { |
| 2385 | static const uint32_t SZ_BUFF = 512; |
| 2386 | |
| 2387 | cf_detail(CF_HARDWARE, "getting age for %s" , dev_path); |
| 2388 | |
| 2389 | if (!cf_process_has_cap(CAP_SYS_ADMIN)) { |
| 2390 | cf_detail(CF_HARDWARE, "insufficient privileges to query %s" , |
| 2391 | dev_path); |
| 2392 | return -1; |
| 2393 | } |
| 2394 | |
| 2395 | int32_t fd = open(dev_path, O_RDONLY); |
| 2396 | |
| 2397 | if (fd < 0) { |
| 2398 | if (errno == EACCES) { |
| 2399 | cf_detail(CF_HARDWARE, "insufficient privileges to open %s" , |
| 2400 | dev_path); |
| 2401 | } |
| 2402 | else { |
| 2403 | cf_warning(CF_HARDWARE, "failed to open %s: %d (%s)" , |
| 2404 | dev_path, errno, cf_strerror(errno)); |
| 2405 | } |
| 2406 | |
| 2407 | return -1; |
| 2408 | } |
| 2409 | |
| 2410 | uint8_t *buff = cf_valloc(SZ_BUFF); |
| 2411 | |
| 2412 | // Silence Valgrind, which doesn't know about this ioctl. |
| 2413 | |
| 2414 | memset(buff, 0, SZ_BUFF); |
| 2415 | |
| 2416 | // NVMe specification: https://bit.ly/2HPAS99 |
| 2417 | // |
| 2418 | // - See 4.2 for overall command format. |
| 2419 | // - See 5.14 for specifics of the Get Log page command. |
| 2420 | // |
| 2421 | // "0's based value" in the spec means that a value x in a data |
| 2422 | // structure actually means x + 1. |
| 2423 | |
| 2424 | uint32_t numdl = (SZ_BUFF / 4) - 1; // number of dwords lower (0's based) |
| 2425 | uint32_t lid = 2; // log page identifier: 2 (SMART log) |
| 2426 | |
| 2427 | uint32_t cdw10 = (numdl << 16) | lid; |
| 2428 | |
| 2429 | struct nvme_admin_cmd cmd = { |
| 2430 | .opcode = 0x02, // Get Log Page |
| 2431 | .nsid = 0xffffffff, // no namespace |
| 2432 | .addr = (uint64_t)buff, // result buffer |
| 2433 | .data_len = SZ_BUFF, // size of result buffer |
| 2434 | .cdw10 = cdw10 // command arguments |
| 2435 | }; |
| 2436 | |
| 2437 | cf_process_enable_cap(CAP_SYS_ADMIN); |
| 2438 | |
| 2439 | cf_detail(CF_HARDWARE, "querying %s" , dev_path); |
| 2440 | int32_t res = ioctl(fd, NVME_IOCTL_ADMIN_CMD, &cmd); |
| 2441 | |
| 2442 | cf_process_disable_cap(CAP_SYS_ADMIN); |
| 2443 | |
| 2444 | if (res < 0) { |
| 2445 | // Older kernels that don't support the IOCTL return EINVAL. |
| 2446 | // Submitting to non-NVMe devices causes ENOTTY. |
| 2447 | if (errno != EINVAL && errno != ENOTTY) { |
| 2448 | cf_warning(CF_HARDWARE, "failed to submit command to %s: %d (%s)" , |
| 2449 | dev_path, errno, cf_strerror(errno)); |
| 2450 | } |
| 2451 | |
| 2452 | cf_free(buff); |
| 2453 | close(fd); |
| 2454 | return -1; |
| 2455 | } |
| 2456 | |
| 2457 | if (res > 0){ |
| 2458 | // Some virtualized environments don't provide a SMART log page. |
| 2459 | if (res != NVME_SC_INVALID_LOG_PAGE) { |
| 2460 | cf_warning(CF_HARDWARE, "failed to submit command to %s: 0x%x" , |
| 2461 | dev_path, res); |
| 2462 | } |
| 2463 | |
| 2464 | cf_free(buff); |
| 2465 | close(fd); |
| 2466 | return -1; |
| 2467 | } |
| 2468 | |
| 2469 | // 0 <= age <= 255 - reported percentage used may exceed 100, when a drive |
| 2470 | // lives longer than predicted by its vendor. |
| 2471 | |
| 2472 | int32_t age = buff[5]; |
| 2473 | cf_detail(CF_HARDWARE, "percentage lived %d" , age); |
| 2474 | |
| 2475 | cf_free(buff); |
| 2476 | close(fd); |
| 2477 | |
| 2478 | return age; |
| 2479 | } |
| 2480 | |
| 2481 | static void |
| 2482 | update_path_data(path_data_t *data) |
| 2483 | { |
| 2484 | cf_storage_device_info *info = &data->info; |
| 2485 | |
| 2486 | cf_detail(CF_HARDWARE, "updating path data for %s" , info->dev_path); |
| 2487 | |
| 2488 | for (uint32_t i = 0; i < info->n_phys; ++i) { |
| 2489 | cf_detail(CF_HARDWARE, "updating %s" , info->phys[i].dev_path); |
| 2490 | info->phys[i].nvme_age = get_nvme_age(info->phys[i].dev_path); |
| 2491 | } |
| 2492 | |
| 2493 | data->mod_time = cf_get_seconds(); |
| 2494 | } |
| 2495 | |
| 2496 | static void |
| 2497 | visit_children(path_data_t *data, dev_node_t *node) |
| 2498 | { |
| 2499 | cf_storage_device_info *info = &data->info; |
| 2500 | |
| 2501 | cf_detail(CF_HARDWARE, "considering %s for %s" , node->dev_path, |
| 2502 | info->dev_path); |
| 2503 | |
| 2504 | if (node->sys_sched[0] != 0) { |
| 2505 | cf_detail(CF_HARDWARE, "found scheduler %s" , node->sys_sched); |
| 2506 | |
| 2507 | uint32_t n_sys_scheds = data->n_sys_scheds; |
| 2508 | |
| 2509 | if (n_sys_scheds >= CF_STORAGE_MAX_PHYS) { |
| 2510 | cf_warning(CF_HARDWARE, "too many schedulers for %s" , |
| 2511 | info->dev_path); |
| 2512 | return; |
| 2513 | } |
| 2514 | |
| 2515 | data->sys_scheds[n_sys_scheds] = node->sys_sched; |
| 2516 | ++data->n_sys_scheds; |
| 2517 | } |
| 2518 | |
| 2519 | if (node->n_children == 0) { |
| 2520 | cf_detail(CF_HARDWARE, "found physical device" ); |
| 2521 | |
| 2522 | uint32_t n_phys = info->n_phys; |
| 2523 | |
| 2524 | if (n_phys >= CF_STORAGE_MAX_PHYS) { |
| 2525 | cf_warning(CF_HARDWARE, "too many physical devices for %s" , |
| 2526 | info->dev_path); |
| 2527 | return; |
| 2528 | } |
| 2529 | |
| 2530 | info->phys[n_phys].dev_path = node->dev_path; |
| 2531 | info->phys[n_phys].numa_node = get_numa_node(node->sys_home); |
| 2532 | info->phys[n_phys].nvme_age = -1; |
| 2533 | |
| 2534 | ++info->n_phys; |
| 2535 | return; |
| 2536 | } |
| 2537 | |
| 2538 | cf_detail(CF_HARDWARE, "examining children" ); |
| 2539 | |
| 2540 | for (uint32_t i = 0; i < node->n_children; ++i) { |
| 2541 | visit_children(data, node->children[i]); |
| 2542 | } |
| 2543 | } |
| 2544 | |
| 2545 | static path_data_t * |
| 2546 | new_path_data(const char *any_path) |
| 2547 | { |
| 2548 | cf_detail(CF_HARDWARE, "creating path data for %s" , any_path); |
| 2549 | |
| 2550 | path_data_t *data = cf_malloc(sizeof(path_data_t)); |
| 2551 | struct stat st; |
| 2552 | |
| 2553 | if (stat(any_path, &st) < 0) { |
| 2554 | cf_warning(CF_HARDWARE, "failed to query meta data for %s: %d (%s)" , |
| 2555 | any_path, errno, cf_strerror(errno)); |
| 2556 | cf_free(data); |
| 2557 | return NULL; |
| 2558 | } |
| 2559 | |
| 2560 | cf_storage_device_info *info = &data->info; |
| 2561 | |
| 2562 | if (S_ISREG(st.st_mode) || S_ISDIR(st.st_mode)) { |
| 2563 | cf_detail(CF_HARDWARE, "%s is a file or directory" , any_path); |
| 2564 | info->dev_path = get_mounted_device(any_path); |
| 2565 | |
| 2566 | if (info->dev_path == NULL) { |
| 2567 | cf_free(data); |
| 2568 | return NULL; |
| 2569 | } |
| 2570 | } |
| 2571 | else if (S_ISBLK(st.st_mode) || S_ISCHR(st.st_mode)) { |
| 2572 | cf_detail(CF_HARDWARE, "%s is a device" , any_path); |
| 2573 | info->dev_path = cf_strdup(any_path); |
| 2574 | } |
| 2575 | else { |
| 2576 | cf_warning(CF_HARDWARE, "%s with unknown type 0x%x" , any_path, |
| 2577 | st.st_mode & S_IFMT); |
| 2578 | cf_free(data); |
| 2579 | return NULL; |
| 2580 | } |
| 2581 | |
| 2582 | cf_detail(CF_HARDWARE, "mapping device %s" , info->dev_path); |
| 2583 | |
| 2584 | dev_key_t key; |
| 2585 | |
| 2586 | if (!get_dev_key(info->dev_path, &key)) { |
| 2587 | cf_free(info->dev_path); |
| 2588 | cf_free(data); |
| 2589 | return NULL; |
| 2590 | } |
| 2591 | |
| 2592 | dev_node_t *node; |
| 2593 | |
| 2594 | if (cf_shash_get(g_dev_graph, &key, &node) != CF_SHASH_OK) { |
| 2595 | cf_warning(CF_HARDWARE, "no node for device key %u:%u" , key.major, |
| 2596 | key.minor); |
| 2597 | cf_free(info->dev_path); |
| 2598 | cf_free(data); |
| 2599 | return NULL; |
| 2600 | } |
| 2601 | |
| 2602 | cf_detail(CF_HARDWARE, "collecting dependency info" ); |
| 2603 | |
| 2604 | data->n_sys_scheds = 0; |
| 2605 | info->n_phys = 0; |
| 2606 | |
| 2607 | visit_children(data, node); |
| 2608 | |
| 2609 | cf_detail(CF_HARDWARE, "populating NVMe age" ); |
| 2610 | update_path_data(data); |
| 2611 | |
| 2612 | return data; |
| 2613 | } |
| 2614 | |
| 2615 | static path_data_t * |
| 2616 | get_path_data(const char *any_path) |
| 2617 | { |
| 2618 | cf_detail(CF_HARDWARE, "getting path data for %s" , any_path); |
| 2619 | |
| 2620 | cf_mutex_lock(&g_path_data_lock); |
| 2621 | |
| 2622 | if (g_dev_graph == NULL) { |
| 2623 | build_device_graph(); |
| 2624 | } |
| 2625 | |
| 2626 | if (g_path_data == NULL) { |
| 2627 | g_path_data = cf_shash_create(cf_shash_fn_zstr, |
| 2628 | DEVICE_PATH_SIZE, sizeof(path_data_t *), 256, 0); |
| 2629 | } |
| 2630 | |
| 2631 | size_t len = strlen(any_path); |
| 2632 | |
| 2633 | if (len >= DEVICE_PATH_SIZE) { |
| 2634 | cf_warning(CF_HARDWARE, "device path %s is too long" , any_path); |
| 2635 | cf_mutex_unlock(&g_path_data_lock); |
| 2636 | return NULL; |
| 2637 | } |
| 2638 | |
| 2639 | char key[DEVICE_PATH_SIZE]; |
| 2640 | |
| 2641 | memcpy(key, any_path, len); |
| 2642 | memset(key + len, 0, DEVICE_PATH_SIZE - len); |
| 2643 | |
| 2644 | path_data_t *data; |
| 2645 | |
| 2646 | if (cf_shash_get(g_path_data, key, &data) != CF_SHASH_OK) { |
| 2647 | cf_detail(CF_HARDWARE, "no path data" ); |
| 2648 | |
| 2649 | data = new_path_data(any_path); |
| 2650 | |
| 2651 | if (data == NULL) { |
| 2652 | cf_mutex_unlock(&g_path_data_lock); |
| 2653 | return NULL; |
| 2654 | } |
| 2655 | |
| 2656 | cf_shash_put_unique(g_path_data, key, &data); |
| 2657 | } |
| 2658 | else { |
| 2659 | cf_detail(CF_HARDWARE, "existing path data" ); |
| 2660 | } |
| 2661 | |
| 2662 | cf_clock now = cf_get_seconds(); |
| 2663 | |
| 2664 | if (now > data->mod_time + 86400) { |
| 2665 | update_path_data(data); |
| 2666 | } |
| 2667 | |
| 2668 | cf_mutex_unlock(&g_path_data_lock); |
| 2669 | return data; |
| 2670 | } |
| 2671 | |
| 2672 | cf_storage_device_info * |
| 2673 | cf_storage_get_device_info(const char *path) |
| 2674 | { |
| 2675 | cf_detail(CF_HARDWARE, "getting device info for %s" , path); |
| 2676 | |
| 2677 | path_data_t *data = get_path_data(path); |
| 2678 | |
| 2679 | if (data == NULL) { |
| 2680 | return NULL; |
| 2681 | } |
| 2682 | |
| 2683 | return &data->info; |
| 2684 | } |
| 2685 | |
| 2686 | void |
| 2687 | cf_storage_set_scheduler(const char *path, const char *sched) |
| 2688 | { |
| 2689 | cf_detail(CF_HARDWARE, "setting scheduler for %s to %s" , path, sched); |
| 2690 | |
| 2691 | path_data_t *data = get_path_data(path); |
| 2692 | |
| 2693 | if (data == NULL) { |
| 2694 | cf_warning(CF_HARDWARE, "couldn't find path data for %s" , path); |
| 2695 | return; |
| 2696 | } |
| 2697 | |
| 2698 | bool failed = false; |
| 2699 | |
| 2700 | for (uint32_t i = 0; i < data->n_sys_scheds; ++i) { |
| 2701 | if (write_file(data->sys_scheds[i], sched, strlen(sched)) != |
| 2702 | FILE_RES_OK) { |
| 2703 | failed = true; |
| 2704 | } |
| 2705 | } |
| 2706 | |
| 2707 | if (failed) { |
| 2708 | cf_warning(CF_HARDWARE, "couldn't set scheduler for %s to %s" , path, |
| 2709 | sched); |
| 2710 | } |
| 2711 | else { |
| 2712 | cf_info(CF_HARDWARE, "set scheduler for %s to %s" , path, sched); |
| 2713 | } |
| 2714 | } |
| 2715 | |
| 2716 | int64_t |
| 2717 | cf_storage_file_system_size(const char *path) |
| 2718 | { |
| 2719 | struct stat file; |
| 2720 | |
| 2721 | if (stat(path, &file) < 0) { |
| 2722 | switch (errno) { |
| 2723 | case ENOENT: |
| 2724 | cf_warning(CF_HARDWARE, "mount point %s does not exist" , path); |
| 2725 | break; |
| 2726 | |
| 2727 | case EACCES: |
| 2728 | cf_warning(CF_HARDWARE, "access to mount point %s denied" , path); |
| 2729 | break; |
| 2730 | |
| 2731 | default: |
| 2732 | cf_warning(CF_HARDWARE, |
| 2733 | "error while querying mount point %s: %d (%s)" , path, |
| 2734 | errno, cf_strerror(errno)); |
| 2735 | break; |
| 2736 | } |
| 2737 | |
| 2738 | return -1; |
| 2739 | } |
| 2740 | |
| 2741 | if (!S_ISDIR(file.st_mode)) { |
| 2742 | cf_warning(CF_HARDWARE, "mount point %s is not a directory" , path); |
| 2743 | return -1; |
| 2744 | } |
| 2745 | |
| 2746 | struct statfs fs; |
| 2747 | |
| 2748 | if (statfs(path, &fs) < 0) { |
| 2749 | cf_warning(CF_HARDWARE, |
| 2750 | "error while querying mount point %s: %d (%s)" , path, |
| 2751 | errno, cf_strerror(errno)); |
| 2752 | return -1; |
| 2753 | } |
| 2754 | |
| 2755 | int64_t sz = (int64_t)fs.f_bsize * (int64_t)fs.f_blocks; |
| 2756 | |
| 2757 | cf_detail(CF_HARDWARE, "file system size of %s is %ld" , path, sz); |
| 2758 | return sz; |
| 2759 | } |
| 2760 | |
| 2761 | bool |
| 2762 | cf_storage_is_root_fs(const char *path) |
| 2763 | { |
| 2764 | struct statvfs vfs; |
| 2765 | |
| 2766 | if (statvfs("/" , &vfs) < 0) { |
| 2767 | cf_crash(CF_HARDWARE, "cannot stat root directory" ); |
| 2768 | } |
| 2769 | |
| 2770 | uint64_t root_id = vfs.f_fsid; |
| 2771 | |
| 2772 | if (statvfs(path, &vfs) < 0) { |
| 2773 | cf_warning(CF_HARDWARE, "cannot stat %s: %d (%s)" , path, errno, |
| 2774 | cf_strerror(errno)); |
| 2775 | return false; |
| 2776 | } |
| 2777 | |
| 2778 | return vfs.f_fsid == root_id; |
| 2779 | } |
| 2780 | |
| 2781 | void |
| 2782 | cf_page_cache_dirty_limits(void) |
| 2783 | { |
| 2784 | write_file_safe("/proc/sys/vm/dirty_bytes" , "16777216" , 8); |
| 2785 | write_file_safe("/proc/sys/vm/dirty_background_bytes" , "1" , 1); |
| 2786 | write_file_safe("/proc/sys/vm/dirty_expire_centisecs" , "1" , 1); |
| 2787 | write_file_safe("/proc/sys/vm/dirty_writeback_centisecs" , "10" , 2); |
| 2788 | } |
| 2789 | |
| 2790 | bool |
| 2791 | cf_mount_is_local(const char *path) |
| 2792 | { |
| 2793 | if (g_i_numa_node == INVALID_INDEX) { |
| 2794 | cf_detail(CF_HARDWARE, "not NUMA pinned" ); |
| 2795 | return true; |
| 2796 | } |
| 2797 | |
| 2798 | cf_storage_device_info *info = cf_storage_get_device_info(path); |
| 2799 | cf_topo_numa_node_index numa_node = info->phys[0].numa_node; |
| 2800 | |
| 2801 | for (uint32_t i = 1; i < info->n_phys; i++) { |
| 2802 | if (info->phys[i].numa_node != numa_node) { |
| 2803 | cf_crash_nostack(CF_HARDWARE, "can't numa pin %s (%s,%s)" , path, |
| 2804 | info->phys[0].dev_path, info->phys[i].dev_path); |
| 2805 | } |
| 2806 | } |
| 2807 | |
| 2808 | return numa_node == g_i_numa_node; |
| 2809 | } |
| 2810 | |